MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rnco Structured version   Visualization version   GIF version

Theorem rnco 6252
Description: The range of the composition of two classes. (Contributed by NM, 12-Dec-2006.) (Proof shortened by Peter Mazsa, 2-Oct-2022.)
Assertion
Ref Expression
rnco ran (𝐴𝐵) = ran (𝐴 ↾ ran 𝐵)

Proof of Theorem rnco
Dummy variables 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 vex 3479 . . . . . 6 𝑥 ∈ V
2 vex 3479 . . . . . 6 𝑦 ∈ V
31, 2brco 5871 . . . . 5 (𝑥(𝐴𝐵)𝑦 ↔ ∃𝑧(𝑥𝐵𝑧𝑧𝐴𝑦))
43exbii 1851 . . . 4 (∃𝑥 𝑥(𝐴𝐵)𝑦 ↔ ∃𝑥𝑧(𝑥𝐵𝑧𝑧𝐴𝑦))
5 excom 2163 . . . 4 (∃𝑥𝑧(𝑥𝐵𝑧𝑧𝐴𝑦) ↔ ∃𝑧𝑥(𝑥𝐵𝑧𝑧𝐴𝑦))
6 vex 3479 . . . . . . . 8 𝑧 ∈ V
76elrn 5894 . . . . . . 7 (𝑧 ∈ ran 𝐵 ↔ ∃𝑥 𝑥𝐵𝑧)
87anbi1i 625 . . . . . 6 ((𝑧 ∈ ran 𝐵𝑧𝐴𝑦) ↔ (∃𝑥 𝑥𝐵𝑧𝑧𝐴𝑦))
92brresi 5991 . . . . . 6 (𝑧(𝐴 ↾ ran 𝐵)𝑦 ↔ (𝑧 ∈ ran 𝐵𝑧𝐴𝑦))
10 19.41v 1954 . . . . . 6 (∃𝑥(𝑥𝐵𝑧𝑧𝐴𝑦) ↔ (∃𝑥 𝑥𝐵𝑧𝑧𝐴𝑦))
118, 9, 103bitr4ri 304 . . . . 5 (∃𝑥(𝑥𝐵𝑧𝑧𝐴𝑦) ↔ 𝑧(𝐴 ↾ ran 𝐵)𝑦)
1211exbii 1851 . . . 4 (∃𝑧𝑥(𝑥𝐵𝑧𝑧𝐴𝑦) ↔ ∃𝑧 𝑧(𝐴 ↾ ran 𝐵)𝑦)
134, 5, 123bitri 297 . . 3 (∃𝑥 𝑥(𝐴𝐵)𝑦 ↔ ∃𝑧 𝑧(𝐴 ↾ ran 𝐵)𝑦)
142elrn 5894 . . 3 (𝑦 ∈ ran (𝐴𝐵) ↔ ∃𝑥 𝑥(𝐴𝐵)𝑦)
152elrn 5894 . . 3 (𝑦 ∈ ran (𝐴 ↾ ran 𝐵) ↔ ∃𝑧 𝑧(𝐴 ↾ ran 𝐵)𝑦)
1613, 14, 153bitr4i 303 . 2 (𝑦 ∈ ran (𝐴𝐵) ↔ 𝑦 ∈ ran (𝐴 ↾ ran 𝐵))
1716eqriv 2730 1 ran (𝐴𝐵) = ran (𝐴 ↾ ran 𝐵)
Colors of variables: wff setvar class
Syntax hints:  wa 397   = wceq 1542  wex 1782  wcel 2107   class class class wbr 5149  ran crn 5678  cres 5679  ccom 5681
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-11 2155  ax-ext 2704  ax-sep 5300  ax-nul 5307  ax-pr 5428
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-sb 2069  df-clab 2711  df-cleq 2725  df-clel 2811  df-ral 3063  df-rex 3072  df-rab 3434  df-v 3477  df-dif 3952  df-un 3954  df-in 3956  df-ss 3966  df-nul 4324  df-if 4530  df-sn 4630  df-pr 4632  df-op 4636  df-br 5150  df-opab 5212  df-xp 5683  df-cnv 5685  df-co 5686  df-dm 5687  df-rn 5688  df-res 5689
This theorem is referenced by:  rnco2  6253  coeq0  6255  focofo  6819  cofunexg  7935  1stcof  8005  2ndcof  8006  smobeth  10581  cycpmconjv  32301  elmsubrn  34519  ftc1anclem3  36563
  Copyright terms: Public domain W3C validator