| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > rnco | Structured version Visualization version GIF version | ||
| Description: The range of the composition of two classes. (Contributed by NM, 12-Dec-2006.) (Proof shortened by Peter Mazsa, 2-Oct-2022.) |
| Ref | Expression |
|---|---|
| rnco | ⊢ ran (𝐴 ∘ 𝐵) = ran (𝐴 ↾ ran 𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | vex 3442 | . . . . . 6 ⊢ 𝑥 ∈ V | |
| 2 | vex 3442 | . . . . . 6 ⊢ 𝑦 ∈ V | |
| 3 | 1, 2 | brco 5817 | . . . . 5 ⊢ (𝑥(𝐴 ∘ 𝐵)𝑦 ↔ ∃𝑧(𝑥𝐵𝑧 ∧ 𝑧𝐴𝑦)) |
| 4 | 3 | exbii 1848 | . . . 4 ⊢ (∃𝑥 𝑥(𝐴 ∘ 𝐵)𝑦 ↔ ∃𝑥∃𝑧(𝑥𝐵𝑧 ∧ 𝑧𝐴𝑦)) |
| 5 | excom 2163 | . . . 4 ⊢ (∃𝑥∃𝑧(𝑥𝐵𝑧 ∧ 𝑧𝐴𝑦) ↔ ∃𝑧∃𝑥(𝑥𝐵𝑧 ∧ 𝑧𝐴𝑦)) | |
| 6 | vex 3442 | . . . . . . . 8 ⊢ 𝑧 ∈ V | |
| 7 | 6 | elrn 5840 | . . . . . . 7 ⊢ (𝑧 ∈ ran 𝐵 ↔ ∃𝑥 𝑥𝐵𝑧) |
| 8 | 7 | anbi1i 624 | . . . . . 6 ⊢ ((𝑧 ∈ ran 𝐵 ∧ 𝑧𝐴𝑦) ↔ (∃𝑥 𝑥𝐵𝑧 ∧ 𝑧𝐴𝑦)) |
| 9 | 2 | brresi 5943 | . . . . . 6 ⊢ (𝑧(𝐴 ↾ ran 𝐵)𝑦 ↔ (𝑧 ∈ ran 𝐵 ∧ 𝑧𝐴𝑦)) |
| 10 | 19.41v 1949 | . . . . . 6 ⊢ (∃𝑥(𝑥𝐵𝑧 ∧ 𝑧𝐴𝑦) ↔ (∃𝑥 𝑥𝐵𝑧 ∧ 𝑧𝐴𝑦)) | |
| 11 | 8, 9, 10 | 3bitr4ri 304 | . . . . 5 ⊢ (∃𝑥(𝑥𝐵𝑧 ∧ 𝑧𝐴𝑦) ↔ 𝑧(𝐴 ↾ ran 𝐵)𝑦) |
| 12 | 11 | exbii 1848 | . . . 4 ⊢ (∃𝑧∃𝑥(𝑥𝐵𝑧 ∧ 𝑧𝐴𝑦) ↔ ∃𝑧 𝑧(𝐴 ↾ ran 𝐵)𝑦) |
| 13 | 4, 5, 12 | 3bitri 297 | . . 3 ⊢ (∃𝑥 𝑥(𝐴 ∘ 𝐵)𝑦 ↔ ∃𝑧 𝑧(𝐴 ↾ ran 𝐵)𝑦) |
| 14 | 2 | elrn 5840 | . . 3 ⊢ (𝑦 ∈ ran (𝐴 ∘ 𝐵) ↔ ∃𝑥 𝑥(𝐴 ∘ 𝐵)𝑦) |
| 15 | 2 | elrn 5840 | . . 3 ⊢ (𝑦 ∈ ran (𝐴 ↾ ran 𝐵) ↔ ∃𝑧 𝑧(𝐴 ↾ ran 𝐵)𝑦) |
| 16 | 13, 14, 15 | 3bitr4i 303 | . 2 ⊢ (𝑦 ∈ ran (𝐴 ∘ 𝐵) ↔ 𝑦 ∈ ran (𝐴 ↾ ran 𝐵)) |
| 17 | 16 | eqriv 2726 | 1 ⊢ ran (𝐴 ∘ 𝐵) = ran (𝐴 ↾ ran 𝐵) |
| Colors of variables: wff setvar class |
| Syntax hints: ∧ wa 395 = wceq 1540 ∃wex 1779 ∈ wcel 2109 class class class wbr 5095 ran crn 5624 ↾ cres 5625 ∘ ccom 5627 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-11 2158 ax-ext 2701 ax-sep 5238 ax-nul 5248 ax-pr 5374 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-ral 3045 df-rex 3054 df-rab 3397 df-v 3440 df-dif 3908 df-un 3910 df-in 3912 df-ss 3922 df-nul 4287 df-if 4479 df-sn 4580 df-pr 4582 df-op 4586 df-br 5096 df-opab 5158 df-xp 5629 df-cnv 5631 df-co 5632 df-dm 5633 df-rn 5634 df-res 5635 |
| This theorem is referenced by: rnco2 6206 coeq0 6208 focofo 6753 cofunexg 7891 1stcof 7961 2ndcof 7962 smobeth 10499 cycpmconjv 33097 elmsubrn 35500 ftc1anclem3 37674 |
| Copyright terms: Public domain | W3C validator |