Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > rnco | Structured version Visualization version GIF version |
Description: The range of the composition of two classes. (Contributed by NM, 12-Dec-2006.) (Proof shortened by Peter Mazsa, 2-Oct-2022.) |
Ref | Expression |
---|---|
rnco | ⊢ ran (𝐴 ∘ 𝐵) = ran (𝐴 ↾ ran 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | vex 3445 | . . . . . 6 ⊢ 𝑥 ∈ V | |
2 | vex 3445 | . . . . . 6 ⊢ 𝑦 ∈ V | |
3 | 1, 2 | brco 5797 | . . . . 5 ⊢ (𝑥(𝐴 ∘ 𝐵)𝑦 ↔ ∃𝑧(𝑥𝐵𝑧 ∧ 𝑧𝐴𝑦)) |
4 | 3 | exbii 1849 | . . . 4 ⊢ (∃𝑥 𝑥(𝐴 ∘ 𝐵)𝑦 ↔ ∃𝑥∃𝑧(𝑥𝐵𝑧 ∧ 𝑧𝐴𝑦)) |
5 | excom 2161 | . . . 4 ⊢ (∃𝑥∃𝑧(𝑥𝐵𝑧 ∧ 𝑧𝐴𝑦) ↔ ∃𝑧∃𝑥(𝑥𝐵𝑧 ∧ 𝑧𝐴𝑦)) | |
6 | vex 3445 | . . . . . . . 8 ⊢ 𝑧 ∈ V | |
7 | 6 | elrn 5820 | . . . . . . 7 ⊢ (𝑧 ∈ ran 𝐵 ↔ ∃𝑥 𝑥𝐵𝑧) |
8 | 7 | anbi1i 624 | . . . . . 6 ⊢ ((𝑧 ∈ ran 𝐵 ∧ 𝑧𝐴𝑦) ↔ (∃𝑥 𝑥𝐵𝑧 ∧ 𝑧𝐴𝑦)) |
9 | 2 | brresi 5917 | . . . . . 6 ⊢ (𝑧(𝐴 ↾ ran 𝐵)𝑦 ↔ (𝑧 ∈ ran 𝐵 ∧ 𝑧𝐴𝑦)) |
10 | 19.41v 1952 | . . . . . 6 ⊢ (∃𝑥(𝑥𝐵𝑧 ∧ 𝑧𝐴𝑦) ↔ (∃𝑥 𝑥𝐵𝑧 ∧ 𝑧𝐴𝑦)) | |
11 | 8, 9, 10 | 3bitr4ri 303 | . . . . 5 ⊢ (∃𝑥(𝑥𝐵𝑧 ∧ 𝑧𝐴𝑦) ↔ 𝑧(𝐴 ↾ ran 𝐵)𝑦) |
12 | 11 | exbii 1849 | . . . 4 ⊢ (∃𝑧∃𝑥(𝑥𝐵𝑧 ∧ 𝑧𝐴𝑦) ↔ ∃𝑧 𝑧(𝐴 ↾ ran 𝐵)𝑦) |
13 | 4, 5, 12 | 3bitri 296 | . . 3 ⊢ (∃𝑥 𝑥(𝐴 ∘ 𝐵)𝑦 ↔ ∃𝑧 𝑧(𝐴 ↾ ran 𝐵)𝑦) |
14 | 2 | elrn 5820 | . . 3 ⊢ (𝑦 ∈ ran (𝐴 ∘ 𝐵) ↔ ∃𝑥 𝑥(𝐴 ∘ 𝐵)𝑦) |
15 | 2 | elrn 5820 | . . 3 ⊢ (𝑦 ∈ ran (𝐴 ↾ ran 𝐵) ↔ ∃𝑧 𝑧(𝐴 ↾ ran 𝐵)𝑦) |
16 | 13, 14, 15 | 3bitr4i 302 | . 2 ⊢ (𝑦 ∈ ran (𝐴 ∘ 𝐵) ↔ 𝑦 ∈ ran (𝐴 ↾ ran 𝐵)) |
17 | 16 | eqriv 2734 | 1 ⊢ ran (𝐴 ∘ 𝐵) = ran (𝐴 ↾ ran 𝐵) |
Colors of variables: wff setvar class |
Syntax hints: ∧ wa 396 = wceq 1540 ∃wex 1780 ∈ wcel 2105 class class class wbr 5085 ran crn 5606 ↾ cres 5607 ∘ ccom 5609 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-11 2153 ax-ext 2708 ax-sep 5236 ax-nul 5243 ax-pr 5365 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-sb 2067 df-clab 2715 df-cleq 2729 df-clel 2815 df-ral 3063 df-rex 3072 df-rab 3405 df-v 3443 df-dif 3899 df-un 3901 df-in 3903 df-ss 3913 df-nul 4267 df-if 4470 df-sn 4570 df-pr 4572 df-op 4576 df-br 5086 df-opab 5148 df-xp 5611 df-cnv 5613 df-co 5614 df-dm 5615 df-rn 5616 df-res 5617 |
This theorem is referenced by: rnco2 6176 coeq0 6178 focofo 6736 cofunexg 7834 1stcof 7904 2ndcof 7905 smobeth 10412 cycpmconjv 31517 elmsubrn 33596 ftc1anclem3 35912 |
Copyright terms: Public domain | W3C validator |