MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  psgnunilem5 Structured version   Visualization version   GIF version

Theorem psgnunilem5 19017
Description: Lemma for psgnuni 19022. It is impossible to shift a transposition off the end because if the active transposition is at the right end, it is the only transposition moving 𝐴 in contradiction to this being a representation of the identity. (Contributed by Stefan O'Rear, 25-Aug-2015.) (Revised by Mario Carneiro, 28-Feb-2016.) (Proof shortened by AV, 12-Oct-2022.)
Hypotheses
Ref Expression
psgnunilem2.g 𝐺 = (SymGrp‘𝐷)
psgnunilem2.t 𝑇 = ran (pmTrsp‘𝐷)
psgnunilem2.d (𝜑𝐷𝑉)
psgnunilem2.w (𝜑𝑊 ∈ Word 𝑇)
psgnunilem2.id (𝜑 → (𝐺 Σg 𝑊) = ( I ↾ 𝐷))
psgnunilem2.l (𝜑 → (♯‘𝑊) = 𝐿)
psgnunilem2.ix (𝜑𝐼 ∈ (0..^𝐿))
psgnunilem2.a (𝜑𝐴 ∈ dom ((𝑊𝐼) ∖ I ))
psgnunilem2.al (𝜑 → ∀𝑘 ∈ (0..^𝐼) ¬ 𝐴 ∈ dom ((𝑊𝑘) ∖ I ))
Assertion
Ref Expression
psgnunilem5 (𝜑 → (𝐼 + 1) ∈ (0..^𝐿))
Distinct variable groups:   𝐴,𝑘   𝑘,𝐺   𝑘,𝐼   𝑘,𝑊
Allowed substitution hints:   𝜑(𝑘)   𝐷(𝑘)   𝑇(𝑘)   𝐿(𝑘)   𝑉(𝑘)

Proof of Theorem psgnunilem5
Dummy variables 𝑗 𝑠 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 noel 4261 . . . 4 ¬ 𝐴 ∈ ∅
2 psgnunilem2.id . . . . . . . 8 (𝜑 → (𝐺 Σg 𝑊) = ( I ↾ 𝐷))
32difeq1d 4052 . . . . . . 7 (𝜑 → ((𝐺 Σg 𝑊) ∖ I ) = (( I ↾ 𝐷) ∖ I ))
43dmeqd 5803 . . . . . 6 (𝜑 → dom ((𝐺 Σg 𝑊) ∖ I ) = dom (( I ↾ 𝐷) ∖ I ))
5 resss 5905 . . . . . . . . 9 ( I ↾ 𝐷) ⊆ I
6 ssdif0 4294 . . . . . . . . 9 (( I ↾ 𝐷) ⊆ I ↔ (( I ↾ 𝐷) ∖ I ) = ∅)
75, 6mpbi 229 . . . . . . . 8 (( I ↾ 𝐷) ∖ I ) = ∅
87dmeqi 5802 . . . . . . 7 dom (( I ↾ 𝐷) ∖ I ) = dom ∅
9 dm0 5818 . . . . . . 7 dom ∅ = ∅
108, 9eqtri 2766 . . . . . 6 dom (( I ↾ 𝐷) ∖ I ) = ∅
114, 10eqtrdi 2795 . . . . 5 (𝜑 → dom ((𝐺 Σg 𝑊) ∖ I ) = ∅)
1211eleq2d 2824 . . . 4 (𝜑 → (𝐴 ∈ dom ((𝐺 Σg 𝑊) ∖ I ) ↔ 𝐴 ∈ ∅))
131, 12mtbiri 326 . . 3 (𝜑 → ¬ 𝐴 ∈ dom ((𝐺 Σg 𝑊) ∖ I ))
14 psgnunilem2.d . . . . . . . . 9 (𝜑𝐷𝑉)
15 psgnunilem2.g . . . . . . . . . 10 𝐺 = (SymGrp‘𝐷)
1615symggrp 18923 . . . . . . . . 9 (𝐷𝑉𝐺 ∈ Grp)
17 grpmnd 18499 . . . . . . . . 9 (𝐺 ∈ Grp → 𝐺 ∈ Mnd)
1814, 16, 173syl 18 . . . . . . . 8 (𝜑𝐺 ∈ Mnd)
19 psgnunilem2.t . . . . . . . . . . . 12 𝑇 = ran (pmTrsp‘𝐷)
20 eqid 2738 . . . . . . . . . . . 12 (Base‘𝐺) = (Base‘𝐺)
2119, 15, 20symgtrf 18992 . . . . . . . . . . 11 𝑇 ⊆ (Base‘𝐺)
22 sswrd 14153 . . . . . . . . . . 11 (𝑇 ⊆ (Base‘𝐺) → Word 𝑇 ⊆ Word (Base‘𝐺))
2321, 22mp1i 13 . . . . . . . . . 10 (𝜑 → Word 𝑇 ⊆ Word (Base‘𝐺))
24 psgnunilem2.w . . . . . . . . . 10 (𝜑𝑊 ∈ Word 𝑇)
2523, 24sseldd 3918 . . . . . . . . 9 (𝜑𝑊 ∈ Word (Base‘𝐺))
26 pfxcl 14318 . . . . . . . . 9 (𝑊 ∈ Word (Base‘𝐺) → (𝑊 prefix 𝐼) ∈ Word (Base‘𝐺))
2725, 26syl 17 . . . . . . . 8 (𝜑 → (𝑊 prefix 𝐼) ∈ Word (Base‘𝐺))
2820gsumwcl 18392 . . . . . . . 8 ((𝐺 ∈ Mnd ∧ (𝑊 prefix 𝐼) ∈ Word (Base‘𝐺)) → (𝐺 Σg (𝑊 prefix 𝐼)) ∈ (Base‘𝐺))
2918, 27, 28syl2anc 583 . . . . . . 7 (𝜑 → (𝐺 Σg (𝑊 prefix 𝐼)) ∈ (Base‘𝐺))
3015, 20symgbasf1o 18897 . . . . . . 7 ((𝐺 Σg (𝑊 prefix 𝐼)) ∈ (Base‘𝐺) → (𝐺 Σg (𝑊 prefix 𝐼)):𝐷1-1-onto𝐷)
3129, 30syl 17 . . . . . 6 (𝜑 → (𝐺 Σg (𝑊 prefix 𝐼)):𝐷1-1-onto𝐷)
3231adantr 480 . . . . 5 ((𝜑 ∧ (𝐼 + 1) = 𝐿) → (𝐺 Σg (𝑊 prefix 𝐼)):𝐷1-1-onto𝐷)
33 wrdf 14150 . . . . . . . . . 10 (𝑊 ∈ Word 𝑇𝑊:(0..^(♯‘𝑊))⟶𝑇)
3424, 33syl 17 . . . . . . . . 9 (𝜑𝑊:(0..^(♯‘𝑊))⟶𝑇)
35 psgnunilem2.ix . . . . . . . . . 10 (𝜑𝐼 ∈ (0..^𝐿))
36 psgnunilem2.l . . . . . . . . . . 11 (𝜑 → (♯‘𝑊) = 𝐿)
3736oveq2d 7271 . . . . . . . . . 10 (𝜑 → (0..^(♯‘𝑊)) = (0..^𝐿))
3835, 37eleqtrrd 2842 . . . . . . . . 9 (𝜑𝐼 ∈ (0..^(♯‘𝑊)))
3934, 38ffvelrnd 6944 . . . . . . . 8 (𝜑 → (𝑊𝐼) ∈ 𝑇)
4021, 39sselid 3915 . . . . . . 7 (𝜑 → (𝑊𝐼) ∈ (Base‘𝐺))
4115, 20symgbasf1o 18897 . . . . . . 7 ((𝑊𝐼) ∈ (Base‘𝐺) → (𝑊𝐼):𝐷1-1-onto𝐷)
4240, 41syl 17 . . . . . 6 (𝜑 → (𝑊𝐼):𝐷1-1-onto𝐷)
4342adantr 480 . . . . 5 ((𝜑 ∧ (𝐼 + 1) = 𝐿) → (𝑊𝐼):𝐷1-1-onto𝐷)
4415, 20symgsssg 18990 . . . . . . . . . . 11 (𝐷𝑉 → {𝑗 ∈ (Base‘𝐺) ∣ dom (𝑗 ∖ I ) ⊆ (V ∖ {𝐴})} ∈ (SubGrp‘𝐺))
45 subgsubm 18692 . . . . . . . . . . 11 ({𝑗 ∈ (Base‘𝐺) ∣ dom (𝑗 ∖ I ) ⊆ (V ∖ {𝐴})} ∈ (SubGrp‘𝐺) → {𝑗 ∈ (Base‘𝐺) ∣ dom (𝑗 ∖ I ) ⊆ (V ∖ {𝐴})} ∈ (SubMnd‘𝐺))
4614, 44, 453syl 18 . . . . . . . . . 10 (𝜑 → {𝑗 ∈ (Base‘𝐺) ∣ dom (𝑗 ∖ I ) ⊆ (V ∖ {𝐴})} ∈ (SubMnd‘𝐺))
47 fzossfz 13334 . . . . . . . . . . . . . . . 16 (0..^𝐿) ⊆ (0...𝐿)
4847, 35sselid 3915 . . . . . . . . . . . . . . 15 (𝜑𝐼 ∈ (0...𝐿))
4936oveq2d 7271 . . . . . . . . . . . . . . 15 (𝜑 → (0...(♯‘𝑊)) = (0...𝐿))
5048, 49eleqtrrd 2842 . . . . . . . . . . . . . 14 (𝜑𝐼 ∈ (0...(♯‘𝑊)))
51 pfxmpt 14319 . . . . . . . . . . . . . 14 ((𝑊 ∈ Word 𝑇𝐼 ∈ (0...(♯‘𝑊))) → (𝑊 prefix 𝐼) = (𝑠 ∈ (0..^𝐼) ↦ (𝑊𝑠)))
5224, 50, 51syl2anc 583 . . . . . . . . . . . . 13 (𝜑 → (𝑊 prefix 𝐼) = (𝑠 ∈ (0..^𝐼) ↦ (𝑊𝑠)))
53 difeq1 4046 . . . . . . . . . . . . . . . . 17 (𝑗 = (𝑊𝑠) → (𝑗 ∖ I ) = ((𝑊𝑠) ∖ I ))
5453dmeqd 5803 . . . . . . . . . . . . . . . 16 (𝑗 = (𝑊𝑠) → dom (𝑗 ∖ I ) = dom ((𝑊𝑠) ∖ I ))
5554sseq1d 3948 . . . . . . . . . . . . . . 15 (𝑗 = (𝑊𝑠) → (dom (𝑗 ∖ I ) ⊆ (V ∖ {𝐴}) ↔ dom ((𝑊𝑠) ∖ I ) ⊆ (V ∖ {𝐴})))
56 disj2 4388 . . . . . . . . . . . . . . . 16 ((dom ((𝑊𝑠) ∖ I ) ∩ {𝐴}) = ∅ ↔ dom ((𝑊𝑠) ∖ I ) ⊆ (V ∖ {𝐴}))
57 disjsn 4644 . . . . . . . . . . . . . . . 16 ((dom ((𝑊𝑠) ∖ I ) ∩ {𝐴}) = ∅ ↔ ¬ 𝐴 ∈ dom ((𝑊𝑠) ∖ I ))
5856, 57bitr3i 276 . . . . . . . . . . . . . . 15 (dom ((𝑊𝑠) ∖ I ) ⊆ (V ∖ {𝐴}) ↔ ¬ 𝐴 ∈ dom ((𝑊𝑠) ∖ I ))
5955, 58bitrdi 286 . . . . . . . . . . . . . 14 (𝑗 = (𝑊𝑠) → (dom (𝑗 ∖ I ) ⊆ (V ∖ {𝐴}) ↔ ¬ 𝐴 ∈ dom ((𝑊𝑠) ∖ I )))
60 elfzuz3 13182 . . . . . . . . . . . . . . . . . . 19 (𝐼 ∈ (0...𝐿) → 𝐿 ∈ (ℤ𝐼))
6148, 60syl 17 . . . . . . . . . . . . . . . . . 18 (𝜑𝐿 ∈ (ℤ𝐼))
6236, 61eqeltrd 2839 . . . . . . . . . . . . . . . . 17 (𝜑 → (♯‘𝑊) ∈ (ℤ𝐼))
63 fzoss2 13343 . . . . . . . . . . . . . . . . 17 ((♯‘𝑊) ∈ (ℤ𝐼) → (0..^𝐼) ⊆ (0..^(♯‘𝑊)))
6462, 63syl 17 . . . . . . . . . . . . . . . 16 (𝜑 → (0..^𝐼) ⊆ (0..^(♯‘𝑊)))
6564sselda 3917 . . . . . . . . . . . . . . 15 ((𝜑𝑠 ∈ (0..^𝐼)) → 𝑠 ∈ (0..^(♯‘𝑊)))
6634ffvelrnda 6943 . . . . . . . . . . . . . . . 16 ((𝜑𝑠 ∈ (0..^(♯‘𝑊))) → (𝑊𝑠) ∈ 𝑇)
6721, 66sselid 3915 . . . . . . . . . . . . . . 15 ((𝜑𝑠 ∈ (0..^(♯‘𝑊))) → (𝑊𝑠) ∈ (Base‘𝐺))
6865, 67syldan 590 . . . . . . . . . . . . . 14 ((𝜑𝑠 ∈ (0..^𝐼)) → (𝑊𝑠) ∈ (Base‘𝐺))
69 psgnunilem2.al . . . . . . . . . . . . . . . 16 (𝜑 → ∀𝑘 ∈ (0..^𝐼) ¬ 𝐴 ∈ dom ((𝑊𝑘) ∖ I ))
70 fveq2 6756 . . . . . . . . . . . . . . . . . . . . 21 (𝑘 = 𝑠 → (𝑊𝑘) = (𝑊𝑠))
7170difeq1d 4052 . . . . . . . . . . . . . . . . . . . 20 (𝑘 = 𝑠 → ((𝑊𝑘) ∖ I ) = ((𝑊𝑠) ∖ I ))
7271dmeqd 5803 . . . . . . . . . . . . . . . . . . 19 (𝑘 = 𝑠 → dom ((𝑊𝑘) ∖ I ) = dom ((𝑊𝑠) ∖ I ))
7372eleq2d 2824 . . . . . . . . . . . . . . . . . 18 (𝑘 = 𝑠 → (𝐴 ∈ dom ((𝑊𝑘) ∖ I ) ↔ 𝐴 ∈ dom ((𝑊𝑠) ∖ I )))
7473notbid 317 . . . . . . . . . . . . . . . . 17 (𝑘 = 𝑠 → (¬ 𝐴 ∈ dom ((𝑊𝑘) ∖ I ) ↔ ¬ 𝐴 ∈ dom ((𝑊𝑠) ∖ I )))
7574cbvralvw 3372 . . . . . . . . . . . . . . . 16 (∀𝑘 ∈ (0..^𝐼) ¬ 𝐴 ∈ dom ((𝑊𝑘) ∖ I ) ↔ ∀𝑠 ∈ (0..^𝐼) ¬ 𝐴 ∈ dom ((𝑊𝑠) ∖ I ))
7669, 75sylib 217 . . . . . . . . . . . . . . 15 (𝜑 → ∀𝑠 ∈ (0..^𝐼) ¬ 𝐴 ∈ dom ((𝑊𝑠) ∖ I ))
7776r19.21bi 3132 . . . . . . . . . . . . . 14 ((𝜑𝑠 ∈ (0..^𝐼)) → ¬ 𝐴 ∈ dom ((𝑊𝑠) ∖ I ))
7859, 68, 77elrabd 3619 . . . . . . . . . . . . 13 ((𝜑𝑠 ∈ (0..^𝐼)) → (𝑊𝑠) ∈ {𝑗 ∈ (Base‘𝐺) ∣ dom (𝑗 ∖ I ) ⊆ (V ∖ {𝐴})})
7952, 78fmpt3d 6972 . . . . . . . . . . . 12 (𝜑 → (𝑊 prefix 𝐼):(0..^𝐼)⟶{𝑗 ∈ (Base‘𝐺) ∣ dom (𝑗 ∖ I ) ⊆ (V ∖ {𝐴})})
8079adantr 480 . . . . . . . . . . 11 ((𝜑 ∧ (𝐼 + 1) = 𝐿) → (𝑊 prefix 𝐼):(0..^𝐼)⟶{𝑗 ∈ (Base‘𝐺) ∣ dom (𝑗 ∖ I ) ⊆ (V ∖ {𝐴})})
81 iswrdi 14149 . . . . . . . . . . 11 ((𝑊 prefix 𝐼):(0..^𝐼)⟶{𝑗 ∈ (Base‘𝐺) ∣ dom (𝑗 ∖ I ) ⊆ (V ∖ {𝐴})} → (𝑊 prefix 𝐼) ∈ Word {𝑗 ∈ (Base‘𝐺) ∣ dom (𝑗 ∖ I ) ⊆ (V ∖ {𝐴})})
8280, 81syl 17 . . . . . . . . . 10 ((𝜑 ∧ (𝐼 + 1) = 𝐿) → (𝑊 prefix 𝐼) ∈ Word {𝑗 ∈ (Base‘𝐺) ∣ dom (𝑗 ∖ I ) ⊆ (V ∖ {𝐴})})
83 gsumwsubmcl 18390 . . . . . . . . . 10 (({𝑗 ∈ (Base‘𝐺) ∣ dom (𝑗 ∖ I ) ⊆ (V ∖ {𝐴})} ∈ (SubMnd‘𝐺) ∧ (𝑊 prefix 𝐼) ∈ Word {𝑗 ∈ (Base‘𝐺) ∣ dom (𝑗 ∖ I ) ⊆ (V ∖ {𝐴})}) → (𝐺 Σg (𝑊 prefix 𝐼)) ∈ {𝑗 ∈ (Base‘𝐺) ∣ dom (𝑗 ∖ I ) ⊆ (V ∖ {𝐴})})
8446, 82, 83syl2an2r 681 . . . . . . . . 9 ((𝜑 ∧ (𝐼 + 1) = 𝐿) → (𝐺 Σg (𝑊 prefix 𝐼)) ∈ {𝑗 ∈ (Base‘𝐺) ∣ dom (𝑗 ∖ I ) ⊆ (V ∖ {𝐴})})
85 difeq1 4046 . . . . . . . . . . . . . 14 (𝑗 = (𝐺 Σg (𝑊 prefix 𝐼)) → (𝑗 ∖ I ) = ((𝐺 Σg (𝑊 prefix 𝐼)) ∖ I ))
8685dmeqd 5803 . . . . . . . . . . . . 13 (𝑗 = (𝐺 Σg (𝑊 prefix 𝐼)) → dom (𝑗 ∖ I ) = dom ((𝐺 Σg (𝑊 prefix 𝐼)) ∖ I ))
8786sseq1d 3948 . . . . . . . . . . . 12 (𝑗 = (𝐺 Σg (𝑊 prefix 𝐼)) → (dom (𝑗 ∖ I ) ⊆ (V ∖ {𝐴}) ↔ dom ((𝐺 Σg (𝑊 prefix 𝐼)) ∖ I ) ⊆ (V ∖ {𝐴})))
8887elrab 3617 . . . . . . . . . . 11 ((𝐺 Σg (𝑊 prefix 𝐼)) ∈ {𝑗 ∈ (Base‘𝐺) ∣ dom (𝑗 ∖ I ) ⊆ (V ∖ {𝐴})} ↔ ((𝐺 Σg (𝑊 prefix 𝐼)) ∈ (Base‘𝐺) ∧ dom ((𝐺 Σg (𝑊 prefix 𝐼)) ∖ I ) ⊆ (V ∖ {𝐴})))
8988simprbi 496 . . . . . . . . . 10 ((𝐺 Σg (𝑊 prefix 𝐼)) ∈ {𝑗 ∈ (Base‘𝐺) ∣ dom (𝑗 ∖ I ) ⊆ (V ∖ {𝐴})} → dom ((𝐺 Σg (𝑊 prefix 𝐼)) ∖ I ) ⊆ (V ∖ {𝐴}))
90 disj2 4388 . . . . . . . . . . 11 ((dom ((𝐺 Σg (𝑊 prefix 𝐼)) ∖ I ) ∩ {𝐴}) = ∅ ↔ dom ((𝐺 Σg (𝑊 prefix 𝐼)) ∖ I ) ⊆ (V ∖ {𝐴}))
91 disjsn 4644 . . . . . . . . . . 11 ((dom ((𝐺 Σg (𝑊 prefix 𝐼)) ∖ I ) ∩ {𝐴}) = ∅ ↔ ¬ 𝐴 ∈ dom ((𝐺 Σg (𝑊 prefix 𝐼)) ∖ I ))
9290, 91bitr3i 276 . . . . . . . . . 10 (dom ((𝐺 Σg (𝑊 prefix 𝐼)) ∖ I ) ⊆ (V ∖ {𝐴}) ↔ ¬ 𝐴 ∈ dom ((𝐺 Σg (𝑊 prefix 𝐼)) ∖ I ))
9389, 92sylib 217 . . . . . . . . 9 ((𝐺 Σg (𝑊 prefix 𝐼)) ∈ {𝑗 ∈ (Base‘𝐺) ∣ dom (𝑗 ∖ I ) ⊆ (V ∖ {𝐴})} → ¬ 𝐴 ∈ dom ((𝐺 Σg (𝑊 prefix 𝐼)) ∖ I ))
9484, 93syl 17 . . . . . . . 8 ((𝜑 ∧ (𝐼 + 1) = 𝐿) → ¬ 𝐴 ∈ dom ((𝐺 Σg (𝑊 prefix 𝐼)) ∖ I ))
95 psgnunilem2.a . . . . . . . . 9 (𝜑𝐴 ∈ dom ((𝑊𝐼) ∖ I ))
9695adantr 480 . . . . . . . 8 ((𝜑 ∧ (𝐼 + 1) = 𝐿) → 𝐴 ∈ dom ((𝑊𝐼) ∖ I ))
9794, 96jca 511 . . . . . . 7 ((𝜑 ∧ (𝐼 + 1) = 𝐿) → (¬ 𝐴 ∈ dom ((𝐺 Σg (𝑊 prefix 𝐼)) ∖ I ) ∧ 𝐴 ∈ dom ((𝑊𝐼) ∖ I )))
9897olcd 870 . . . . . 6 ((𝜑 ∧ (𝐼 + 1) = 𝐿) → ((𝐴 ∈ dom ((𝐺 Σg (𝑊 prefix 𝐼)) ∖ I ) ∧ ¬ 𝐴 ∈ dom ((𝑊𝐼) ∖ I )) ∨ (¬ 𝐴 ∈ dom ((𝐺 Σg (𝑊 prefix 𝐼)) ∖ I ) ∧ 𝐴 ∈ dom ((𝑊𝐼) ∖ I ))))
99 excxor 1509 . . . . . 6 ((𝐴 ∈ dom ((𝐺 Σg (𝑊 prefix 𝐼)) ∖ I ) ⊻ 𝐴 ∈ dom ((𝑊𝐼) ∖ I )) ↔ ((𝐴 ∈ dom ((𝐺 Σg (𝑊 prefix 𝐼)) ∖ I ) ∧ ¬ 𝐴 ∈ dom ((𝑊𝐼) ∖ I )) ∨ (¬ 𝐴 ∈ dom ((𝐺 Σg (𝑊 prefix 𝐼)) ∖ I ) ∧ 𝐴 ∈ dom ((𝑊𝐼) ∖ I ))))
10098, 99sylibr 233 . . . . 5 ((𝜑 ∧ (𝐼 + 1) = 𝐿) → (𝐴 ∈ dom ((𝐺 Σg (𝑊 prefix 𝐼)) ∖ I ) ⊻ 𝐴 ∈ dom ((𝑊𝐼) ∖ I )))
101 f1omvdco3 18972 . . . . 5 (((𝐺 Σg (𝑊 prefix 𝐼)):𝐷1-1-onto𝐷 ∧ (𝑊𝐼):𝐷1-1-onto𝐷 ∧ (𝐴 ∈ dom ((𝐺 Σg (𝑊 prefix 𝐼)) ∖ I ) ⊻ 𝐴 ∈ dom ((𝑊𝐼) ∖ I ))) → 𝐴 ∈ dom (((𝐺 Σg (𝑊 prefix 𝐼)) ∘ (𝑊𝐼)) ∖ I ))
10232, 43, 100, 101syl3anc 1369 . . . 4 ((𝜑 ∧ (𝐼 + 1) = 𝐿) → 𝐴 ∈ dom (((𝐺 Σg (𝑊 prefix 𝐼)) ∘ (𝑊𝐼)) ∖ I ))
103 elfzo0 13356 . . . . . . . . . . . . . . 15 (𝐼 ∈ (0..^𝐿) ↔ (𝐼 ∈ ℕ0𝐿 ∈ ℕ ∧ 𝐼 < 𝐿))
104103simp2bi 1144 . . . . . . . . . . . . . 14 (𝐼 ∈ (0..^𝐿) → 𝐿 ∈ ℕ)
10535, 104syl 17 . . . . . . . . . . . . 13 (𝜑𝐿 ∈ ℕ)
10636, 105eqeltrd 2839 . . . . . . . . . . . 12 (𝜑 → (♯‘𝑊) ∈ ℕ)
107 wrdfin 14163 . . . . . . . . . . . . 13 (𝑊 ∈ Word 𝑇𝑊 ∈ Fin)
108 hashnncl 14009 . . . . . . . . . . . . 13 (𝑊 ∈ Fin → ((♯‘𝑊) ∈ ℕ ↔ 𝑊 ≠ ∅))
10924, 107, 1083syl 18 . . . . . . . . . . . 12 (𝜑 → ((♯‘𝑊) ∈ ℕ ↔ 𝑊 ≠ ∅))
110106, 109mpbid 231 . . . . . . . . . . 11 (𝜑𝑊 ≠ ∅)
111110adantr 480 . . . . . . . . . 10 ((𝜑 ∧ (𝐼 + 1) = 𝐿) → 𝑊 ≠ ∅)
112 pfxlswccat 14354 . . . . . . . . . . 11 ((𝑊 ∈ Word 𝑇𝑊 ≠ ∅) → ((𝑊 prefix ((♯‘𝑊) − 1)) ++ ⟨“(lastS‘𝑊)”⟩) = 𝑊)
113112eqcomd 2744 . . . . . . . . . 10 ((𝑊 ∈ Word 𝑇𝑊 ≠ ∅) → 𝑊 = ((𝑊 prefix ((♯‘𝑊) − 1)) ++ ⟨“(lastS‘𝑊)”⟩))
11424, 111, 113syl2an2r 681 . . . . . . . . 9 ((𝜑 ∧ (𝐼 + 1) = 𝐿) → 𝑊 = ((𝑊 prefix ((♯‘𝑊) − 1)) ++ ⟨“(lastS‘𝑊)”⟩))
11536oveq1d 7270 . . . . . . . . . . . 12 (𝜑 → ((♯‘𝑊) − 1) = (𝐿 − 1))
116115adantr 480 . . . . . . . . . . 11 ((𝜑 ∧ (𝐼 + 1) = 𝐿) → ((♯‘𝑊) − 1) = (𝐿 − 1))
117105nncnd 11919 . . . . . . . . . . . . 13 (𝜑𝐿 ∈ ℂ)
118 1cnd 10901 . . . . . . . . . . . . 13 (𝜑 → 1 ∈ ℂ)
119 elfzoelz 13316 . . . . . . . . . . . . . . 15 (𝐼 ∈ (0..^𝐿) → 𝐼 ∈ ℤ)
12035, 119syl 17 . . . . . . . . . . . . . 14 (𝜑𝐼 ∈ ℤ)
121120zcnd 12356 . . . . . . . . . . . . 13 (𝜑𝐼 ∈ ℂ)
122117, 118, 121subadd2d 11281 . . . . . . . . . . . 12 (𝜑 → ((𝐿 − 1) = 𝐼 ↔ (𝐼 + 1) = 𝐿))
123122biimpar 477 . . . . . . . . . . 11 ((𝜑 ∧ (𝐼 + 1) = 𝐿) → (𝐿 − 1) = 𝐼)
124116, 123eqtrd 2778 . . . . . . . . . 10 ((𝜑 ∧ (𝐼 + 1) = 𝐿) → ((♯‘𝑊) − 1) = 𝐼)
125 oveq2 7263 . . . . . . . . . . . 12 (((♯‘𝑊) − 1) = 𝐼 → (𝑊 prefix ((♯‘𝑊) − 1)) = (𝑊 prefix 𝐼))
126125adantl 481 . . . . . . . . . . 11 ((𝜑 ∧ ((♯‘𝑊) − 1) = 𝐼) → (𝑊 prefix ((♯‘𝑊) − 1)) = (𝑊 prefix 𝐼))
127 lsw 14195 . . . . . . . . . . . . . 14 (𝑊 ∈ Word 𝑇 → (lastS‘𝑊) = (𝑊‘((♯‘𝑊) − 1)))
12824, 127syl 17 . . . . . . . . . . . . 13 (𝜑 → (lastS‘𝑊) = (𝑊‘((♯‘𝑊) − 1)))
129 fveq2 6756 . . . . . . . . . . . . 13 (((♯‘𝑊) − 1) = 𝐼 → (𝑊‘((♯‘𝑊) − 1)) = (𝑊𝐼))
130128, 129sylan9eq 2799 . . . . . . . . . . . 12 ((𝜑 ∧ ((♯‘𝑊) − 1) = 𝐼) → (lastS‘𝑊) = (𝑊𝐼))
131130s1eqd 14234 . . . . . . . . . . 11 ((𝜑 ∧ ((♯‘𝑊) − 1) = 𝐼) → ⟨“(lastS‘𝑊)”⟩ = ⟨“(𝑊𝐼)”⟩)
132126, 131oveq12d 7273 . . . . . . . . . 10 ((𝜑 ∧ ((♯‘𝑊) − 1) = 𝐼) → ((𝑊 prefix ((♯‘𝑊) − 1)) ++ ⟨“(lastS‘𝑊)”⟩) = ((𝑊 prefix 𝐼) ++ ⟨“(𝑊𝐼)”⟩))
133124, 132syldan 590 . . . . . . . . 9 ((𝜑 ∧ (𝐼 + 1) = 𝐿) → ((𝑊 prefix ((♯‘𝑊) − 1)) ++ ⟨“(lastS‘𝑊)”⟩) = ((𝑊 prefix 𝐼) ++ ⟨“(𝑊𝐼)”⟩))
134114, 133eqtrd 2778 . . . . . . . 8 ((𝜑 ∧ (𝐼 + 1) = 𝐿) → 𝑊 = ((𝑊 prefix 𝐼) ++ ⟨“(𝑊𝐼)”⟩))
135134oveq2d 7271 . . . . . . 7 ((𝜑 ∧ (𝐼 + 1) = 𝐿) → (𝐺 Σg 𝑊) = (𝐺 Σg ((𝑊 prefix 𝐼) ++ ⟨“(𝑊𝐼)”⟩)))
13640s1cld 14236 . . . . . . . . 9 (𝜑 → ⟨“(𝑊𝐼)”⟩ ∈ Word (Base‘𝐺))
137 eqid 2738 . . . . . . . . . 10 (+g𝐺) = (+g𝐺)
13820, 137gsumccat 18395 . . . . . . . . 9 ((𝐺 ∈ Mnd ∧ (𝑊 prefix 𝐼) ∈ Word (Base‘𝐺) ∧ ⟨“(𝑊𝐼)”⟩ ∈ Word (Base‘𝐺)) → (𝐺 Σg ((𝑊 prefix 𝐼) ++ ⟨“(𝑊𝐼)”⟩)) = ((𝐺 Σg (𝑊 prefix 𝐼))(+g𝐺)(𝐺 Σg ⟨“(𝑊𝐼)”⟩)))
13918, 27, 136, 138syl3anc 1369 . . . . . . . 8 (𝜑 → (𝐺 Σg ((𝑊 prefix 𝐼) ++ ⟨“(𝑊𝐼)”⟩)) = ((𝐺 Σg (𝑊 prefix 𝐼))(+g𝐺)(𝐺 Σg ⟨“(𝑊𝐼)”⟩)))
140139adantr 480 . . . . . . 7 ((𝜑 ∧ (𝐼 + 1) = 𝐿) → (𝐺 Σg ((𝑊 prefix 𝐼) ++ ⟨“(𝑊𝐼)”⟩)) = ((𝐺 Σg (𝑊 prefix 𝐼))(+g𝐺)(𝐺 Σg ⟨“(𝑊𝐼)”⟩)))
14120gsumws1 18391 . . . . . . . . . . 11 ((𝑊𝐼) ∈ (Base‘𝐺) → (𝐺 Σg ⟨“(𝑊𝐼)”⟩) = (𝑊𝐼))
14240, 141syl 17 . . . . . . . . . 10 (𝜑 → (𝐺 Σg ⟨“(𝑊𝐼)”⟩) = (𝑊𝐼))
143142oveq2d 7271 . . . . . . . . 9 (𝜑 → ((𝐺 Σg (𝑊 prefix 𝐼))(+g𝐺)(𝐺 Σg ⟨“(𝑊𝐼)”⟩)) = ((𝐺 Σg (𝑊 prefix 𝐼))(+g𝐺)(𝑊𝐼)))
14415, 20, 137symgov 18906 . . . . . . . . . 10 (((𝐺 Σg (𝑊 prefix 𝐼)) ∈ (Base‘𝐺) ∧ (𝑊𝐼) ∈ (Base‘𝐺)) → ((𝐺 Σg (𝑊 prefix 𝐼))(+g𝐺)(𝑊𝐼)) = ((𝐺 Σg (𝑊 prefix 𝐼)) ∘ (𝑊𝐼)))
14529, 40, 144syl2anc 583 . . . . . . . . 9 (𝜑 → ((𝐺 Σg (𝑊 prefix 𝐼))(+g𝐺)(𝑊𝐼)) = ((𝐺 Σg (𝑊 prefix 𝐼)) ∘ (𝑊𝐼)))
146143, 145eqtrd 2778 . . . . . . . 8 (𝜑 → ((𝐺 Σg (𝑊 prefix 𝐼))(+g𝐺)(𝐺 Σg ⟨“(𝑊𝐼)”⟩)) = ((𝐺 Σg (𝑊 prefix 𝐼)) ∘ (𝑊𝐼)))
147146adantr 480 . . . . . . 7 ((𝜑 ∧ (𝐼 + 1) = 𝐿) → ((𝐺 Σg (𝑊 prefix 𝐼))(+g𝐺)(𝐺 Σg ⟨“(𝑊𝐼)”⟩)) = ((𝐺 Σg (𝑊 prefix 𝐼)) ∘ (𝑊𝐼)))
148135, 140, 1473eqtrd 2782 . . . . . 6 ((𝜑 ∧ (𝐼 + 1) = 𝐿) → (𝐺 Σg 𝑊) = ((𝐺 Σg (𝑊 prefix 𝐼)) ∘ (𝑊𝐼)))
149148difeq1d 4052 . . . . 5 ((𝜑 ∧ (𝐼 + 1) = 𝐿) → ((𝐺 Σg 𝑊) ∖ I ) = (((𝐺 Σg (𝑊 prefix 𝐼)) ∘ (𝑊𝐼)) ∖ I ))
150149dmeqd 5803 . . . 4 ((𝜑 ∧ (𝐼 + 1) = 𝐿) → dom ((𝐺 Σg 𝑊) ∖ I ) = dom (((𝐺 Σg (𝑊 prefix 𝐼)) ∘ (𝑊𝐼)) ∖ I ))
151102, 150eleqtrrd 2842 . . 3 ((𝜑 ∧ (𝐼 + 1) = 𝐿) → 𝐴 ∈ dom ((𝐺 Σg 𝑊) ∖ I ))
15213, 151mtand 812 . 2 (𝜑 → ¬ (𝐼 + 1) = 𝐿)
153 fzostep1 13431 . . . 4 (𝐼 ∈ (0..^𝐿) → ((𝐼 + 1) ∈ (0..^𝐿) ∨ (𝐼 + 1) = 𝐿))
15435, 153syl 17 . . 3 (𝜑 → ((𝐼 + 1) ∈ (0..^𝐿) ∨ (𝐼 + 1) = 𝐿))
155154ord 860 . 2 (𝜑 → (¬ (𝐼 + 1) ∈ (0..^𝐿) → (𝐼 + 1) = 𝐿))
156152, 155mt3d 148 1 (𝜑 → (𝐼 + 1) ∈ (0..^𝐿))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 395  wo 843  wxo 1503   = wceq 1539  wcel 2108  wne 2942  wral 3063  {crab 3067  Vcvv 3422  cdif 3880  cin 3882  wss 3883  c0 4253  {csn 4558   class class class wbr 5070  cmpt 5153   I cid 5479  dom cdm 5580  ran crn 5581  cres 5582  ccom 5584  wf 6414  1-1-ontowf1o 6417  cfv 6418  (class class class)co 7255  Fincfn 8691  0cc0 10802  1c1 10803   + caddc 10805   < clt 10940  cmin 11135  cn 11903  0cn0 12163  cz 12249  cuz 12511  ...cfz 13168  ..^cfzo 13311  chash 13972  Word cword 14145  lastSclsw 14193   ++ cconcat 14201  ⟨“cs1 14228   prefix cpfx 14311  Basecbs 16840  +gcplusg 16888   Σg cgsu 17068  Mndcmnd 18300  SubMndcsubmnd 18344  Grpcgrp 18492  SubGrpcsubg 18664  SymGrpcsymg 18889  pmTrspcpmtr 18964
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-rep 5205  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566  ax-cnex 10858  ax-resscn 10859  ax-1cn 10860  ax-icn 10861  ax-addcl 10862  ax-addrcl 10863  ax-mulcl 10864  ax-mulrcl 10865  ax-mulcom 10866  ax-addass 10867  ax-mulass 10868  ax-distr 10869  ax-i2m1 10870  ax-1ne0 10871  ax-1rid 10872  ax-rnegex 10873  ax-rrecex 10874  ax-cnre 10875  ax-pre-lttri 10876  ax-pre-lttrn 10877  ax-pre-ltadd 10878  ax-pre-mulgt0 10879
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-xor 1504  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-nel 3049  df-ral 3068  df-rex 3069  df-reu 3070  df-rmo 3071  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-pss 3902  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-tp 4563  df-op 4565  df-uni 4837  df-int 4877  df-iun 4923  df-br 5071  df-opab 5133  df-mpt 5154  df-tr 5188  df-id 5480  df-eprel 5486  df-po 5494  df-so 5495  df-fr 5535  df-we 5537  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-pred 6191  df-ord 6254  df-on 6255  df-lim 6256  df-suc 6257  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-riota 7212  df-ov 7258  df-oprab 7259  df-mpo 7260  df-om 7688  df-1st 7804  df-2nd 7805  df-frecs 8068  df-wrecs 8099  df-recs 8173  df-rdg 8212  df-1o 8267  df-2o 8268  df-er 8456  df-map 8575  df-en 8692  df-dom 8693  df-sdom 8694  df-fin 8695  df-card 9628  df-pnf 10942  df-mnf 10943  df-xr 10944  df-ltxr 10945  df-le 10946  df-sub 11137  df-neg 11138  df-nn 11904  df-2 11966  df-3 11967  df-4 11968  df-5 11969  df-6 11970  df-7 11971  df-8 11972  df-9 11973  df-n0 12164  df-xnn0 12236  df-z 12250  df-uz 12512  df-fz 13169  df-fzo 13312  df-seq 13650  df-hash 13973  df-word 14146  df-lsw 14194  df-concat 14202  df-s1 14229  df-substr 14282  df-pfx 14312  df-struct 16776  df-sets 16793  df-slot 16811  df-ndx 16823  df-base 16841  df-ress 16868  df-plusg 16901  df-tset 16907  df-0g 17069  df-gsum 17070  df-mgm 18241  df-sgrp 18290  df-mnd 18301  df-submnd 18346  df-efmnd 18423  df-grp 18495  df-minusg 18496  df-subg 18667  df-symg 18890  df-pmtr 18965
This theorem is referenced by:  psgnunilem2  19018
  Copyright terms: Public domain W3C validator