MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  excxor Structured version   Visualization version   GIF version

Theorem excxor 1512
Description: This tautology shows that xor is really exclusive. (Contributed by FL, 22-Nov-2010.)
Assertion
Ref Expression
excxor ((𝜑𝜓) ↔ ((𝜑 ∧ ¬ 𝜓) ∨ (¬ 𝜑𝜓)))

Proof of Theorem excxor
StepHypRef Expression
1 df-xor 1507 . 2 ((𝜑𝜓) ↔ ¬ (𝜑𝜓))
2 xor 1012 . 2 (¬ (𝜑𝜓) ↔ ((𝜑 ∧ ¬ 𝜓) ∨ (𝜓 ∧ ¬ 𝜑)))
3 ancom 461 . . 3 ((𝜓 ∧ ¬ 𝜑) ↔ (¬ 𝜑𝜓))
43orbi2i 910 . 2 (((𝜑 ∧ ¬ 𝜓) ∨ (𝜓 ∧ ¬ 𝜑)) ↔ ((𝜑 ∧ ¬ 𝜓) ∨ (¬ 𝜑𝜓)))
51, 2, 43bitri 297 1 ((𝜑𝜓) ↔ ((𝜑 ∧ ¬ 𝜓) ∨ (¬ 𝜑𝜓)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wb 205  wa 396  wo 844  wxo 1506
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-xor 1507
This theorem is referenced by:  f1omvdco2  19045  psgnunilem5  19091  or3or  41591
  Copyright terms: Public domain W3C validator