MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rnco Structured version   Visualization version   GIF version

Theorem rnco 5783
Description: The range of the composition of two classes. (Contributed by NM, 12-Dec-2006.)
Assertion
Ref Expression
rnco ran (𝐴𝐵) = ran (𝐴 ↾ ran 𝐵)

Proof of Theorem rnco
Dummy variables 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 vex 3354 . . . . . 6 𝑥 ∈ V
2 vex 3354 . . . . . 6 𝑦 ∈ V
31, 2brco 5429 . . . . 5 (𝑥(𝐴𝐵)𝑦 ↔ ∃𝑧(𝑥𝐵𝑧𝑧𝐴𝑦))
43exbii 1924 . . . 4 (∃𝑥 𝑥(𝐴𝐵)𝑦 ↔ ∃𝑥𝑧(𝑥𝐵𝑧𝑧𝐴𝑦))
5 excom 2198 . . . 4 (∃𝑥𝑧(𝑥𝐵𝑧𝑧𝐴𝑦) ↔ ∃𝑧𝑥(𝑥𝐵𝑧𝑧𝐴𝑦))
6 ancom 448 . . . . . . 7 ((∃𝑥 𝑥𝐵𝑧𝑧𝐴𝑦) ↔ (𝑧𝐴𝑦 ∧ ∃𝑥 𝑥𝐵𝑧))
7 19.41v 2029 . . . . . . 7 (∃𝑥(𝑥𝐵𝑧𝑧𝐴𝑦) ↔ (∃𝑥 𝑥𝐵𝑧𝑧𝐴𝑦))
8 vex 3354 . . . . . . . . 9 𝑧 ∈ V
98elrn 5502 . . . . . . . 8 (𝑧 ∈ ran 𝐵 ↔ ∃𝑥 𝑥𝐵𝑧)
109anbi2i 609 . . . . . . 7 ((𝑧𝐴𝑦𝑧 ∈ ran 𝐵) ↔ (𝑧𝐴𝑦 ∧ ∃𝑥 𝑥𝐵𝑧))
116, 7, 103bitr4i 292 . . . . . 6 (∃𝑥(𝑥𝐵𝑧𝑧𝐴𝑦) ↔ (𝑧𝐴𝑦𝑧 ∈ ran 𝐵))
122brres 5541 . . . . . 6 (𝑧(𝐴 ↾ ran 𝐵)𝑦 ↔ (𝑧𝐴𝑦𝑧 ∈ ran 𝐵))
1311, 12bitr4i 267 . . . . 5 (∃𝑥(𝑥𝐵𝑧𝑧𝐴𝑦) ↔ 𝑧(𝐴 ↾ ran 𝐵)𝑦)
1413exbii 1924 . . . 4 (∃𝑧𝑥(𝑥𝐵𝑧𝑧𝐴𝑦) ↔ ∃𝑧 𝑧(𝐴 ↾ ran 𝐵)𝑦)
154, 5, 143bitri 286 . . 3 (∃𝑥 𝑥(𝐴𝐵)𝑦 ↔ ∃𝑧 𝑧(𝐴 ↾ ran 𝐵)𝑦)
162elrn 5502 . . 3 (𝑦 ∈ ran (𝐴𝐵) ↔ ∃𝑥 𝑥(𝐴𝐵)𝑦)
172elrn 5502 . . 3 (𝑦 ∈ ran (𝐴 ↾ ran 𝐵) ↔ ∃𝑧 𝑧(𝐴 ↾ ran 𝐵)𝑦)
1815, 16, 173bitr4i 292 . 2 (𝑦 ∈ ran (𝐴𝐵) ↔ 𝑦 ∈ ran (𝐴 ↾ ran 𝐵))
1918eqriv 2768 1 ran (𝐴𝐵) = ran (𝐴 ↾ ran 𝐵)
Colors of variables: wff setvar class
Syntax hints:  wa 382   = wceq 1631  wex 1852  wcel 2145   class class class wbr 4786  ran crn 5250  cres 5251  ccom 5253
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1870  ax-4 1885  ax-5 1991  ax-6 2057  ax-7 2093  ax-9 2154  ax-10 2174  ax-11 2190  ax-12 2203  ax-13 2408  ax-ext 2751  ax-sep 4915  ax-nul 4923  ax-pr 5034
This theorem depends on definitions:  df-bi 197  df-an 383  df-or 837  df-3an 1073  df-tru 1634  df-ex 1853  df-nf 1858  df-sb 2050  df-eu 2622  df-mo 2623  df-clab 2758  df-cleq 2764  df-clel 2767  df-nfc 2902  df-ral 3066  df-rex 3067  df-rab 3070  df-v 3353  df-dif 3726  df-un 3728  df-in 3730  df-ss 3737  df-nul 4064  df-if 4226  df-sn 4317  df-pr 4319  df-op 4323  df-br 4787  df-opab 4847  df-xp 5255  df-cnv 5257  df-co 5258  df-dm 5259  df-rn 5260  df-res 5261
This theorem is referenced by:  rnco2  5784  coeq0  5786  cofunexg  7275  1stcof  7343  2ndcof  7344  smobeth  9608  elmsubrn  31756  ftc1anclem3  33812
  Copyright terms: Public domain W3C validator