|   | Metamath Proof Explorer | < Previous  
      Next > Nearby theorems | |
| Mirrors > Home > MPE Home > Th. List > excxor | Structured version Visualization version GIF version | ||
| Description: This tautology shows that xor is really exclusive. (Contributed by FL, 22-Nov-2010.) | 
| Ref | Expression | 
|---|---|
| excxor | ⊢ ((𝜑 ⊻ 𝜓) ↔ ((𝜑 ∧ ¬ 𝜓) ∨ (¬ 𝜑 ∧ 𝜓))) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | df-xor 1511 | . 2 ⊢ ((𝜑 ⊻ 𝜓) ↔ ¬ (𝜑 ↔ 𝜓)) | |
| 2 | xor 1016 | . 2 ⊢ (¬ (𝜑 ↔ 𝜓) ↔ ((𝜑 ∧ ¬ 𝜓) ∨ (𝜓 ∧ ¬ 𝜑))) | |
| 3 | ancom 460 | . . 3 ⊢ ((𝜓 ∧ ¬ 𝜑) ↔ (¬ 𝜑 ∧ 𝜓)) | |
| 4 | 3 | orbi2i 912 | . 2 ⊢ (((𝜑 ∧ ¬ 𝜓) ∨ (𝜓 ∧ ¬ 𝜑)) ↔ ((𝜑 ∧ ¬ 𝜓) ∨ (¬ 𝜑 ∧ 𝜓))) | 
| 5 | 1, 2, 4 | 3bitri 297 | 1 ⊢ ((𝜑 ⊻ 𝜓) ↔ ((𝜑 ∧ ¬ 𝜓) ∨ (¬ 𝜑 ∧ 𝜓))) | 
| Colors of variables: wff setvar class | 
| Syntax hints: ¬ wn 3 ↔ wb 206 ∧ wa 395 ∨ wo 847 ⊻ wxo 1510 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 | 
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-xor 1511 | 
| This theorem is referenced by: f1omvdco2 19467 psgnunilem5 19513 or3or 44041 | 
| Copyright terms: Public domain | W3C validator |