MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  psgnunilem5 Structured version   Visualization version   GIF version

Theorem psgnunilem5 18373
Description: Lemma for psgnuni 18379. It is impossible to shift a transposition off the end because if the active transposition is at the right end, it is the only transposition moving 𝐴 in contradiction to this being a representation of the identity. (Contributed by Stefan O'Rear, 25-Aug-2015.) (Revised by Mario Carneiro, 28-Feb-2016.) (Proof shortened by AV, 12-Oct-2022.)
Hypotheses
Ref Expression
psgnunilem2.g 𝐺 = (SymGrp‘𝐷)
psgnunilem2.t 𝑇 = ran (pmTrsp‘𝐷)
psgnunilem2.d (𝜑𝐷𝑉)
psgnunilem2.w (𝜑𝑊 ∈ Word 𝑇)
psgnunilem2.id (𝜑 → (𝐺 Σg 𝑊) = ( I ↾ 𝐷))
psgnunilem2.l (𝜑 → (♯‘𝑊) = 𝐿)
psgnunilem2.ix (𝜑𝐼 ∈ (0..^𝐿))
psgnunilem2.a (𝜑𝐴 ∈ dom ((𝑊𝐼) ∖ I ))
psgnunilem2.al (𝜑 → ∀𝑘 ∈ (0..^𝐼) ¬ 𝐴 ∈ dom ((𝑊𝑘) ∖ I ))
Assertion
Ref Expression
psgnunilem5 (𝜑 → (𝐼 + 1) ∈ (0..^𝐿))
Distinct variable groups:   𝐴,𝑘   𝑘,𝐺   𝑘,𝐼   𝑘,𝑊
Allowed substitution hints:   𝜑(𝑘)   𝐷(𝑘)   𝑇(𝑘)   𝐿(𝑘)   𝑉(𝑘)

Proof of Theorem psgnunilem5
Dummy variables 𝑗 𝑠 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 noel 4178 . . . 4 ¬ 𝐴 ∈ ∅
2 psgnunilem2.id . . . . . . . 8 (𝜑 → (𝐺 Σg 𝑊) = ( I ↾ 𝐷))
32difeq1d 3984 . . . . . . 7 (𝜑 → ((𝐺 Σg 𝑊) ∖ I ) = (( I ↾ 𝐷) ∖ I ))
43dmeqd 5617 . . . . . 6 (𝜑 → dom ((𝐺 Σg 𝑊) ∖ I ) = dom (( I ↾ 𝐷) ∖ I ))
5 resss 5717 . . . . . . . . 9 ( I ↾ 𝐷) ⊆ I
6 ssdif0 4204 . . . . . . . . 9 (( I ↾ 𝐷) ⊆ I ↔ (( I ↾ 𝐷) ∖ I ) = ∅)
75, 6mpbi 222 . . . . . . . 8 (( I ↾ 𝐷) ∖ I ) = ∅
87dmeqi 5616 . . . . . . 7 dom (( I ↾ 𝐷) ∖ I ) = dom ∅
9 dm0 5630 . . . . . . 7 dom ∅ = ∅
108, 9eqtri 2796 . . . . . 6 dom (( I ↾ 𝐷) ∖ I ) = ∅
114, 10syl6eq 2824 . . . . 5 (𝜑 → dom ((𝐺 Σg 𝑊) ∖ I ) = ∅)
1211eleq2d 2845 . . . 4 (𝜑 → (𝐴 ∈ dom ((𝐺 Σg 𝑊) ∖ I ) ↔ 𝐴 ∈ ∅))
131, 12mtbiri 319 . . 3 (𝜑 → ¬ 𝐴 ∈ dom ((𝐺 Σg 𝑊) ∖ I ))
14 psgnunilem2.d . . . . . . . . 9 (𝜑𝐷𝑉)
15 psgnunilem2.g . . . . . . . . . 10 𝐺 = (SymGrp‘𝐷)
1615symggrp 18279 . . . . . . . . 9 (𝐷𝑉𝐺 ∈ Grp)
17 grpmnd 17888 . . . . . . . . 9 (𝐺 ∈ Grp → 𝐺 ∈ Mnd)
1814, 16, 173syl 18 . . . . . . . 8 (𝜑𝐺 ∈ Mnd)
19 psgnunilem2.t . . . . . . . . . . . 12 𝑇 = ran (pmTrsp‘𝐷)
20 eqid 2772 . . . . . . . . . . . 12 (Base‘𝐺) = (Base‘𝐺)
2119, 15, 20symgtrf 18348 . . . . . . . . . . 11 𝑇 ⊆ (Base‘𝐺)
22 sswrd 13670 . . . . . . . . . . 11 (𝑇 ⊆ (Base‘𝐺) → Word 𝑇 ⊆ Word (Base‘𝐺))
2321, 22mp1i 13 . . . . . . . . . 10 (𝜑 → Word 𝑇 ⊆ Word (Base‘𝐺))
24 psgnunilem2.w . . . . . . . . . 10 (𝜑𝑊 ∈ Word 𝑇)
2523, 24sseldd 3855 . . . . . . . . 9 (𝜑𝑊 ∈ Word (Base‘𝐺))
26 pfxcl 13849 . . . . . . . . 9 (𝑊 ∈ Word (Base‘𝐺) → (𝑊 prefix 𝐼) ∈ Word (Base‘𝐺))
2725, 26syl 17 . . . . . . . 8 (𝜑 → (𝑊 prefix 𝐼) ∈ Word (Base‘𝐺))
2820gsumwcl 17835 . . . . . . . 8 ((𝐺 ∈ Mnd ∧ (𝑊 prefix 𝐼) ∈ Word (Base‘𝐺)) → (𝐺 Σg (𝑊 prefix 𝐼)) ∈ (Base‘𝐺))
2918, 27, 28syl2anc 576 . . . . . . 7 (𝜑 → (𝐺 Σg (𝑊 prefix 𝐼)) ∈ (Base‘𝐺))
3015, 20symgbasf1o 18262 . . . . . . 7 ((𝐺 Σg (𝑊 prefix 𝐼)) ∈ (Base‘𝐺) → (𝐺 Σg (𝑊 prefix 𝐼)):𝐷1-1-onto𝐷)
3129, 30syl 17 . . . . . 6 (𝜑 → (𝐺 Σg (𝑊 prefix 𝐼)):𝐷1-1-onto𝐷)
3231adantr 473 . . . . 5 ((𝜑 ∧ (𝐼 + 1) = 𝐿) → (𝐺 Σg (𝑊 prefix 𝐼)):𝐷1-1-onto𝐷)
33 wrdf 13667 . . . . . . . . . 10 (𝑊 ∈ Word 𝑇𝑊:(0..^(♯‘𝑊))⟶𝑇)
3424, 33syl 17 . . . . . . . . 9 (𝜑𝑊:(0..^(♯‘𝑊))⟶𝑇)
35 psgnunilem2.ix . . . . . . . . . 10 (𝜑𝐼 ∈ (0..^𝐿))
36 psgnunilem2.l . . . . . . . . . . 11 (𝜑 → (♯‘𝑊) = 𝐿)
3736oveq2d 6986 . . . . . . . . . 10 (𝜑 → (0..^(♯‘𝑊)) = (0..^𝐿))
3835, 37eleqtrrd 2863 . . . . . . . . 9 (𝜑𝐼 ∈ (0..^(♯‘𝑊)))
3934, 38ffvelrnd 6671 . . . . . . . 8 (𝜑 → (𝑊𝐼) ∈ 𝑇)
4021, 39sseldi 3852 . . . . . . 7 (𝜑 → (𝑊𝐼) ∈ (Base‘𝐺))
4115, 20symgbasf1o 18262 . . . . . . 7 ((𝑊𝐼) ∈ (Base‘𝐺) → (𝑊𝐼):𝐷1-1-onto𝐷)
4240, 41syl 17 . . . . . 6 (𝜑 → (𝑊𝐼):𝐷1-1-onto𝐷)
4342adantr 473 . . . . 5 ((𝜑 ∧ (𝐼 + 1) = 𝐿) → (𝑊𝐼):𝐷1-1-onto𝐷)
4415, 20symgsssg 18346 . . . . . . . . . . 11 (𝐷𝑉 → {𝑗 ∈ (Base‘𝐺) ∣ dom (𝑗 ∖ I ) ⊆ (V ∖ {𝐴})} ∈ (SubGrp‘𝐺))
45 subgsubm 18075 . . . . . . . . . . 11 ({𝑗 ∈ (Base‘𝐺) ∣ dom (𝑗 ∖ I ) ⊆ (V ∖ {𝐴})} ∈ (SubGrp‘𝐺) → {𝑗 ∈ (Base‘𝐺) ∣ dom (𝑗 ∖ I ) ⊆ (V ∖ {𝐴})} ∈ (SubMnd‘𝐺))
4614, 44, 453syl 18 . . . . . . . . . 10 (𝜑 → {𝑗 ∈ (Base‘𝐺) ∣ dom (𝑗 ∖ I ) ⊆ (V ∖ {𝐴})} ∈ (SubMnd‘𝐺))
47 fzossfz 12865 . . . . . . . . . . . . . . . 16 (0..^𝐿) ⊆ (0...𝐿)
4847, 35sseldi 3852 . . . . . . . . . . . . . . 15 (𝜑𝐼 ∈ (0...𝐿))
4936oveq2d 6986 . . . . . . . . . . . . . . 15 (𝜑 → (0...(♯‘𝑊)) = (0...𝐿))
5048, 49eleqtrrd 2863 . . . . . . . . . . . . . 14 (𝜑𝐼 ∈ (0...(♯‘𝑊)))
51 pfxmpt 13850 . . . . . . . . . . . . . 14 ((𝑊 ∈ Word 𝑇𝐼 ∈ (0...(♯‘𝑊))) → (𝑊 prefix 𝐼) = (𝑠 ∈ (0..^𝐼) ↦ (𝑊𝑠)))
5224, 50, 51syl2anc 576 . . . . . . . . . . . . 13 (𝜑 → (𝑊 prefix 𝐼) = (𝑠 ∈ (0..^𝐼) ↦ (𝑊𝑠)))
53 difeq1 3978 . . . . . . . . . . . . . . . . 17 (𝑗 = (𝑊𝑠) → (𝑗 ∖ I ) = ((𝑊𝑠) ∖ I ))
5453dmeqd 5617 . . . . . . . . . . . . . . . 16 (𝑗 = (𝑊𝑠) → dom (𝑗 ∖ I ) = dom ((𝑊𝑠) ∖ I ))
5554sseq1d 3884 . . . . . . . . . . . . . . 15 (𝑗 = (𝑊𝑠) → (dom (𝑗 ∖ I ) ⊆ (V ∖ {𝐴}) ↔ dom ((𝑊𝑠) ∖ I ) ⊆ (V ∖ {𝐴})))
56 disj2 4284 . . . . . . . . . . . . . . . 16 ((dom ((𝑊𝑠) ∖ I ) ∩ {𝐴}) = ∅ ↔ dom ((𝑊𝑠) ∖ I ) ⊆ (V ∖ {𝐴}))
57 disjsn 4515 . . . . . . . . . . . . . . . 16 ((dom ((𝑊𝑠) ∖ I ) ∩ {𝐴}) = ∅ ↔ ¬ 𝐴 ∈ dom ((𝑊𝑠) ∖ I ))
5856, 57bitr3i 269 . . . . . . . . . . . . . . 15 (dom ((𝑊𝑠) ∖ I ) ⊆ (V ∖ {𝐴}) ↔ ¬ 𝐴 ∈ dom ((𝑊𝑠) ∖ I ))
5955, 58syl6bb 279 . . . . . . . . . . . . . 14 (𝑗 = (𝑊𝑠) → (dom (𝑗 ∖ I ) ⊆ (V ∖ {𝐴}) ↔ ¬ 𝐴 ∈ dom ((𝑊𝑠) ∖ I )))
60 elfzuz3 12714 . . . . . . . . . . . . . . . . . . 19 (𝐼 ∈ (0...𝐿) → 𝐿 ∈ (ℤ𝐼))
6148, 60syl 17 . . . . . . . . . . . . . . . . . 18 (𝜑𝐿 ∈ (ℤ𝐼))
6236, 61eqeltrd 2860 . . . . . . . . . . . . . . . . 17 (𝜑 → (♯‘𝑊) ∈ (ℤ𝐼))
63 fzoss2 12873 . . . . . . . . . . . . . . . . 17 ((♯‘𝑊) ∈ (ℤ𝐼) → (0..^𝐼) ⊆ (0..^(♯‘𝑊)))
6462, 63syl 17 . . . . . . . . . . . . . . . 16 (𝜑 → (0..^𝐼) ⊆ (0..^(♯‘𝑊)))
6564sselda 3854 . . . . . . . . . . . . . . 15 ((𝜑𝑠 ∈ (0..^𝐼)) → 𝑠 ∈ (0..^(♯‘𝑊)))
6634ffvelrnda 6670 . . . . . . . . . . . . . . . 16 ((𝜑𝑠 ∈ (0..^(♯‘𝑊))) → (𝑊𝑠) ∈ 𝑇)
6721, 66sseldi 3852 . . . . . . . . . . . . . . 15 ((𝜑𝑠 ∈ (0..^(♯‘𝑊))) → (𝑊𝑠) ∈ (Base‘𝐺))
6865, 67syldan 582 . . . . . . . . . . . . . 14 ((𝜑𝑠 ∈ (0..^𝐼)) → (𝑊𝑠) ∈ (Base‘𝐺))
69 psgnunilem2.al . . . . . . . . . . . . . . . 16 (𝜑 → ∀𝑘 ∈ (0..^𝐼) ¬ 𝐴 ∈ dom ((𝑊𝑘) ∖ I ))
70 fveq2 6493 . . . . . . . . . . . . . . . . . . . . 21 (𝑘 = 𝑠 → (𝑊𝑘) = (𝑊𝑠))
7170difeq1d 3984 . . . . . . . . . . . . . . . . . . . 20 (𝑘 = 𝑠 → ((𝑊𝑘) ∖ I ) = ((𝑊𝑠) ∖ I ))
7271dmeqd 5617 . . . . . . . . . . . . . . . . . . 19 (𝑘 = 𝑠 → dom ((𝑊𝑘) ∖ I ) = dom ((𝑊𝑠) ∖ I ))
7372eleq2d 2845 . . . . . . . . . . . . . . . . . 18 (𝑘 = 𝑠 → (𝐴 ∈ dom ((𝑊𝑘) ∖ I ) ↔ 𝐴 ∈ dom ((𝑊𝑠) ∖ I )))
7473notbid 310 . . . . . . . . . . . . . . . . 17 (𝑘 = 𝑠 → (¬ 𝐴 ∈ dom ((𝑊𝑘) ∖ I ) ↔ ¬ 𝐴 ∈ dom ((𝑊𝑠) ∖ I )))
7574cbvralv 3377 . . . . . . . . . . . . . . . 16 (∀𝑘 ∈ (0..^𝐼) ¬ 𝐴 ∈ dom ((𝑊𝑘) ∖ I ) ↔ ∀𝑠 ∈ (0..^𝐼) ¬ 𝐴 ∈ dom ((𝑊𝑠) ∖ I ))
7669, 75sylib 210 . . . . . . . . . . . . . . 15 (𝜑 → ∀𝑠 ∈ (0..^𝐼) ¬ 𝐴 ∈ dom ((𝑊𝑠) ∖ I ))
7776r19.21bi 3152 . . . . . . . . . . . . . 14 ((𝜑𝑠 ∈ (0..^𝐼)) → ¬ 𝐴 ∈ dom ((𝑊𝑠) ∖ I ))
7859, 68, 77elrabd 3592 . . . . . . . . . . . . 13 ((𝜑𝑠 ∈ (0..^𝐼)) → (𝑊𝑠) ∈ {𝑗 ∈ (Base‘𝐺) ∣ dom (𝑗 ∖ I ) ⊆ (V ∖ {𝐴})})
7952, 78fmpt3d 6697 . . . . . . . . . . . 12 (𝜑 → (𝑊 prefix 𝐼):(0..^𝐼)⟶{𝑗 ∈ (Base‘𝐺) ∣ dom (𝑗 ∖ I ) ⊆ (V ∖ {𝐴})})
8079adantr 473 . . . . . . . . . . 11 ((𝜑 ∧ (𝐼 + 1) = 𝐿) → (𝑊 prefix 𝐼):(0..^𝐼)⟶{𝑗 ∈ (Base‘𝐺) ∣ dom (𝑗 ∖ I ) ⊆ (V ∖ {𝐴})})
81 iswrdi 13666 . . . . . . . . . . 11 ((𝑊 prefix 𝐼):(0..^𝐼)⟶{𝑗 ∈ (Base‘𝐺) ∣ dom (𝑗 ∖ I ) ⊆ (V ∖ {𝐴})} → (𝑊 prefix 𝐼) ∈ Word {𝑗 ∈ (Base‘𝐺) ∣ dom (𝑗 ∖ I ) ⊆ (V ∖ {𝐴})})
8280, 81syl 17 . . . . . . . . . 10 ((𝜑 ∧ (𝐼 + 1) = 𝐿) → (𝑊 prefix 𝐼) ∈ Word {𝑗 ∈ (Base‘𝐺) ∣ dom (𝑗 ∖ I ) ⊆ (V ∖ {𝐴})})
83 gsumwsubmcl 17833 . . . . . . . . . 10 (({𝑗 ∈ (Base‘𝐺) ∣ dom (𝑗 ∖ I ) ⊆ (V ∖ {𝐴})} ∈ (SubMnd‘𝐺) ∧ (𝑊 prefix 𝐼) ∈ Word {𝑗 ∈ (Base‘𝐺) ∣ dom (𝑗 ∖ I ) ⊆ (V ∖ {𝐴})}) → (𝐺 Σg (𝑊 prefix 𝐼)) ∈ {𝑗 ∈ (Base‘𝐺) ∣ dom (𝑗 ∖ I ) ⊆ (V ∖ {𝐴})})
8446, 82, 83syl2an2r 672 . . . . . . . . 9 ((𝜑 ∧ (𝐼 + 1) = 𝐿) → (𝐺 Σg (𝑊 prefix 𝐼)) ∈ {𝑗 ∈ (Base‘𝐺) ∣ dom (𝑗 ∖ I ) ⊆ (V ∖ {𝐴})})
85 difeq1 3978 . . . . . . . . . . . . . 14 (𝑗 = (𝐺 Σg (𝑊 prefix 𝐼)) → (𝑗 ∖ I ) = ((𝐺 Σg (𝑊 prefix 𝐼)) ∖ I ))
8685dmeqd 5617 . . . . . . . . . . . . 13 (𝑗 = (𝐺 Σg (𝑊 prefix 𝐼)) → dom (𝑗 ∖ I ) = dom ((𝐺 Σg (𝑊 prefix 𝐼)) ∖ I ))
8786sseq1d 3884 . . . . . . . . . . . 12 (𝑗 = (𝐺 Σg (𝑊 prefix 𝐼)) → (dom (𝑗 ∖ I ) ⊆ (V ∖ {𝐴}) ↔ dom ((𝐺 Σg (𝑊 prefix 𝐼)) ∖ I ) ⊆ (V ∖ {𝐴})))
8887elrab 3589 . . . . . . . . . . 11 ((𝐺 Σg (𝑊 prefix 𝐼)) ∈ {𝑗 ∈ (Base‘𝐺) ∣ dom (𝑗 ∖ I ) ⊆ (V ∖ {𝐴})} ↔ ((𝐺 Σg (𝑊 prefix 𝐼)) ∈ (Base‘𝐺) ∧ dom ((𝐺 Σg (𝑊 prefix 𝐼)) ∖ I ) ⊆ (V ∖ {𝐴})))
8988simprbi 489 . . . . . . . . . 10 ((𝐺 Σg (𝑊 prefix 𝐼)) ∈ {𝑗 ∈ (Base‘𝐺) ∣ dom (𝑗 ∖ I ) ⊆ (V ∖ {𝐴})} → dom ((𝐺 Σg (𝑊 prefix 𝐼)) ∖ I ) ⊆ (V ∖ {𝐴}))
90 disj2 4284 . . . . . . . . . . 11 ((dom ((𝐺 Σg (𝑊 prefix 𝐼)) ∖ I ) ∩ {𝐴}) = ∅ ↔ dom ((𝐺 Σg (𝑊 prefix 𝐼)) ∖ I ) ⊆ (V ∖ {𝐴}))
91 disjsn 4515 . . . . . . . . . . 11 ((dom ((𝐺 Σg (𝑊 prefix 𝐼)) ∖ I ) ∩ {𝐴}) = ∅ ↔ ¬ 𝐴 ∈ dom ((𝐺 Σg (𝑊 prefix 𝐼)) ∖ I ))
9290, 91bitr3i 269 . . . . . . . . . 10 (dom ((𝐺 Σg (𝑊 prefix 𝐼)) ∖ I ) ⊆ (V ∖ {𝐴}) ↔ ¬ 𝐴 ∈ dom ((𝐺 Σg (𝑊 prefix 𝐼)) ∖ I ))
9389, 92sylib 210 . . . . . . . . 9 ((𝐺 Σg (𝑊 prefix 𝐼)) ∈ {𝑗 ∈ (Base‘𝐺) ∣ dom (𝑗 ∖ I ) ⊆ (V ∖ {𝐴})} → ¬ 𝐴 ∈ dom ((𝐺 Σg (𝑊 prefix 𝐼)) ∖ I ))
9484, 93syl 17 . . . . . . . 8 ((𝜑 ∧ (𝐼 + 1) = 𝐿) → ¬ 𝐴 ∈ dom ((𝐺 Σg (𝑊 prefix 𝐼)) ∖ I ))
95 psgnunilem2.a . . . . . . . . 9 (𝜑𝐴 ∈ dom ((𝑊𝐼) ∖ I ))
9695adantr 473 . . . . . . . 8 ((𝜑 ∧ (𝐼 + 1) = 𝐿) → 𝐴 ∈ dom ((𝑊𝐼) ∖ I ))
9794, 96jca 504 . . . . . . 7 ((𝜑 ∧ (𝐼 + 1) = 𝐿) → (¬ 𝐴 ∈ dom ((𝐺 Σg (𝑊 prefix 𝐼)) ∖ I ) ∧ 𝐴 ∈ dom ((𝑊𝐼) ∖ I )))
9897olcd 860 . . . . . 6 ((𝜑 ∧ (𝐼 + 1) = 𝐿) → ((𝐴 ∈ dom ((𝐺 Σg (𝑊 prefix 𝐼)) ∖ I ) ∧ ¬ 𝐴 ∈ dom ((𝑊𝐼) ∖ I )) ∨ (¬ 𝐴 ∈ dom ((𝐺 Σg (𝑊 prefix 𝐼)) ∖ I ) ∧ 𝐴 ∈ dom ((𝑊𝐼) ∖ I ))))
99 excxor 1493 . . . . . 6 ((𝐴 ∈ dom ((𝐺 Σg (𝑊 prefix 𝐼)) ∖ I ) ⊻ 𝐴 ∈ dom ((𝑊𝐼) ∖ I )) ↔ ((𝐴 ∈ dom ((𝐺 Σg (𝑊 prefix 𝐼)) ∖ I ) ∧ ¬ 𝐴 ∈ dom ((𝑊𝐼) ∖ I )) ∨ (¬ 𝐴 ∈ dom ((𝐺 Σg (𝑊 prefix 𝐼)) ∖ I ) ∧ 𝐴 ∈ dom ((𝑊𝐼) ∖ I ))))
10098, 99sylibr 226 . . . . 5 ((𝜑 ∧ (𝐼 + 1) = 𝐿) → (𝐴 ∈ dom ((𝐺 Σg (𝑊 prefix 𝐼)) ∖ I ) ⊻ 𝐴 ∈ dom ((𝑊𝐼) ∖ I )))
101 f1omvdco3 18328 . . . . 5 (((𝐺 Σg (𝑊 prefix 𝐼)):𝐷1-1-onto𝐷 ∧ (𝑊𝐼):𝐷1-1-onto𝐷 ∧ (𝐴 ∈ dom ((𝐺 Σg (𝑊 prefix 𝐼)) ∖ I ) ⊻ 𝐴 ∈ dom ((𝑊𝐼) ∖ I ))) → 𝐴 ∈ dom (((𝐺 Σg (𝑊 prefix 𝐼)) ∘ (𝑊𝐼)) ∖ I ))
10232, 43, 100, 101syl3anc 1351 . . . 4 ((𝜑 ∧ (𝐼 + 1) = 𝐿) → 𝐴 ∈ dom (((𝐺 Σg (𝑊 prefix 𝐼)) ∘ (𝑊𝐼)) ∖ I ))
103 elfzo0 12886 . . . . . . . . . . . . . . 15 (𝐼 ∈ (0..^𝐿) ↔ (𝐼 ∈ ℕ0𝐿 ∈ ℕ ∧ 𝐼 < 𝐿))
104103simp2bi 1126 . . . . . . . . . . . . . 14 (𝐼 ∈ (0..^𝐿) → 𝐿 ∈ ℕ)
10535, 104syl 17 . . . . . . . . . . . . 13 (𝜑𝐿 ∈ ℕ)
10636, 105eqeltrd 2860 . . . . . . . . . . . 12 (𝜑 → (♯‘𝑊) ∈ ℕ)
107 wrdfin 13683 . . . . . . . . . . . . 13 (𝑊 ∈ Word 𝑇𝑊 ∈ Fin)
108 hashnncl 13535 . . . . . . . . . . . . 13 (𝑊 ∈ Fin → ((♯‘𝑊) ∈ ℕ ↔ 𝑊 ≠ ∅))
10924, 107, 1083syl 18 . . . . . . . . . . . 12 (𝜑 → ((♯‘𝑊) ∈ ℕ ↔ 𝑊 ≠ ∅))
110106, 109mpbid 224 . . . . . . . . . . 11 (𝜑𝑊 ≠ ∅)
111110adantr 473 . . . . . . . . . 10 ((𝜑 ∧ (𝐼 + 1) = 𝐿) → 𝑊 ≠ ∅)
112 pfxlswccat 13892 . . . . . . . . . . 11 ((𝑊 ∈ Word 𝑇𝑊 ≠ ∅) → ((𝑊 prefix ((♯‘𝑊) − 1)) ++ ⟨“(lastS‘𝑊)”⟩) = 𝑊)
113112eqcomd 2778 . . . . . . . . . 10 ((𝑊 ∈ Word 𝑇𝑊 ≠ ∅) → 𝑊 = ((𝑊 prefix ((♯‘𝑊) − 1)) ++ ⟨“(lastS‘𝑊)”⟩))
11424, 111, 113syl2an2r 672 . . . . . . . . 9 ((𝜑 ∧ (𝐼 + 1) = 𝐿) → 𝑊 = ((𝑊 prefix ((♯‘𝑊) − 1)) ++ ⟨“(lastS‘𝑊)”⟩))
11536oveq1d 6985 . . . . . . . . . . . 12 (𝜑 → ((♯‘𝑊) − 1) = (𝐿 − 1))
116115adantr 473 . . . . . . . . . . 11 ((𝜑 ∧ (𝐼 + 1) = 𝐿) → ((♯‘𝑊) − 1) = (𝐿 − 1))
117105nncnd 11449 . . . . . . . . . . . . 13 (𝜑𝐿 ∈ ℂ)
118 1cnd 10426 . . . . . . . . . . . . 13 (𝜑 → 1 ∈ ℂ)
119 elfzoelz 12847 . . . . . . . . . . . . . . 15 (𝐼 ∈ (0..^𝐿) → 𝐼 ∈ ℤ)
12035, 119syl 17 . . . . . . . . . . . . . 14 (𝜑𝐼 ∈ ℤ)
121120zcnd 11894 . . . . . . . . . . . . 13 (𝜑𝐼 ∈ ℂ)
122117, 118, 121subadd2d 10809 . . . . . . . . . . . 12 (𝜑 → ((𝐿 − 1) = 𝐼 ↔ (𝐼 + 1) = 𝐿))
123122biimpar 470 . . . . . . . . . . 11 ((𝜑 ∧ (𝐼 + 1) = 𝐿) → (𝐿 − 1) = 𝐼)
124116, 123eqtrd 2808 . . . . . . . . . 10 ((𝜑 ∧ (𝐼 + 1) = 𝐿) → ((♯‘𝑊) − 1) = 𝐼)
125 oveq2 6978 . . . . . . . . . . . 12 (((♯‘𝑊) − 1) = 𝐼 → (𝑊 prefix ((♯‘𝑊) − 1)) = (𝑊 prefix 𝐼))
126125adantl 474 . . . . . . . . . . 11 ((𝜑 ∧ ((♯‘𝑊) − 1) = 𝐼) → (𝑊 prefix ((♯‘𝑊) − 1)) = (𝑊 prefix 𝐼))
127 lsw 13717 . . . . . . . . . . . . . 14 (𝑊 ∈ Word 𝑇 → (lastS‘𝑊) = (𝑊‘((♯‘𝑊) − 1)))
12824, 127syl 17 . . . . . . . . . . . . 13 (𝜑 → (lastS‘𝑊) = (𝑊‘((♯‘𝑊) − 1)))
129 fveq2 6493 . . . . . . . . . . . . 13 (((♯‘𝑊) − 1) = 𝐼 → (𝑊‘((♯‘𝑊) − 1)) = (𝑊𝐼))
130128, 129sylan9eq 2828 . . . . . . . . . . . 12 ((𝜑 ∧ ((♯‘𝑊) − 1) = 𝐼) → (lastS‘𝑊) = (𝑊𝐼))
131130s1eqd 13754 . . . . . . . . . . 11 ((𝜑 ∧ ((♯‘𝑊) − 1) = 𝐼) → ⟨“(lastS‘𝑊)”⟩ = ⟨“(𝑊𝐼)”⟩)
132126, 131oveq12d 6988 . . . . . . . . . 10 ((𝜑 ∧ ((♯‘𝑊) − 1) = 𝐼) → ((𝑊 prefix ((♯‘𝑊) − 1)) ++ ⟨“(lastS‘𝑊)”⟩) = ((𝑊 prefix 𝐼) ++ ⟨“(𝑊𝐼)”⟩))
133124, 132syldan 582 . . . . . . . . 9 ((𝜑 ∧ (𝐼 + 1) = 𝐿) → ((𝑊 prefix ((♯‘𝑊) − 1)) ++ ⟨“(lastS‘𝑊)”⟩) = ((𝑊 prefix 𝐼) ++ ⟨“(𝑊𝐼)”⟩))
134114, 133eqtrd 2808 . . . . . . . 8 ((𝜑 ∧ (𝐼 + 1) = 𝐿) → 𝑊 = ((𝑊 prefix 𝐼) ++ ⟨“(𝑊𝐼)”⟩))
135134oveq2d 6986 . . . . . . 7 ((𝜑 ∧ (𝐼 + 1) = 𝐿) → (𝐺 Σg 𝑊) = (𝐺 Σg ((𝑊 prefix 𝐼) ++ ⟨“(𝑊𝐼)”⟩)))
13640s1cld 13756 . . . . . . . . 9 (𝜑 → ⟨“(𝑊𝐼)”⟩ ∈ Word (Base‘𝐺))
137 eqid 2772 . . . . . . . . . 10 (+g𝐺) = (+g𝐺)
13820, 137gsumccat 17836 . . . . . . . . 9 ((𝐺 ∈ Mnd ∧ (𝑊 prefix 𝐼) ∈ Word (Base‘𝐺) ∧ ⟨“(𝑊𝐼)”⟩ ∈ Word (Base‘𝐺)) → (𝐺 Σg ((𝑊 prefix 𝐼) ++ ⟨“(𝑊𝐼)”⟩)) = ((𝐺 Σg (𝑊 prefix 𝐼))(+g𝐺)(𝐺 Σg ⟨“(𝑊𝐼)”⟩)))
13918, 27, 136, 138syl3anc 1351 . . . . . . . 8 (𝜑 → (𝐺 Σg ((𝑊 prefix 𝐼) ++ ⟨“(𝑊𝐼)”⟩)) = ((𝐺 Σg (𝑊 prefix 𝐼))(+g𝐺)(𝐺 Σg ⟨“(𝑊𝐼)”⟩)))
140139adantr 473 . . . . . . 7 ((𝜑 ∧ (𝐼 + 1) = 𝐿) → (𝐺 Σg ((𝑊 prefix 𝐼) ++ ⟨“(𝑊𝐼)”⟩)) = ((𝐺 Σg (𝑊 prefix 𝐼))(+g𝐺)(𝐺 Σg ⟨“(𝑊𝐼)”⟩)))
14120gsumws1 17834 . . . . . . . . . . 11 ((𝑊𝐼) ∈ (Base‘𝐺) → (𝐺 Σg ⟨“(𝑊𝐼)”⟩) = (𝑊𝐼))
14240, 141syl 17 . . . . . . . . . 10 (𝜑 → (𝐺 Σg ⟨“(𝑊𝐼)”⟩) = (𝑊𝐼))
143142oveq2d 6986 . . . . . . . . 9 (𝜑 → ((𝐺 Σg (𝑊 prefix 𝐼))(+g𝐺)(𝐺 Σg ⟨“(𝑊𝐼)”⟩)) = ((𝐺 Σg (𝑊 prefix 𝐼))(+g𝐺)(𝑊𝐼)))
14415, 20, 137symgov 18269 . . . . . . . . . 10 (((𝐺 Σg (𝑊 prefix 𝐼)) ∈ (Base‘𝐺) ∧ (𝑊𝐼) ∈ (Base‘𝐺)) → ((𝐺 Σg (𝑊 prefix 𝐼))(+g𝐺)(𝑊𝐼)) = ((𝐺 Σg (𝑊 prefix 𝐼)) ∘ (𝑊𝐼)))
14529, 40, 144syl2anc 576 . . . . . . . . 9 (𝜑 → ((𝐺 Σg (𝑊 prefix 𝐼))(+g𝐺)(𝑊𝐼)) = ((𝐺 Σg (𝑊 prefix 𝐼)) ∘ (𝑊𝐼)))
146143, 145eqtrd 2808 . . . . . . . 8 (𝜑 → ((𝐺 Σg (𝑊 prefix 𝐼))(+g𝐺)(𝐺 Σg ⟨“(𝑊𝐼)”⟩)) = ((𝐺 Σg (𝑊 prefix 𝐼)) ∘ (𝑊𝐼)))
147146adantr 473 . . . . . . 7 ((𝜑 ∧ (𝐼 + 1) = 𝐿) → ((𝐺 Σg (𝑊 prefix 𝐼))(+g𝐺)(𝐺 Σg ⟨“(𝑊𝐼)”⟩)) = ((𝐺 Σg (𝑊 prefix 𝐼)) ∘ (𝑊𝐼)))
148135, 140, 1473eqtrd 2812 . . . . . 6 ((𝜑 ∧ (𝐼 + 1) = 𝐿) → (𝐺 Σg 𝑊) = ((𝐺 Σg (𝑊 prefix 𝐼)) ∘ (𝑊𝐼)))
149148difeq1d 3984 . . . . 5 ((𝜑 ∧ (𝐼 + 1) = 𝐿) → ((𝐺 Σg 𝑊) ∖ I ) = (((𝐺 Σg (𝑊 prefix 𝐼)) ∘ (𝑊𝐼)) ∖ I ))
150149dmeqd 5617 . . . 4 ((𝜑 ∧ (𝐼 + 1) = 𝐿) → dom ((𝐺 Σg 𝑊) ∖ I ) = dom (((𝐺 Σg (𝑊 prefix 𝐼)) ∘ (𝑊𝐼)) ∖ I ))
151102, 150eleqtrrd 2863 . . 3 ((𝜑 ∧ (𝐼 + 1) = 𝐿) → 𝐴 ∈ dom ((𝐺 Σg 𝑊) ∖ I ))
15213, 151mtand 803 . 2 (𝜑 → ¬ (𝐼 + 1) = 𝐿)
153 fzostep1 12961 . . . 4 (𝐼 ∈ (0..^𝐿) → ((𝐼 + 1) ∈ (0..^𝐿) ∨ (𝐼 + 1) = 𝐿))
15435, 153syl 17 . . 3 (𝜑 → ((𝐼 + 1) ∈ (0..^𝐿) ∨ (𝐼 + 1) = 𝐿))
155154ord 850 . 2 (𝜑 → (¬ (𝐼 + 1) ∈ (0..^𝐿) → (𝐼 + 1) = 𝐿))
156152, 155mt3d 143 1 (𝜑 → (𝐼 + 1) ∈ (0..^𝐿))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 198  wa 387  wo 833  wxo 1488   = wceq 1507  wcel 2048  wne 2961  wral 3082  {crab 3086  Vcvv 3409  cdif 3822  cin 3824  wss 3825  c0 4173  {csn 4435   class class class wbr 4923  cmpt 5002   I cid 5304  dom cdm 5400  ran crn 5401  cres 5402  ccom 5404  wf 6178  1-1-ontowf1o 6181  cfv 6182  (class class class)co 6970  Fincfn 8298  0cc0 10327  1c1 10328   + caddc 10330   < clt 10466  cmin 10662  cn 11431  0cn0 11700  cz 11786  cuz 12051  ...cfz 12701  ..^cfzo 12842  chash 13498  Word cword 13662  lastSclsw 13715   ++ cconcat 13723  ⟨“cs1 13748   prefix cpfx 13842  Basecbs 16329  +gcplusg 16411   Σg cgsu 16560  Mndcmnd 17752  SubMndcsubmnd 17792  Grpcgrp 17881  SubGrpcsubg 18047  SymGrpcsymg 18256  pmTrspcpmtr 18320
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1758  ax-4 1772  ax-5 1869  ax-6 1928  ax-7 1964  ax-8 2050  ax-9 2057  ax-10 2077  ax-11 2091  ax-12 2104  ax-13 2299  ax-ext 2745  ax-rep 5043  ax-sep 5054  ax-nul 5061  ax-pow 5113  ax-pr 5180  ax-un 7273  ax-cnex 10383  ax-resscn 10384  ax-1cn 10385  ax-icn 10386  ax-addcl 10387  ax-addrcl 10388  ax-mulcl 10389  ax-mulrcl 10390  ax-mulcom 10391  ax-addass 10392  ax-mulass 10393  ax-distr 10394  ax-i2m1 10395  ax-1ne0 10396  ax-1rid 10397  ax-rnegex 10398  ax-rrecex 10399  ax-cnre 10400  ax-pre-lttri 10401  ax-pre-lttrn 10402  ax-pre-ltadd 10403  ax-pre-mulgt0 10404
This theorem depends on definitions:  df-bi 199  df-an 388  df-or 834  df-3or 1069  df-3an 1070  df-xor 1489  df-tru 1510  df-ex 1743  df-nf 1747  df-sb 2014  df-mo 2544  df-eu 2580  df-clab 2754  df-cleq 2765  df-clel 2840  df-nfc 2912  df-ne 2962  df-nel 3068  df-ral 3087  df-rex 3088  df-reu 3089  df-rmo 3090  df-rab 3091  df-v 3411  df-sbc 3678  df-csb 3783  df-dif 3828  df-un 3830  df-in 3832  df-ss 3839  df-pss 3841  df-nul 4174  df-if 4345  df-pw 4418  df-sn 4436  df-pr 4438  df-tp 4440  df-op 4442  df-uni 4707  df-int 4744  df-iun 4788  df-br 4924  df-opab 4986  df-mpt 5003  df-tr 5025  df-id 5305  df-eprel 5310  df-po 5319  df-so 5320  df-fr 5359  df-we 5361  df-xp 5406  df-rel 5407  df-cnv 5408  df-co 5409  df-dm 5410  df-rn 5411  df-res 5412  df-ima 5413  df-pred 5980  df-ord 6026  df-on 6027  df-lim 6028  df-suc 6029  df-iota 6146  df-fun 6184  df-fn 6185  df-f 6186  df-f1 6187  df-fo 6188  df-f1o 6189  df-fv 6190  df-riota 6931  df-ov 6973  df-oprab 6974  df-mpo 6975  df-om 7391  df-1st 7494  df-2nd 7495  df-wrecs 7743  df-recs 7805  df-rdg 7843  df-1o 7897  df-2o 7898  df-oadd 7901  df-er 8081  df-map 8200  df-en 8299  df-dom 8300  df-sdom 8301  df-fin 8302  df-card 9154  df-pnf 10468  df-mnf 10469  df-xr 10470  df-ltxr 10471  df-le 10472  df-sub 10664  df-neg 10665  df-nn 11432  df-2 11496  df-3 11497  df-4 11498  df-5 11499  df-6 11500  df-7 11501  df-8 11502  df-9 11503  df-n0 11701  df-xnn0 11773  df-z 11787  df-uz 12052  df-fz 12702  df-fzo 12843  df-seq 13178  df-hash 13499  df-word 13663  df-lsw 13716  df-concat 13724  df-s1 13749  df-substr 13794  df-pfx 13843  df-struct 16331  df-ndx 16332  df-slot 16333  df-base 16335  df-sets 16336  df-ress 16337  df-plusg 16424  df-tset 16430  df-0g 16561  df-gsum 16562  df-mgm 17700  df-sgrp 17742  df-mnd 17753  df-submnd 17794  df-grp 17884  df-minusg 17885  df-subg 18050  df-symg 18257  df-pmtr 18321
This theorem is referenced by:  psgnunilem2  18375
  Copyright terms: Public domain W3C validator