Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > excxor | Structured version Visualization version GIF version |
Description: This tautology shows that xor is really exclusive. (Contributed by FL, 22-Nov-2010.) |
Ref | Expression |
---|---|
excxor | ⊢ ((𝜑 ⊻ 𝜓) ↔ ((𝜑 ∧ ¬ 𝜓) ∨ (¬ 𝜑 ∧ 𝜓))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-xor 1509 | . 2 ⊢ ((𝜑 ⊻ 𝜓) ↔ ¬ (𝜑 ↔ 𝜓)) | |
2 | xor 1012 | . 2 ⊢ (¬ (𝜑 ↔ 𝜓) ↔ ((𝜑 ∧ ¬ 𝜓) ∨ (𝜓 ∧ ¬ 𝜑))) | |
3 | ancom 461 | . . 3 ⊢ ((𝜓 ∧ ¬ 𝜑) ↔ (¬ 𝜑 ∧ 𝜓)) | |
4 | 3 | orbi2i 910 | . 2 ⊢ (((𝜑 ∧ ¬ 𝜓) ∨ (𝜓 ∧ ¬ 𝜑)) ↔ ((𝜑 ∧ ¬ 𝜓) ∨ (¬ 𝜑 ∧ 𝜓))) |
5 | 1, 2, 4 | 3bitri 296 | 1 ⊢ ((𝜑 ⊻ 𝜓) ↔ ((𝜑 ∧ ¬ 𝜓) ∨ (¬ 𝜑 ∧ 𝜓))) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 ↔ wb 205 ∧ wa 396 ∨ wo 844 ⊻ wxo 1508 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-xor 1509 |
This theorem is referenced by: f1omvdco2 19152 psgnunilem5 19198 or3or 41960 |
Copyright terms: Public domain | W3C validator |