MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  f1omvdco2 Structured version   Visualization version   GIF version

Theorem f1omvdco2 18179
Description: If exactly one of two permutations is limited to a set of points, then the composition will not be. (Contributed by Stefan O'Rear, 23-Aug-2015.)
Assertion
Ref Expression
f1omvdco2 ((𝐹:𝐴1-1-onto𝐴𝐺:𝐴1-1-onto𝐴 ∧ (dom (𝐹 ∖ I ) ⊆ 𝑋 ⊻ dom (𝐺 ∖ I ) ⊆ 𝑋)) → ¬ dom ((𝐹𝐺) ∖ I ) ⊆ 𝑋)

Proof of Theorem f1omvdco2
StepHypRef Expression
1 excxor 1639 . . 3 ((dom (𝐹 ∖ I ) ⊆ 𝑋 ⊻ dom (𝐺 ∖ I ) ⊆ 𝑋) ↔ ((dom (𝐹 ∖ I ) ⊆ 𝑋 ∧ ¬ dom (𝐺 ∖ I ) ⊆ 𝑋) ∨ (¬ dom (𝐹 ∖ I ) ⊆ 𝑋 ∧ dom (𝐺 ∖ I ) ⊆ 𝑋)))
2 coass 5874 . . . . . . . . . . . 12 ((𝐹𝐹) ∘ 𝐺) = (𝐹 ∘ (𝐹𝐺))
3 f1ococnv1 6385 . . . . . . . . . . . . . 14 (𝐹:𝐴1-1-onto𝐴 → (𝐹𝐹) = ( I ↾ 𝐴))
43coeq1d 5488 . . . . . . . . . . . . 13 (𝐹:𝐴1-1-onto𝐴 → ((𝐹𝐹) ∘ 𝐺) = (( I ↾ 𝐴) ∘ 𝐺))
5 f1of 6357 . . . . . . . . . . . . . 14 (𝐺:𝐴1-1-onto𝐴𝐺:𝐴𝐴)
6 fcoi2 6295 . . . . . . . . . . . . . 14 (𝐺:𝐴𝐴 → (( I ↾ 𝐴) ∘ 𝐺) = 𝐺)
75, 6syl 17 . . . . . . . . . . . . 13 (𝐺:𝐴1-1-onto𝐴 → (( I ↾ 𝐴) ∘ 𝐺) = 𝐺)
84, 7sylan9eq 2854 . . . . . . . . . . . 12 ((𝐹:𝐴1-1-onto𝐴𝐺:𝐴1-1-onto𝐴) → ((𝐹𝐹) ∘ 𝐺) = 𝐺)
92, 8syl5eqr 2848 . . . . . . . . . . 11 ((𝐹:𝐴1-1-onto𝐴𝐺:𝐴1-1-onto𝐴) → (𝐹 ∘ (𝐹𝐺)) = 𝐺)
109difeq1d 3926 . . . . . . . . . 10 ((𝐹:𝐴1-1-onto𝐴𝐺:𝐴1-1-onto𝐴) → ((𝐹 ∘ (𝐹𝐺)) ∖ I ) = (𝐺 ∖ I ))
1110dmeqd 5530 . . . . . . . . 9 ((𝐹:𝐴1-1-onto𝐴𝐺:𝐴1-1-onto𝐴) → dom ((𝐹 ∘ (𝐹𝐺)) ∖ I ) = dom (𝐺 ∖ I ))
1211adantr 473 . . . . . . . 8 (((𝐹:𝐴1-1-onto𝐴𝐺:𝐴1-1-onto𝐴) ∧ (dom (𝐹 ∖ I ) ⊆ 𝑋 ∧ dom ((𝐹𝐺) ∖ I ) ⊆ 𝑋)) → dom ((𝐹 ∘ (𝐹𝐺)) ∖ I ) = dom (𝐺 ∖ I ))
13 mvdco 18176 . . . . . . . . 9 dom ((𝐹 ∘ (𝐹𝐺)) ∖ I ) ⊆ (dom (𝐹 ∖ I ) ∪ dom ((𝐹𝐺) ∖ I ))
14 f1omvdcnv 18175 . . . . . . . . . . . 12 (𝐹:𝐴1-1-onto𝐴 → dom (𝐹 ∖ I ) = dom (𝐹 ∖ I ))
1514ad2antrr 718 . . . . . . . . . . 11 (((𝐹:𝐴1-1-onto𝐴𝐺:𝐴1-1-onto𝐴) ∧ (dom (𝐹 ∖ I ) ⊆ 𝑋 ∧ dom ((𝐹𝐺) ∖ I ) ⊆ 𝑋)) → dom (𝐹 ∖ I ) = dom (𝐹 ∖ I ))
16 simprl 788 . . . . . . . . . . 11 (((𝐹:𝐴1-1-onto𝐴𝐺:𝐴1-1-onto𝐴) ∧ (dom (𝐹 ∖ I ) ⊆ 𝑋 ∧ dom ((𝐹𝐺) ∖ I ) ⊆ 𝑋)) → dom (𝐹 ∖ I ) ⊆ 𝑋)
1715, 16eqsstrd 3836 . . . . . . . . . 10 (((𝐹:𝐴1-1-onto𝐴𝐺:𝐴1-1-onto𝐴) ∧ (dom (𝐹 ∖ I ) ⊆ 𝑋 ∧ dom ((𝐹𝐺) ∖ I ) ⊆ 𝑋)) → dom (𝐹 ∖ I ) ⊆ 𝑋)
18 simprr 790 . . . . . . . . . 10 (((𝐹:𝐴1-1-onto𝐴𝐺:𝐴1-1-onto𝐴) ∧ (dom (𝐹 ∖ I ) ⊆ 𝑋 ∧ dom ((𝐹𝐺) ∖ I ) ⊆ 𝑋)) → dom ((𝐹𝐺) ∖ I ) ⊆ 𝑋)
1917, 18unssd 3988 . . . . . . . . 9 (((𝐹:𝐴1-1-onto𝐴𝐺:𝐴1-1-onto𝐴) ∧ (dom (𝐹 ∖ I ) ⊆ 𝑋 ∧ dom ((𝐹𝐺) ∖ I ) ⊆ 𝑋)) → (dom (𝐹 ∖ I ) ∪ dom ((𝐹𝐺) ∖ I )) ⊆ 𝑋)
2013, 19syl5ss 3810 . . . . . . . 8 (((𝐹:𝐴1-1-onto𝐴𝐺:𝐴1-1-onto𝐴) ∧ (dom (𝐹 ∖ I ) ⊆ 𝑋 ∧ dom ((𝐹𝐺) ∖ I ) ⊆ 𝑋)) → dom ((𝐹 ∘ (𝐹𝐺)) ∖ I ) ⊆ 𝑋)
2112, 20eqsstr3d 3837 . . . . . . 7 (((𝐹:𝐴1-1-onto𝐴𝐺:𝐴1-1-onto𝐴) ∧ (dom (𝐹 ∖ I ) ⊆ 𝑋 ∧ dom ((𝐹𝐺) ∖ I ) ⊆ 𝑋)) → dom (𝐺 ∖ I ) ⊆ 𝑋)
2221expr 449 . . . . . 6 (((𝐹:𝐴1-1-onto𝐴𝐺:𝐴1-1-onto𝐴) ∧ dom (𝐹 ∖ I ) ⊆ 𝑋) → (dom ((𝐹𝐺) ∖ I ) ⊆ 𝑋 → dom (𝐺 ∖ I ) ⊆ 𝑋))
2322con3d 150 . . . . 5 (((𝐹:𝐴1-1-onto𝐴𝐺:𝐴1-1-onto𝐴) ∧ dom (𝐹 ∖ I ) ⊆ 𝑋) → (¬ dom (𝐺 ∖ I ) ⊆ 𝑋 → ¬ dom ((𝐹𝐺) ∖ I ) ⊆ 𝑋))
2423expimpd 446 . . . 4 ((𝐹:𝐴1-1-onto𝐴𝐺:𝐴1-1-onto𝐴) → ((dom (𝐹 ∖ I ) ⊆ 𝑋 ∧ ¬ dom (𝐺 ∖ I ) ⊆ 𝑋) → ¬ dom ((𝐹𝐺) ∖ I ) ⊆ 𝑋))
25 coass 5874 . . . . . . . . . . . . 13 ((𝐹𝐺) ∘ 𝐺) = (𝐹 ∘ (𝐺𝐺))
26 f1ococnv2 6383 . . . . . . . . . . . . . . 15 (𝐺:𝐴1-1-onto𝐴 → (𝐺𝐺) = ( I ↾ 𝐴))
2726coeq2d 5489 . . . . . . . . . . . . . 14 (𝐺:𝐴1-1-onto𝐴 → (𝐹 ∘ (𝐺𝐺)) = (𝐹 ∘ ( I ↾ 𝐴)))
28 f1of 6357 . . . . . . . . . . . . . . 15 (𝐹:𝐴1-1-onto𝐴𝐹:𝐴𝐴)
29 fcoi1 6294 . . . . . . . . . . . . . . 15 (𝐹:𝐴𝐴 → (𝐹 ∘ ( I ↾ 𝐴)) = 𝐹)
3028, 29syl 17 . . . . . . . . . . . . . 14 (𝐹:𝐴1-1-onto𝐴 → (𝐹 ∘ ( I ↾ 𝐴)) = 𝐹)
3127, 30sylan9eqr 2856 . . . . . . . . . . . . 13 ((𝐹:𝐴1-1-onto𝐴𝐺:𝐴1-1-onto𝐴) → (𝐹 ∘ (𝐺𝐺)) = 𝐹)
3225, 31syl5eq 2846 . . . . . . . . . . . 12 ((𝐹:𝐴1-1-onto𝐴𝐺:𝐴1-1-onto𝐴) → ((𝐹𝐺) ∘ 𝐺) = 𝐹)
3332difeq1d 3926 . . . . . . . . . . 11 ((𝐹:𝐴1-1-onto𝐴𝐺:𝐴1-1-onto𝐴) → (((𝐹𝐺) ∘ 𝐺) ∖ I ) = (𝐹 ∖ I ))
3433dmeqd 5530 . . . . . . . . . 10 ((𝐹:𝐴1-1-onto𝐴𝐺:𝐴1-1-onto𝐴) → dom (((𝐹𝐺) ∘ 𝐺) ∖ I ) = dom (𝐹 ∖ I ))
3534adantr 473 . . . . . . . . 9 (((𝐹:𝐴1-1-onto𝐴𝐺:𝐴1-1-onto𝐴) ∧ (dom (𝐺 ∖ I ) ⊆ 𝑋 ∧ dom ((𝐹𝐺) ∖ I ) ⊆ 𝑋)) → dom (((𝐹𝐺) ∘ 𝐺) ∖ I ) = dom (𝐹 ∖ I ))
36 mvdco 18176 . . . . . . . . . 10 dom (((𝐹𝐺) ∘ 𝐺) ∖ I ) ⊆ (dom ((𝐹𝐺) ∖ I ) ∪ dom (𝐺 ∖ I ))
37 simprr 790 . . . . . . . . . . 11 (((𝐹:𝐴1-1-onto𝐴𝐺:𝐴1-1-onto𝐴) ∧ (dom (𝐺 ∖ I ) ⊆ 𝑋 ∧ dom ((𝐹𝐺) ∖ I ) ⊆ 𝑋)) → dom ((𝐹𝐺) ∖ I ) ⊆ 𝑋)
38 f1omvdcnv 18175 . . . . . . . . . . . . 13 (𝐺:𝐴1-1-onto𝐴 → dom (𝐺 ∖ I ) = dom (𝐺 ∖ I ))
3938ad2antlr 719 . . . . . . . . . . . 12 (((𝐹:𝐴1-1-onto𝐴𝐺:𝐴1-1-onto𝐴) ∧ (dom (𝐺 ∖ I ) ⊆ 𝑋 ∧ dom ((𝐹𝐺) ∖ I ) ⊆ 𝑋)) → dom (𝐺 ∖ I ) = dom (𝐺 ∖ I ))
40 simprl 788 . . . . . . . . . . . 12 (((𝐹:𝐴1-1-onto𝐴𝐺:𝐴1-1-onto𝐴) ∧ (dom (𝐺 ∖ I ) ⊆ 𝑋 ∧ dom ((𝐹𝐺) ∖ I ) ⊆ 𝑋)) → dom (𝐺 ∖ I ) ⊆ 𝑋)
4139, 40eqsstrd 3836 . . . . . . . . . . 11 (((𝐹:𝐴1-1-onto𝐴𝐺:𝐴1-1-onto𝐴) ∧ (dom (𝐺 ∖ I ) ⊆ 𝑋 ∧ dom ((𝐹𝐺) ∖ I ) ⊆ 𝑋)) → dom (𝐺 ∖ I ) ⊆ 𝑋)
4237, 41unssd 3988 . . . . . . . . . 10 (((𝐹:𝐴1-1-onto𝐴𝐺:𝐴1-1-onto𝐴) ∧ (dom (𝐺 ∖ I ) ⊆ 𝑋 ∧ dom ((𝐹𝐺) ∖ I ) ⊆ 𝑋)) → (dom ((𝐹𝐺) ∖ I ) ∪ dom (𝐺 ∖ I )) ⊆ 𝑋)
4336, 42syl5ss 3810 . . . . . . . . 9 (((𝐹:𝐴1-1-onto𝐴𝐺:𝐴1-1-onto𝐴) ∧ (dom (𝐺 ∖ I ) ⊆ 𝑋 ∧ dom ((𝐹𝐺) ∖ I ) ⊆ 𝑋)) → dom (((𝐹𝐺) ∘ 𝐺) ∖ I ) ⊆ 𝑋)
4435, 43eqsstr3d 3837 . . . . . . . 8 (((𝐹:𝐴1-1-onto𝐴𝐺:𝐴1-1-onto𝐴) ∧ (dom (𝐺 ∖ I ) ⊆ 𝑋 ∧ dom ((𝐹𝐺) ∖ I ) ⊆ 𝑋)) → dom (𝐹 ∖ I ) ⊆ 𝑋)
4544expr 449 . . . . . . 7 (((𝐹:𝐴1-1-onto𝐴𝐺:𝐴1-1-onto𝐴) ∧ dom (𝐺 ∖ I ) ⊆ 𝑋) → (dom ((𝐹𝐺) ∖ I ) ⊆ 𝑋 → dom (𝐹 ∖ I ) ⊆ 𝑋))
4645con3d 150 . . . . . 6 (((𝐹:𝐴1-1-onto𝐴𝐺:𝐴1-1-onto𝐴) ∧ dom (𝐺 ∖ I ) ⊆ 𝑋) → (¬ dom (𝐹 ∖ I ) ⊆ 𝑋 → ¬ dom ((𝐹𝐺) ∖ I ) ⊆ 𝑋))
4746expimpd 446 . . . . 5 ((𝐹:𝐴1-1-onto𝐴𝐺:𝐴1-1-onto𝐴) → ((dom (𝐺 ∖ I ) ⊆ 𝑋 ∧ ¬ dom (𝐹 ∖ I ) ⊆ 𝑋) → ¬ dom ((𝐹𝐺) ∖ I ) ⊆ 𝑋))
4847ancomsd 458 . . . 4 ((𝐹:𝐴1-1-onto𝐴𝐺:𝐴1-1-onto𝐴) → ((¬ dom (𝐹 ∖ I ) ⊆ 𝑋 ∧ dom (𝐺 ∖ I ) ⊆ 𝑋) → ¬ dom ((𝐹𝐺) ∖ I ) ⊆ 𝑋))
4924, 48jaod 886 . . 3 ((𝐹:𝐴1-1-onto𝐴𝐺:𝐴1-1-onto𝐴) → (((dom (𝐹 ∖ I ) ⊆ 𝑋 ∧ ¬ dom (𝐺 ∖ I ) ⊆ 𝑋) ∨ (¬ dom (𝐹 ∖ I ) ⊆ 𝑋 ∧ dom (𝐺 ∖ I ) ⊆ 𝑋)) → ¬ dom ((𝐹𝐺) ∖ I ) ⊆ 𝑋))
501, 49syl5bi 234 . 2 ((𝐹:𝐴1-1-onto𝐴𝐺:𝐴1-1-onto𝐴) → ((dom (𝐹 ∖ I ) ⊆ 𝑋 ⊻ dom (𝐺 ∖ I ) ⊆ 𝑋) → ¬ dom ((𝐹𝐺) ∖ I ) ⊆ 𝑋))
51503impia 1146 1 ((𝐹:𝐴1-1-onto𝐴𝐺:𝐴1-1-onto𝐴 ∧ (dom (𝐹 ∖ I ) ⊆ 𝑋 ⊻ dom (𝐺 ∖ I ) ⊆ 𝑋)) → ¬ dom ((𝐹𝐺) ∖ I ) ⊆ 𝑋)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 385  wo 874  w3a 1108  wxo 1634   = wceq 1653  cdif 3767  cun 3768  wss 3770   I cid 5220  ccnv 5312  dom cdm 5313  cres 5315  ccom 5317  wf 6098  1-1-ontowf1o 6101
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1891  ax-4 1905  ax-5 2006  ax-6 2072  ax-7 2107  ax-8 2159  ax-9 2166  ax-10 2185  ax-11 2200  ax-12 2213  ax-13 2378  ax-ext 2778  ax-sep 4976  ax-nul 4984  ax-pow 5036  ax-pr 5098
This theorem depends on definitions:  df-bi 199  df-an 386  df-or 875  df-3an 1110  df-xor 1635  df-tru 1657  df-ex 1876  df-nf 1880  df-sb 2065  df-mo 2592  df-eu 2610  df-clab 2787  df-cleq 2793  df-clel 2796  df-nfc 2931  df-ne 2973  df-ral 3095  df-rex 3096  df-rab 3099  df-v 3388  df-sbc 3635  df-dif 3773  df-un 3775  df-in 3777  df-ss 3784  df-nul 4117  df-if 4279  df-sn 4370  df-pr 4372  df-op 4376  df-uni 4630  df-br 4845  df-opab 4907  df-id 5221  df-xp 5319  df-rel 5320  df-cnv 5321  df-co 5322  df-dm 5323  df-rn 5324  df-res 5325  df-ima 5326  df-iota 6065  df-fun 6104  df-fn 6105  df-f 6106  df-f1 6107  df-fo 6108  df-f1o 6109  df-fv 6110
This theorem is referenced by:  f1omvdco3  18180
  Copyright terms: Public domain W3C validator