MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rnco Structured version   Visualization version   GIF version

Theorem rnco 6170
Description: The range of the composition of two classes. (Contributed by NM, 12-Dec-2006.) (Proof shortened by Peter Mazsa, 2-Oct-2022.)
Assertion
Ref Expression
rnco ran (𝐴𝐵) = ran (𝐴 ↾ ran 𝐵)

Proof of Theorem rnco
Dummy variables 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 vex 3441 . . . . . 6 𝑥 ∈ V
2 vex 3441 . . . . . 6 𝑦 ∈ V
31, 2brco 5792 . . . . 5 (𝑥(𝐴𝐵)𝑦 ↔ ∃𝑧(𝑥𝐵𝑧𝑧𝐴𝑦))
43exbii 1848 . . . 4 (∃𝑥 𝑥(𝐴𝐵)𝑦 ↔ ∃𝑥𝑧(𝑥𝐵𝑧𝑧𝐴𝑦))
5 excom 2160 . . . 4 (∃𝑥𝑧(𝑥𝐵𝑧𝑧𝐴𝑦) ↔ ∃𝑧𝑥(𝑥𝐵𝑧𝑧𝐴𝑦))
6 vex 3441 . . . . . . . 8 𝑧 ∈ V
76elrn 5815 . . . . . . 7 (𝑧 ∈ ran 𝐵 ↔ ∃𝑥 𝑥𝐵𝑧)
87anbi1i 625 . . . . . 6 ((𝑧 ∈ ran 𝐵𝑧𝐴𝑦) ↔ (∃𝑥 𝑥𝐵𝑧𝑧𝐴𝑦))
92brresi 5912 . . . . . 6 (𝑧(𝐴 ↾ ran 𝐵)𝑦 ↔ (𝑧 ∈ ran 𝐵𝑧𝐴𝑦))
10 19.41v 1951 . . . . . 6 (∃𝑥(𝑥𝐵𝑧𝑧𝐴𝑦) ↔ (∃𝑥 𝑥𝐵𝑧𝑧𝐴𝑦))
118, 9, 103bitr4ri 304 . . . . 5 (∃𝑥(𝑥𝐵𝑧𝑧𝐴𝑦) ↔ 𝑧(𝐴 ↾ ran 𝐵)𝑦)
1211exbii 1848 . . . 4 (∃𝑧𝑥(𝑥𝐵𝑧𝑧𝐴𝑦) ↔ ∃𝑧 𝑧(𝐴 ↾ ran 𝐵)𝑦)
134, 5, 123bitri 297 . . 3 (∃𝑥 𝑥(𝐴𝐵)𝑦 ↔ ∃𝑧 𝑧(𝐴 ↾ ran 𝐵)𝑦)
142elrn 5815 . . 3 (𝑦 ∈ ran (𝐴𝐵) ↔ ∃𝑥 𝑥(𝐴𝐵)𝑦)
152elrn 5815 . . 3 (𝑦 ∈ ran (𝐴 ↾ ran 𝐵) ↔ ∃𝑧 𝑧(𝐴 ↾ ran 𝐵)𝑦)
1613, 14, 153bitr4i 303 . 2 (𝑦 ∈ ran (𝐴𝐵) ↔ 𝑦 ∈ ran (𝐴 ↾ ran 𝐵))
1716eqriv 2733 1 ran (𝐴𝐵) = ran (𝐴 ↾ ran 𝐵)
Colors of variables: wff setvar class
Syntax hints:  wa 397   = wceq 1539  wex 1779  wcel 2104   class class class wbr 5081  ran crn 5601  cres 5602  ccom 5604
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1911  ax-6 1969  ax-7 2009  ax-8 2106  ax-9 2114  ax-11 2152  ax-ext 2707  ax-sep 5232  ax-nul 5239  ax-pr 5361
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 846  df-3an 1089  df-tru 1542  df-fal 1552  df-ex 1780  df-sb 2066  df-clab 2714  df-cleq 2728  df-clel 2814  df-ral 3063  df-rex 3072  df-rab 3306  df-v 3439  df-dif 3895  df-un 3897  df-in 3899  df-ss 3909  df-nul 4263  df-if 4466  df-sn 4566  df-pr 4568  df-op 4572  df-br 5082  df-opab 5144  df-xp 5606  df-cnv 5608  df-co 5609  df-dm 5610  df-rn 5611  df-res 5612
This theorem is referenced by:  rnco2  6171  coeq0  6173  focofo  6731  cofunexg  7823  1stcof  7893  2ndcof  7894  smobeth  10392  cycpmconjv  31458  elmsubrn  33539  ftc1anclem3  35900
  Copyright terms: Public domain W3C validator