MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  psgnunilem5 Structured version   Visualization version   GIF version

Theorem psgnunilem5 18118
Description: Lemma for psgnuni 18123. It is impossible to shift a transposition off the end because if the active transposition is at the right end, it is the only transposition moving 𝐴 in contradiction to this being a representation of the identity. (Contributed by Stefan O'Rear, 25-Aug-2015.) (Revised by Mario Carneiro, 28-Feb-2016.)
Hypotheses
Ref Expression
psgnunilem2.g 𝐺 = (SymGrp‘𝐷)
psgnunilem2.t 𝑇 = ran (pmTrsp‘𝐷)
psgnunilem2.d (𝜑𝐷𝑉)
psgnunilem2.w (𝜑𝑊 ∈ Word 𝑇)
psgnunilem2.id (𝜑 → (𝐺 Σg 𝑊) = ( I ↾ 𝐷))
psgnunilem2.l (𝜑 → (♯‘𝑊) = 𝐿)
psgnunilem2.ix (𝜑𝐼 ∈ (0..^𝐿))
psgnunilem2.a (𝜑𝐴 ∈ dom ((𝑊𝐼) ∖ I ))
psgnunilem2.al (𝜑 → ∀𝑘 ∈ (0..^𝐼) ¬ 𝐴 ∈ dom ((𝑊𝑘) ∖ I ))
Assertion
Ref Expression
psgnunilem5 (𝜑 → (𝐼 + 1) ∈ (0..^𝐿))
Distinct variable groups:   𝐴,𝑘   𝑘,𝐺   𝑘,𝐼   𝑘,𝑊
Allowed substitution hints:   𝜑(𝑘)   𝐷(𝑘)   𝑇(𝑘)   𝐿(𝑘)   𝑉(𝑘)

Proof of Theorem psgnunilem5
Dummy variables 𝑗 𝑠 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 noel 4127 . . . 4 ¬ 𝐴 ∈ ∅
2 psgnunilem2.id . . . . . . . 8 (𝜑 → (𝐺 Σg 𝑊) = ( I ↾ 𝐷))
32difeq1d 3933 . . . . . . 7 (𝜑 → ((𝐺 Σg 𝑊) ∖ I ) = (( I ↾ 𝐷) ∖ I ))
43dmeqd 5534 . . . . . 6 (𝜑 → dom ((𝐺 Σg 𝑊) ∖ I ) = dom (( I ↾ 𝐷) ∖ I ))
5 resss 5632 . . . . . . . . 9 ( I ↾ 𝐷) ⊆ I
6 ssdif0 4150 . . . . . . . . 9 (( I ↾ 𝐷) ⊆ I ↔ (( I ↾ 𝐷) ∖ I ) = ∅)
75, 6mpbi 221 . . . . . . . 8 (( I ↾ 𝐷) ∖ I ) = ∅
87dmeqi 5533 . . . . . . 7 dom (( I ↾ 𝐷) ∖ I ) = dom ∅
9 dm0 5547 . . . . . . 7 dom ∅ = ∅
108, 9eqtri 2835 . . . . . 6 dom (( I ↾ 𝐷) ∖ I ) = ∅
114, 10syl6eq 2863 . . . . 5 (𝜑 → dom ((𝐺 Σg 𝑊) ∖ I ) = ∅)
1211eleq2d 2878 . . . 4 (𝜑 → (𝐴 ∈ dom ((𝐺 Σg 𝑊) ∖ I ) ↔ 𝐴 ∈ ∅))
131, 12mtbiri 318 . . 3 (𝜑 → ¬ 𝐴 ∈ dom ((𝐺 Σg 𝑊) ∖ I ))
14 psgnunilem2.d . . . . . . . . 9 (𝜑𝐷𝑉)
15 psgnunilem2.g . . . . . . . . . 10 𝐺 = (SymGrp‘𝐷)
1615symggrp 18024 . . . . . . . . 9 (𝐷𝑉𝐺 ∈ Grp)
17 grpmnd 17637 . . . . . . . . 9 (𝐺 ∈ Grp → 𝐺 ∈ Mnd)
1814, 16, 173syl 18 . . . . . . . 8 (𝜑𝐺 ∈ Mnd)
19 psgnunilem2.t . . . . . . . . . . . 12 𝑇 = ran (pmTrsp‘𝐷)
20 eqid 2813 . . . . . . . . . . . 12 (Base‘𝐺) = (Base‘𝐺)
2119, 15, 20symgtrf 18093 . . . . . . . . . . 11 𝑇 ⊆ (Base‘𝐺)
22 sswrd 13527 . . . . . . . . . . 11 (𝑇 ⊆ (Base‘𝐺) → Word 𝑇 ⊆ Word (Base‘𝐺))
2321, 22mp1i 13 . . . . . . . . . 10 (𝜑 → Word 𝑇 ⊆ Word (Base‘𝐺))
24 psgnunilem2.w . . . . . . . . . 10 (𝜑𝑊 ∈ Word 𝑇)
2523, 24sseldd 3806 . . . . . . . . 9 (𝜑𝑊 ∈ Word (Base‘𝐺))
26 swrdcl 13645 . . . . . . . . 9 (𝑊 ∈ Word (Base‘𝐺) → (𝑊 substr ⟨0, 𝐼⟩) ∈ Word (Base‘𝐺))
2725, 26syl 17 . . . . . . . 8 (𝜑 → (𝑊 substr ⟨0, 𝐼⟩) ∈ Word (Base‘𝐺))
2820gsumwcl 17585 . . . . . . . 8 ((𝐺 ∈ Mnd ∧ (𝑊 substr ⟨0, 𝐼⟩) ∈ Word (Base‘𝐺)) → (𝐺 Σg (𝑊 substr ⟨0, 𝐼⟩)) ∈ (Base‘𝐺))
2918, 27, 28syl2anc 575 . . . . . . 7 (𝜑 → (𝐺 Σg (𝑊 substr ⟨0, 𝐼⟩)) ∈ (Base‘𝐺))
3015, 20symgbasf1o 18007 . . . . . . 7 ((𝐺 Σg (𝑊 substr ⟨0, 𝐼⟩)) ∈ (Base‘𝐺) → (𝐺 Σg (𝑊 substr ⟨0, 𝐼⟩)):𝐷1-1-onto𝐷)
3129, 30syl 17 . . . . . 6 (𝜑 → (𝐺 Σg (𝑊 substr ⟨0, 𝐼⟩)):𝐷1-1-onto𝐷)
3231adantr 468 . . . . 5 ((𝜑 ∧ (𝐼 + 1) = 𝐿) → (𝐺 Σg (𝑊 substr ⟨0, 𝐼⟩)):𝐷1-1-onto𝐷)
33 wrdf 13524 . . . . . . . . . 10 (𝑊 ∈ Word 𝑇𝑊:(0..^(♯‘𝑊))⟶𝑇)
3424, 33syl 17 . . . . . . . . 9 (𝜑𝑊:(0..^(♯‘𝑊))⟶𝑇)
35 psgnunilem2.ix . . . . . . . . . 10 (𝜑𝐼 ∈ (0..^𝐿))
36 psgnunilem2.l . . . . . . . . . . 11 (𝜑 → (♯‘𝑊) = 𝐿)
3736oveq2d 6893 . . . . . . . . . 10 (𝜑 → (0..^(♯‘𝑊)) = (0..^𝐿))
3835, 37eleqtrrd 2895 . . . . . . . . 9 (𝜑𝐼 ∈ (0..^(♯‘𝑊)))
3934, 38ffvelrnd 6585 . . . . . . . 8 (𝜑 → (𝑊𝐼) ∈ 𝑇)
4021, 39sseldi 3803 . . . . . . 7 (𝜑 → (𝑊𝐼) ∈ (Base‘𝐺))
4115, 20symgbasf1o 18007 . . . . . . 7 ((𝑊𝐼) ∈ (Base‘𝐺) → (𝑊𝐼):𝐷1-1-onto𝐷)
4240, 41syl 17 . . . . . 6 (𝜑 → (𝑊𝐼):𝐷1-1-onto𝐷)
4342adantr 468 . . . . 5 ((𝜑 ∧ (𝐼 + 1) = 𝐿) → (𝑊𝐼):𝐷1-1-onto𝐷)
4415, 20symgsssg 18091 . . . . . . . . . . . 12 (𝐷𝑉 → {𝑗 ∈ (Base‘𝐺) ∣ dom (𝑗 ∖ I ) ⊆ (V ∖ {𝐴})} ∈ (SubGrp‘𝐺))
45 subgsubm 17821 . . . . . . . . . . . 12 ({𝑗 ∈ (Base‘𝐺) ∣ dom (𝑗 ∖ I ) ⊆ (V ∖ {𝐴})} ∈ (SubGrp‘𝐺) → {𝑗 ∈ (Base‘𝐺) ∣ dom (𝑗 ∖ I ) ⊆ (V ∖ {𝐴})} ∈ (SubMnd‘𝐺))
4614, 44, 453syl 18 . . . . . . . . . . 11 (𝜑 → {𝑗 ∈ (Base‘𝐺) ∣ dom (𝑗 ∖ I ) ⊆ (V ∖ {𝐴})} ∈ (SubMnd‘𝐺))
4746adantr 468 . . . . . . . . . 10 ((𝜑 ∧ (𝐼 + 1) = 𝐿) → {𝑗 ∈ (Base‘𝐺) ∣ dom (𝑗 ∖ I ) ⊆ (V ∖ {𝐴})} ∈ (SubMnd‘𝐺))
48 fzossfz 12715 . . . . . . . . . . . . . . . . . . . . 21 (0..^𝐿) ⊆ (0...𝐿)
4948, 35sseldi 3803 . . . . . . . . . . . . . . . . . . . 20 (𝜑𝐼 ∈ (0...𝐿))
50 elfzuz3 12565 . . . . . . . . . . . . . . . . . . . 20 (𝐼 ∈ (0...𝐿) → 𝐿 ∈ (ℤ𝐼))
5149, 50syl 17 . . . . . . . . . . . . . . . . . . 19 (𝜑𝐿 ∈ (ℤ𝐼))
5236, 51eqeltrd 2892 . . . . . . . . . . . . . . . . . 18 (𝜑 → (♯‘𝑊) ∈ (ℤ𝐼))
53 fzoss2 12723 . . . . . . . . . . . . . . . . . 18 ((♯‘𝑊) ∈ (ℤ𝐼) → (0..^𝐼) ⊆ (0..^(♯‘𝑊)))
5452, 53syl 17 . . . . . . . . . . . . . . . . 17 (𝜑 → (0..^𝐼) ⊆ (0..^(♯‘𝑊)))
5554sselda 3805 . . . . . . . . . . . . . . . 16 ((𝜑𝑠 ∈ (0..^𝐼)) → 𝑠 ∈ (0..^(♯‘𝑊)))
5634ffvelrnda 6584 . . . . . . . . . . . . . . . . 17 ((𝜑𝑠 ∈ (0..^(♯‘𝑊))) → (𝑊𝑠) ∈ 𝑇)
5721, 56sseldi 3803 . . . . . . . . . . . . . . . 16 ((𝜑𝑠 ∈ (0..^(♯‘𝑊))) → (𝑊𝑠) ∈ (Base‘𝐺))
5855, 57syldan 581 . . . . . . . . . . . . . . 15 ((𝜑𝑠 ∈ (0..^𝐼)) → (𝑊𝑠) ∈ (Base‘𝐺))
59 psgnunilem2.al . . . . . . . . . . . . . . . . 17 (𝜑 → ∀𝑘 ∈ (0..^𝐼) ¬ 𝐴 ∈ dom ((𝑊𝑘) ∖ I ))
60 fveq2 6411 . . . . . . . . . . . . . . . . . . . . . 22 (𝑘 = 𝑠 → (𝑊𝑘) = (𝑊𝑠))
6160difeq1d 3933 . . . . . . . . . . . . . . . . . . . . 21 (𝑘 = 𝑠 → ((𝑊𝑘) ∖ I ) = ((𝑊𝑠) ∖ I ))
6261dmeqd 5534 . . . . . . . . . . . . . . . . . . . 20 (𝑘 = 𝑠 → dom ((𝑊𝑘) ∖ I ) = dom ((𝑊𝑠) ∖ I ))
6362eleq2d 2878 . . . . . . . . . . . . . . . . . . 19 (𝑘 = 𝑠 → (𝐴 ∈ dom ((𝑊𝑘) ∖ I ) ↔ 𝐴 ∈ dom ((𝑊𝑠) ∖ I )))
6463notbid 309 . . . . . . . . . . . . . . . . . 18 (𝑘 = 𝑠 → (¬ 𝐴 ∈ dom ((𝑊𝑘) ∖ I ) ↔ ¬ 𝐴 ∈ dom ((𝑊𝑠) ∖ I )))
6564cbvralv 3367 . . . . . . . . . . . . . . . . 17 (∀𝑘 ∈ (0..^𝐼) ¬ 𝐴 ∈ dom ((𝑊𝑘) ∖ I ) ↔ ∀𝑠 ∈ (0..^𝐼) ¬ 𝐴 ∈ dom ((𝑊𝑠) ∖ I ))
6659, 65sylib 209 . . . . . . . . . . . . . . . 16 (𝜑 → ∀𝑠 ∈ (0..^𝐼) ¬ 𝐴 ∈ dom ((𝑊𝑠) ∖ I ))
6766r19.21bi 3127 . . . . . . . . . . . . . . 15 ((𝜑𝑠 ∈ (0..^𝐼)) → ¬ 𝐴 ∈ dom ((𝑊𝑠) ∖ I ))
68 difeq1 3927 . . . . . . . . . . . . . . . . . . 19 (𝑗 = (𝑊𝑠) → (𝑗 ∖ I ) = ((𝑊𝑠) ∖ I ))
6968dmeqd 5534 . . . . . . . . . . . . . . . . . 18 (𝑗 = (𝑊𝑠) → dom (𝑗 ∖ I ) = dom ((𝑊𝑠) ∖ I ))
7069sseq1d 3836 . . . . . . . . . . . . . . . . 17 (𝑗 = (𝑊𝑠) → (dom (𝑗 ∖ I ) ⊆ (V ∖ {𝐴}) ↔ dom ((𝑊𝑠) ∖ I ) ⊆ (V ∖ {𝐴})))
71 disj2 4229 . . . . . . . . . . . . . . . . . 18 ((dom ((𝑊𝑠) ∖ I ) ∩ {𝐴}) = ∅ ↔ dom ((𝑊𝑠) ∖ I ) ⊆ (V ∖ {𝐴}))
72 disjsn 4445 . . . . . . . . . . . . . . . . . 18 ((dom ((𝑊𝑠) ∖ I ) ∩ {𝐴}) = ∅ ↔ ¬ 𝐴 ∈ dom ((𝑊𝑠) ∖ I ))
7371, 72bitr3i 268 . . . . . . . . . . . . . . . . 17 (dom ((𝑊𝑠) ∖ I ) ⊆ (V ∖ {𝐴}) ↔ ¬ 𝐴 ∈ dom ((𝑊𝑠) ∖ I ))
7470, 73syl6bb 278 . . . . . . . . . . . . . . . 16 (𝑗 = (𝑊𝑠) → (dom (𝑗 ∖ I ) ⊆ (V ∖ {𝐴}) ↔ ¬ 𝐴 ∈ dom ((𝑊𝑠) ∖ I )))
7574elrab 3566 . . . . . . . . . . . . . . 15 ((𝑊𝑠) ∈ {𝑗 ∈ (Base‘𝐺) ∣ dom (𝑗 ∖ I ) ⊆ (V ∖ {𝐴})} ↔ ((𝑊𝑠) ∈ (Base‘𝐺) ∧ ¬ 𝐴 ∈ dom ((𝑊𝑠) ∖ I )))
7658, 67, 75sylanbrc 574 . . . . . . . . . . . . . 14 ((𝜑𝑠 ∈ (0..^𝐼)) → (𝑊𝑠) ∈ {𝑗 ∈ (Base‘𝐺) ∣ dom (𝑗 ∖ I ) ⊆ (V ∖ {𝐴})})
7776fmpttd 6610 . . . . . . . . . . . . 13 (𝜑 → (𝑠 ∈ (0..^𝐼) ↦ (𝑊𝑠)):(0..^𝐼)⟶{𝑗 ∈ (Base‘𝐺) ∣ dom (𝑗 ∖ I ) ⊆ (V ∖ {𝐴})})
7836oveq2d 6893 . . . . . . . . . . . . . . . . 17 (𝜑 → (0...(♯‘𝑊)) = (0...𝐿))
7949, 78eleqtrrd 2895 . . . . . . . . . . . . . . . 16 (𝜑𝐼 ∈ (0...(♯‘𝑊)))
80 swrd0val 13647 . . . . . . . . . . . . . . . 16 ((𝑊 ∈ Word 𝑇𝐼 ∈ (0...(♯‘𝑊))) → (𝑊 substr ⟨0, 𝐼⟩) = (𝑊 ↾ (0..^𝐼)))
8124, 79, 80syl2anc 575 . . . . . . . . . . . . . . 15 (𝜑 → (𝑊 substr ⟨0, 𝐼⟩) = (𝑊 ↾ (0..^𝐼)))
8234feqmptd 6473 . . . . . . . . . . . . . . . 16 (𝜑𝑊 = (𝑠 ∈ (0..^(♯‘𝑊)) ↦ (𝑊𝑠)))
8382reseq1d 5603 . . . . . . . . . . . . . . 15 (𝜑 → (𝑊 ↾ (0..^𝐼)) = ((𝑠 ∈ (0..^(♯‘𝑊)) ↦ (𝑊𝑠)) ↾ (0..^𝐼)))
84 resmpt 5661 . . . . . . . . . . . . . . . 16 ((0..^𝐼) ⊆ (0..^(♯‘𝑊)) → ((𝑠 ∈ (0..^(♯‘𝑊)) ↦ (𝑊𝑠)) ↾ (0..^𝐼)) = (𝑠 ∈ (0..^𝐼) ↦ (𝑊𝑠)))
8552, 53, 843syl 18 . . . . . . . . . . . . . . 15 (𝜑 → ((𝑠 ∈ (0..^(♯‘𝑊)) ↦ (𝑊𝑠)) ↾ (0..^𝐼)) = (𝑠 ∈ (0..^𝐼) ↦ (𝑊𝑠)))
8681, 83, 853eqtrd 2851 . . . . . . . . . . . . . 14 (𝜑 → (𝑊 substr ⟨0, 𝐼⟩) = (𝑠 ∈ (0..^𝐼) ↦ (𝑊𝑠)))
8786feq1d 6244 . . . . . . . . . . . . 13 (𝜑 → ((𝑊 substr ⟨0, 𝐼⟩):(0..^𝐼)⟶{𝑗 ∈ (Base‘𝐺) ∣ dom (𝑗 ∖ I ) ⊆ (V ∖ {𝐴})} ↔ (𝑠 ∈ (0..^𝐼) ↦ (𝑊𝑠)):(0..^𝐼)⟶{𝑗 ∈ (Base‘𝐺) ∣ dom (𝑗 ∖ I ) ⊆ (V ∖ {𝐴})}))
8877, 87mpbird 248 . . . . . . . . . . . 12 (𝜑 → (𝑊 substr ⟨0, 𝐼⟩):(0..^𝐼)⟶{𝑗 ∈ (Base‘𝐺) ∣ dom (𝑗 ∖ I ) ⊆ (V ∖ {𝐴})})
8988adantr 468 . . . . . . . . . . 11 ((𝜑 ∧ (𝐼 + 1) = 𝐿) → (𝑊 substr ⟨0, 𝐼⟩):(0..^𝐼)⟶{𝑗 ∈ (Base‘𝐺) ∣ dom (𝑗 ∖ I ) ⊆ (V ∖ {𝐴})})
90 iswrdi 13523 . . . . . . . . . . 11 ((𝑊 substr ⟨0, 𝐼⟩):(0..^𝐼)⟶{𝑗 ∈ (Base‘𝐺) ∣ dom (𝑗 ∖ I ) ⊆ (V ∖ {𝐴})} → (𝑊 substr ⟨0, 𝐼⟩) ∈ Word {𝑗 ∈ (Base‘𝐺) ∣ dom (𝑗 ∖ I ) ⊆ (V ∖ {𝐴})})
9189, 90syl 17 . . . . . . . . . 10 ((𝜑 ∧ (𝐼 + 1) = 𝐿) → (𝑊 substr ⟨0, 𝐼⟩) ∈ Word {𝑗 ∈ (Base‘𝐺) ∣ dom (𝑗 ∖ I ) ⊆ (V ∖ {𝐴})})
92 gsumwsubmcl 17583 . . . . . . . . . 10 (({𝑗 ∈ (Base‘𝐺) ∣ dom (𝑗 ∖ I ) ⊆ (V ∖ {𝐴})} ∈ (SubMnd‘𝐺) ∧ (𝑊 substr ⟨0, 𝐼⟩) ∈ Word {𝑗 ∈ (Base‘𝐺) ∣ dom (𝑗 ∖ I ) ⊆ (V ∖ {𝐴})}) → (𝐺 Σg (𝑊 substr ⟨0, 𝐼⟩)) ∈ {𝑗 ∈ (Base‘𝐺) ∣ dom (𝑗 ∖ I ) ⊆ (V ∖ {𝐴})})
9347, 91, 92syl2anc 575 . . . . . . . . 9 ((𝜑 ∧ (𝐼 + 1) = 𝐿) → (𝐺 Σg (𝑊 substr ⟨0, 𝐼⟩)) ∈ {𝑗 ∈ (Base‘𝐺) ∣ dom (𝑗 ∖ I ) ⊆ (V ∖ {𝐴})})
94 difeq1 3927 . . . . . . . . . . . . . 14 (𝑗 = (𝐺 Σg (𝑊 substr ⟨0, 𝐼⟩)) → (𝑗 ∖ I ) = ((𝐺 Σg (𝑊 substr ⟨0, 𝐼⟩)) ∖ I ))
9594dmeqd 5534 . . . . . . . . . . . . 13 (𝑗 = (𝐺 Σg (𝑊 substr ⟨0, 𝐼⟩)) → dom (𝑗 ∖ I ) = dom ((𝐺 Σg (𝑊 substr ⟨0, 𝐼⟩)) ∖ I ))
9695sseq1d 3836 . . . . . . . . . . . 12 (𝑗 = (𝐺 Σg (𝑊 substr ⟨0, 𝐼⟩)) → (dom (𝑗 ∖ I ) ⊆ (V ∖ {𝐴}) ↔ dom ((𝐺 Σg (𝑊 substr ⟨0, 𝐼⟩)) ∖ I ) ⊆ (V ∖ {𝐴})))
9796elrab 3566 . . . . . . . . . . 11 ((𝐺 Σg (𝑊 substr ⟨0, 𝐼⟩)) ∈ {𝑗 ∈ (Base‘𝐺) ∣ dom (𝑗 ∖ I ) ⊆ (V ∖ {𝐴})} ↔ ((𝐺 Σg (𝑊 substr ⟨0, 𝐼⟩)) ∈ (Base‘𝐺) ∧ dom ((𝐺 Σg (𝑊 substr ⟨0, 𝐼⟩)) ∖ I ) ⊆ (V ∖ {𝐴})))
9897simprbi 486 . . . . . . . . . 10 ((𝐺 Σg (𝑊 substr ⟨0, 𝐼⟩)) ∈ {𝑗 ∈ (Base‘𝐺) ∣ dom (𝑗 ∖ I ) ⊆ (V ∖ {𝐴})} → dom ((𝐺 Σg (𝑊 substr ⟨0, 𝐼⟩)) ∖ I ) ⊆ (V ∖ {𝐴}))
99 disj2 4229 . . . . . . . . . . 11 ((dom ((𝐺 Σg (𝑊 substr ⟨0, 𝐼⟩)) ∖ I ) ∩ {𝐴}) = ∅ ↔ dom ((𝐺 Σg (𝑊 substr ⟨0, 𝐼⟩)) ∖ I ) ⊆ (V ∖ {𝐴}))
100 disjsn 4445 . . . . . . . . . . 11 ((dom ((𝐺 Σg (𝑊 substr ⟨0, 𝐼⟩)) ∖ I ) ∩ {𝐴}) = ∅ ↔ ¬ 𝐴 ∈ dom ((𝐺 Σg (𝑊 substr ⟨0, 𝐼⟩)) ∖ I ))
10199, 100bitr3i 268 . . . . . . . . . 10 (dom ((𝐺 Σg (𝑊 substr ⟨0, 𝐼⟩)) ∖ I ) ⊆ (V ∖ {𝐴}) ↔ ¬ 𝐴 ∈ dom ((𝐺 Σg (𝑊 substr ⟨0, 𝐼⟩)) ∖ I ))
10298, 101sylib 209 . . . . . . . . 9 ((𝐺 Σg (𝑊 substr ⟨0, 𝐼⟩)) ∈ {𝑗 ∈ (Base‘𝐺) ∣ dom (𝑗 ∖ I ) ⊆ (V ∖ {𝐴})} → ¬ 𝐴 ∈ dom ((𝐺 Σg (𝑊 substr ⟨0, 𝐼⟩)) ∖ I ))
10393, 102syl 17 . . . . . . . 8 ((𝜑 ∧ (𝐼 + 1) = 𝐿) → ¬ 𝐴 ∈ dom ((𝐺 Σg (𝑊 substr ⟨0, 𝐼⟩)) ∖ I ))
104 psgnunilem2.a . . . . . . . . 9 (𝜑𝐴 ∈ dom ((𝑊𝐼) ∖ I ))
105104adantr 468 . . . . . . . 8 ((𝜑 ∧ (𝐼 + 1) = 𝐿) → 𝐴 ∈ dom ((𝑊𝐼) ∖ I ))
106103, 105jca 503 . . . . . . 7 ((𝜑 ∧ (𝐼 + 1) = 𝐿) → (¬ 𝐴 ∈ dom ((𝐺 Σg (𝑊 substr ⟨0, 𝐼⟩)) ∖ I ) ∧ 𝐴 ∈ dom ((𝑊𝐼) ∖ I )))
107106olcd 892 . . . . . 6 ((𝜑 ∧ (𝐼 + 1) = 𝐿) → ((𝐴 ∈ dom ((𝐺 Σg (𝑊 substr ⟨0, 𝐼⟩)) ∖ I ) ∧ ¬ 𝐴 ∈ dom ((𝑊𝐼) ∖ I )) ∨ (¬ 𝐴 ∈ dom ((𝐺 Σg (𝑊 substr ⟨0, 𝐼⟩)) ∖ I ) ∧ 𝐴 ∈ dom ((𝑊𝐼) ∖ I ))))
108 excxor 1623 . . . . . 6 ((𝐴 ∈ dom ((𝐺 Σg (𝑊 substr ⟨0, 𝐼⟩)) ∖ I ) ⊻ 𝐴 ∈ dom ((𝑊𝐼) ∖ I )) ↔ ((𝐴 ∈ dom ((𝐺 Σg (𝑊 substr ⟨0, 𝐼⟩)) ∖ I ) ∧ ¬ 𝐴 ∈ dom ((𝑊𝐼) ∖ I )) ∨ (¬ 𝐴 ∈ dom ((𝐺 Σg (𝑊 substr ⟨0, 𝐼⟩)) ∖ I ) ∧ 𝐴 ∈ dom ((𝑊𝐼) ∖ I ))))
109107, 108sylibr 225 . . . . 5 ((𝜑 ∧ (𝐼 + 1) = 𝐿) → (𝐴 ∈ dom ((𝐺 Σg (𝑊 substr ⟨0, 𝐼⟩)) ∖ I ) ⊻ 𝐴 ∈ dom ((𝑊𝐼) ∖ I )))
110 f1omvdco3 18073 . . . . 5 (((𝐺 Σg (𝑊 substr ⟨0, 𝐼⟩)):𝐷1-1-onto𝐷 ∧ (𝑊𝐼):𝐷1-1-onto𝐷 ∧ (𝐴 ∈ dom ((𝐺 Σg (𝑊 substr ⟨0, 𝐼⟩)) ∖ I ) ⊻ 𝐴 ∈ dom ((𝑊𝐼) ∖ I ))) → 𝐴 ∈ dom (((𝐺 Σg (𝑊 substr ⟨0, 𝐼⟩)) ∘ (𝑊𝐼)) ∖ I ))
11132, 43, 109, 110syl3anc 1483 . . . 4 ((𝜑 ∧ (𝐼 + 1) = 𝐿) → 𝐴 ∈ dom (((𝐺 Σg (𝑊 substr ⟨0, 𝐼⟩)) ∘ (𝑊𝐼)) ∖ I ))
11224adantr 468 . . . . . . . . . 10 ((𝜑 ∧ (𝐼 + 1) = 𝐿) → 𝑊 ∈ Word 𝑇)
113 elfzo0 12736 . . . . . . . . . . . . . . 15 (𝐼 ∈ (0..^𝐿) ↔ (𝐼 ∈ ℕ0𝐿 ∈ ℕ ∧ 𝐼 < 𝐿))
114113simp2bi 1169 . . . . . . . . . . . . . 14 (𝐼 ∈ (0..^𝐿) → 𝐿 ∈ ℕ)
11535, 114syl 17 . . . . . . . . . . . . 13 (𝜑𝐿 ∈ ℕ)
11636, 115eqeltrd 2892 . . . . . . . . . . . 12 (𝜑 → (♯‘𝑊) ∈ ℕ)
117 wrdfin 13537 . . . . . . . . . . . . 13 (𝑊 ∈ Word 𝑇𝑊 ∈ Fin)
118 hashnncl 13378 . . . . . . . . . . . . 13 (𝑊 ∈ Fin → ((♯‘𝑊) ∈ ℕ ↔ 𝑊 ≠ ∅))
11924, 117, 1183syl 18 . . . . . . . . . . . 12 (𝜑 → ((♯‘𝑊) ∈ ℕ ↔ 𝑊 ≠ ∅))
120116, 119mpbid 223 . . . . . . . . . . 11 (𝜑𝑊 ≠ ∅)
121120adantr 468 . . . . . . . . . 10 ((𝜑 ∧ (𝐼 + 1) = 𝐿) → 𝑊 ≠ ∅)
122 swrdccatwrd 13695 . . . . . . . . . . 11 ((𝑊 ∈ Word 𝑇𝑊 ≠ ∅) → ((𝑊 substr ⟨0, ((♯‘𝑊) − 1)⟩) ++ ⟨“(lastS‘𝑊)”⟩) = 𝑊)
123122eqcomd 2819 . . . . . . . . . 10 ((𝑊 ∈ Word 𝑇𝑊 ≠ ∅) → 𝑊 = ((𝑊 substr ⟨0, ((♯‘𝑊) − 1)⟩) ++ ⟨“(lastS‘𝑊)”⟩))
124112, 121, 123syl2anc 575 . . . . . . . . 9 ((𝜑 ∧ (𝐼 + 1) = 𝐿) → 𝑊 = ((𝑊 substr ⟨0, ((♯‘𝑊) − 1)⟩) ++ ⟨“(lastS‘𝑊)”⟩))
12536oveq1d 6892 . . . . . . . . . . . 12 (𝜑 → ((♯‘𝑊) − 1) = (𝐿 − 1))
126125adantr 468 . . . . . . . . . . 11 ((𝜑 ∧ (𝐼 + 1) = 𝐿) → ((♯‘𝑊) − 1) = (𝐿 − 1))
127115nncnd 11324 . . . . . . . . . . . . 13 (𝜑𝐿 ∈ ℂ)
128 1cnd 10323 . . . . . . . . . . . . 13 (𝜑 → 1 ∈ ℂ)
129 elfzoelz 12697 . . . . . . . . . . . . . . 15 (𝐼 ∈ (0..^𝐿) → 𝐼 ∈ ℤ)
13035, 129syl 17 . . . . . . . . . . . . . 14 (𝜑𝐼 ∈ ℤ)
131130zcnd 11752 . . . . . . . . . . . . 13 (𝜑𝐼 ∈ ℂ)
132127, 128, 131subadd2d 10699 . . . . . . . . . . . 12 (𝜑 → ((𝐿 − 1) = 𝐼 ↔ (𝐼 + 1) = 𝐿))
133132biimpar 465 . . . . . . . . . . 11 ((𝜑 ∧ (𝐼 + 1) = 𝐿) → (𝐿 − 1) = 𝐼)
134126, 133eqtrd 2847 . . . . . . . . . 10 ((𝜑 ∧ (𝐼 + 1) = 𝐿) → ((♯‘𝑊) − 1) = 𝐼)
135 opeq2 4603 . . . . . . . . . . . . 13 (((♯‘𝑊) − 1) = 𝐼 → ⟨0, ((♯‘𝑊) − 1)⟩ = ⟨0, 𝐼⟩)
136135oveq2d 6893 . . . . . . . . . . . 12 (((♯‘𝑊) − 1) = 𝐼 → (𝑊 substr ⟨0, ((♯‘𝑊) − 1)⟩) = (𝑊 substr ⟨0, 𝐼⟩))
137136adantl 469 . . . . . . . . . . 11 ((𝜑 ∧ ((♯‘𝑊) − 1) = 𝐼) → (𝑊 substr ⟨0, ((♯‘𝑊) − 1)⟩) = (𝑊 substr ⟨0, 𝐼⟩))
138 lsw 13566 . . . . . . . . . . . . . 14 (𝑊 ∈ Word 𝑇 → (lastS‘𝑊) = (𝑊‘((♯‘𝑊) − 1)))
13924, 138syl 17 . . . . . . . . . . . . 13 (𝜑 → (lastS‘𝑊) = (𝑊‘((♯‘𝑊) − 1)))
140 fveq2 6411 . . . . . . . . . . . . 13 (((♯‘𝑊) − 1) = 𝐼 → (𝑊‘((♯‘𝑊) − 1)) = (𝑊𝐼))
141139, 140sylan9eq 2867 . . . . . . . . . . . 12 ((𝜑 ∧ ((♯‘𝑊) − 1) = 𝐼) → (lastS‘𝑊) = (𝑊𝐼))
142141s1eqd 13599 . . . . . . . . . . 11 ((𝜑 ∧ ((♯‘𝑊) − 1) = 𝐼) → ⟨“(lastS‘𝑊)”⟩ = ⟨“(𝑊𝐼)”⟩)
143137, 142oveq12d 6895 . . . . . . . . . 10 ((𝜑 ∧ ((♯‘𝑊) − 1) = 𝐼) → ((𝑊 substr ⟨0, ((♯‘𝑊) − 1)⟩) ++ ⟨“(lastS‘𝑊)”⟩) = ((𝑊 substr ⟨0, 𝐼⟩) ++ ⟨“(𝑊𝐼)”⟩))
144134, 143syldan 581 . . . . . . . . 9 ((𝜑 ∧ (𝐼 + 1) = 𝐿) → ((𝑊 substr ⟨0, ((♯‘𝑊) − 1)⟩) ++ ⟨“(lastS‘𝑊)”⟩) = ((𝑊 substr ⟨0, 𝐼⟩) ++ ⟨“(𝑊𝐼)”⟩))
145124, 144eqtrd 2847 . . . . . . . 8 ((𝜑 ∧ (𝐼 + 1) = 𝐿) → 𝑊 = ((𝑊 substr ⟨0, 𝐼⟩) ++ ⟨“(𝑊𝐼)”⟩))
146145oveq2d 6893 . . . . . . 7 ((𝜑 ∧ (𝐼 + 1) = 𝐿) → (𝐺 Σg 𝑊) = (𝐺 Σg ((𝑊 substr ⟨0, 𝐼⟩) ++ ⟨“(𝑊𝐼)”⟩)))
14740s1cld 13601 . . . . . . . . 9 (𝜑 → ⟨“(𝑊𝐼)”⟩ ∈ Word (Base‘𝐺))
148 eqid 2813 . . . . . . . . . 10 (+g𝐺) = (+g𝐺)
14920, 148gsumccat 17586 . . . . . . . . 9 ((𝐺 ∈ Mnd ∧ (𝑊 substr ⟨0, 𝐼⟩) ∈ Word (Base‘𝐺) ∧ ⟨“(𝑊𝐼)”⟩ ∈ Word (Base‘𝐺)) → (𝐺 Σg ((𝑊 substr ⟨0, 𝐼⟩) ++ ⟨“(𝑊𝐼)”⟩)) = ((𝐺 Σg (𝑊 substr ⟨0, 𝐼⟩))(+g𝐺)(𝐺 Σg ⟨“(𝑊𝐼)”⟩)))
15018, 27, 147, 149syl3anc 1483 . . . . . . . 8 (𝜑 → (𝐺 Σg ((𝑊 substr ⟨0, 𝐼⟩) ++ ⟨“(𝑊𝐼)”⟩)) = ((𝐺 Σg (𝑊 substr ⟨0, 𝐼⟩))(+g𝐺)(𝐺 Σg ⟨“(𝑊𝐼)”⟩)))
151150adantr 468 . . . . . . 7 ((𝜑 ∧ (𝐼 + 1) = 𝐿) → (𝐺 Σg ((𝑊 substr ⟨0, 𝐼⟩) ++ ⟨“(𝑊𝐼)”⟩)) = ((𝐺 Σg (𝑊 substr ⟨0, 𝐼⟩))(+g𝐺)(𝐺 Σg ⟨“(𝑊𝐼)”⟩)))
15220gsumws1 17584 . . . . . . . . . . 11 ((𝑊𝐼) ∈ (Base‘𝐺) → (𝐺 Σg ⟨“(𝑊𝐼)”⟩) = (𝑊𝐼))
15340, 152syl 17 . . . . . . . . . 10 (𝜑 → (𝐺 Σg ⟨“(𝑊𝐼)”⟩) = (𝑊𝐼))
154153oveq2d 6893 . . . . . . . . 9 (𝜑 → ((𝐺 Σg (𝑊 substr ⟨0, 𝐼⟩))(+g𝐺)(𝐺 Σg ⟨“(𝑊𝐼)”⟩)) = ((𝐺 Σg (𝑊 substr ⟨0, 𝐼⟩))(+g𝐺)(𝑊𝐼)))
15515, 20, 148symgov 18014 . . . . . . . . . 10 (((𝐺 Σg (𝑊 substr ⟨0, 𝐼⟩)) ∈ (Base‘𝐺) ∧ (𝑊𝐼) ∈ (Base‘𝐺)) → ((𝐺 Σg (𝑊 substr ⟨0, 𝐼⟩))(+g𝐺)(𝑊𝐼)) = ((𝐺 Σg (𝑊 substr ⟨0, 𝐼⟩)) ∘ (𝑊𝐼)))
15629, 40, 155syl2anc 575 . . . . . . . . 9 (𝜑 → ((𝐺 Σg (𝑊 substr ⟨0, 𝐼⟩))(+g𝐺)(𝑊𝐼)) = ((𝐺 Σg (𝑊 substr ⟨0, 𝐼⟩)) ∘ (𝑊𝐼)))
157154, 156eqtrd 2847 . . . . . . . 8 (𝜑 → ((𝐺 Σg (𝑊 substr ⟨0, 𝐼⟩))(+g𝐺)(𝐺 Σg ⟨“(𝑊𝐼)”⟩)) = ((𝐺 Σg (𝑊 substr ⟨0, 𝐼⟩)) ∘ (𝑊𝐼)))
158157adantr 468 . . . . . . 7 ((𝜑 ∧ (𝐼 + 1) = 𝐿) → ((𝐺 Σg (𝑊 substr ⟨0, 𝐼⟩))(+g𝐺)(𝐺 Σg ⟨“(𝑊𝐼)”⟩)) = ((𝐺 Σg (𝑊 substr ⟨0, 𝐼⟩)) ∘ (𝑊𝐼)))
159146, 151, 1583eqtrd 2851 . . . . . 6 ((𝜑 ∧ (𝐼 + 1) = 𝐿) → (𝐺 Σg 𝑊) = ((𝐺 Σg (𝑊 substr ⟨0, 𝐼⟩)) ∘ (𝑊𝐼)))
160159difeq1d 3933 . . . . 5 ((𝜑 ∧ (𝐼 + 1) = 𝐿) → ((𝐺 Σg 𝑊) ∖ I ) = (((𝐺 Σg (𝑊 substr ⟨0, 𝐼⟩)) ∘ (𝑊𝐼)) ∖ I ))
161160dmeqd 5534 . . . 4 ((𝜑 ∧ (𝐼 + 1) = 𝐿) → dom ((𝐺 Σg 𝑊) ∖ I ) = dom (((𝐺 Σg (𝑊 substr ⟨0, 𝐼⟩)) ∘ (𝑊𝐼)) ∖ I ))
162111, 161eleqtrrd 2895 . . 3 ((𝜑 ∧ (𝐼 + 1) = 𝐿) → 𝐴 ∈ dom ((𝐺 Σg 𝑊) ∖ I ))
16313, 162mtand 841 . 2 (𝜑 → ¬ (𝐼 + 1) = 𝐿)
164 fzostep1 12811 . . . 4 (𝐼 ∈ (0..^𝐿) → ((𝐼 + 1) ∈ (0..^𝐿) ∨ (𝐼 + 1) = 𝐿))
16535, 164syl 17 . . 3 (𝜑 → ((𝐼 + 1) ∈ (0..^𝐿) ∨ (𝐼 + 1) = 𝐿))
166165ord 882 . 2 (𝜑 → (¬ (𝐼 + 1) ∈ (0..^𝐿) → (𝐼 + 1) = 𝐿))
167163, 166mt3d 142 1 (𝜑 → (𝐼 + 1) ∈ (0..^𝐿))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 197  wa 384  wo 865  wxo 1618   = wceq 1637  wcel 2157  wne 2985  wral 3103  {crab 3107  Vcvv 3398  cdif 3773  cin 3775  wss 3776  c0 4123  {csn 4377  cop 4383   class class class wbr 4851  cmpt 4930   I cid 5225  dom cdm 5318  ran crn 5319  cres 5320  ccom 5322  wf 6100  1-1-ontowf1o 6103  cfv 6104  (class class class)co 6877  Fincfn 8195  0cc0 10224  1c1 10225   + caddc 10227   < clt 10362  cmin 10554  cn 11308  0cn0 11562  cz 11646  cuz 11907  ...cfz 12552  ..^cfzo 12692  chash 13340  Word cword 13505  lastSclsw 13506   ++ cconcat 13507  ⟨“cs1 13508   substr csubstr 13509  Basecbs 16071  +gcplusg 16156   Σg cgsu 16309  Mndcmnd 17502  SubMndcsubmnd 17542  Grpcgrp 17630  SubGrpcsubg 17793  SymGrpcsymg 18001  pmTrspcpmtr 18065
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1877  ax-4 1894  ax-5 2001  ax-6 2069  ax-7 2105  ax-8 2159  ax-9 2166  ax-10 2186  ax-11 2202  ax-12 2215  ax-13 2422  ax-ext 2791  ax-rep 4971  ax-sep 4982  ax-nul 4990  ax-pow 5042  ax-pr 5103  ax-un 7182  ax-cnex 10280  ax-resscn 10281  ax-1cn 10282  ax-icn 10283  ax-addcl 10284  ax-addrcl 10285  ax-mulcl 10286  ax-mulrcl 10287  ax-mulcom 10288  ax-addass 10289  ax-mulass 10290  ax-distr 10291  ax-i2m1 10292  ax-1ne0 10293  ax-1rid 10294  ax-rnegex 10295  ax-rrecex 10296  ax-cnre 10297  ax-pre-lttri 10298  ax-pre-lttrn 10299  ax-pre-ltadd 10300  ax-pre-mulgt0 10301
This theorem depends on definitions:  df-bi 198  df-an 385  df-or 866  df-3or 1101  df-3an 1102  df-xor 1619  df-tru 1641  df-ex 1860  df-nf 1864  df-sb 2062  df-mo 2635  df-eu 2638  df-clab 2800  df-cleq 2806  df-clel 2809  df-nfc 2944  df-ne 2986  df-nel 3089  df-ral 3108  df-rex 3109  df-reu 3110  df-rmo 3111  df-rab 3112  df-v 3400  df-sbc 3641  df-csb 3736  df-dif 3779  df-un 3781  df-in 3783  df-ss 3790  df-pss 3792  df-nul 4124  df-if 4287  df-pw 4360  df-sn 4378  df-pr 4380  df-tp 4382  df-op 4384  df-uni 4638  df-int 4677  df-iun 4721  df-br 4852  df-opab 4914  df-mpt 4931  df-tr 4954  df-id 5226  df-eprel 5231  df-po 5239  df-so 5240  df-fr 5277  df-we 5279  df-xp 5324  df-rel 5325  df-cnv 5326  df-co 5327  df-dm 5328  df-rn 5329  df-res 5330  df-ima 5331  df-pred 5900  df-ord 5946  df-on 5947  df-lim 5948  df-suc 5949  df-iota 6067  df-fun 6106  df-fn 6107  df-f 6108  df-f1 6109  df-fo 6110  df-f1o 6111  df-fv 6112  df-riota 6838  df-ov 6880  df-oprab 6881  df-mpt2 6882  df-om 7299  df-1st 7401  df-2nd 7402  df-wrecs 7645  df-recs 7707  df-rdg 7745  df-1o 7799  df-2o 7800  df-oadd 7803  df-er 7982  df-map 8097  df-en 8196  df-dom 8197  df-sdom 8198  df-fin 8199  df-card 9051  df-pnf 10364  df-mnf 10365  df-xr 10366  df-ltxr 10367  df-le 10368  df-sub 10556  df-neg 10557  df-nn 11309  df-2 11367  df-3 11368  df-4 11369  df-5 11370  df-6 11371  df-7 11372  df-8 11373  df-9 11374  df-n0 11563  df-z 11647  df-uz 11908  df-fz 12553  df-fzo 12693  df-seq 13028  df-hash 13341  df-word 13513  df-lsw 13514  df-concat 13515  df-s1 13516  df-substr 13517  df-struct 16073  df-ndx 16074  df-slot 16075  df-base 16077  df-sets 16078  df-ress 16079  df-plusg 16169  df-tset 16175  df-0g 16310  df-gsum 16311  df-mgm 17450  df-sgrp 17492  df-mnd 17503  df-submnd 17544  df-grp 17633  df-minusg 17634  df-subg 17796  df-symg 18002  df-pmtr 18066
This theorem is referenced by:  psgnunilem2  18119
  Copyright terms: Public domain W3C validator