Proof of Theorem f1omvdco2
| Step | Hyp | Ref
| Expression |
| 1 | | excxor 1516 |
. . 3
⊢ ((dom
(𝐹 ∖ I ) ⊆
𝑋 ⊻ dom (𝐺 ∖ I ) ⊆ 𝑋) ↔ ((dom (𝐹 ∖ I ) ⊆ 𝑋 ∧ ¬ dom (𝐺 ∖ I ) ⊆ 𝑋) ∨ (¬ dom (𝐹 ∖ I ) ⊆ 𝑋 ∧ dom (𝐺 ∖ I ) ⊆ 𝑋))) |
| 2 | | coass 6285 |
. . . . . . . . . . . 12
⊢ ((◡𝐹 ∘ 𝐹) ∘ 𝐺) = (◡𝐹 ∘ (𝐹 ∘ 𝐺)) |
| 3 | | f1ococnv1 6877 |
. . . . . . . . . . . . . 14
⊢ (𝐹:𝐴–1-1-onto→𝐴 → (◡𝐹 ∘ 𝐹) = ( I ↾ 𝐴)) |
| 4 | 3 | coeq1d 5872 |
. . . . . . . . . . . . 13
⊢ (𝐹:𝐴–1-1-onto→𝐴 → ((◡𝐹 ∘ 𝐹) ∘ 𝐺) = (( I ↾ 𝐴) ∘ 𝐺)) |
| 5 | | f1of 6848 |
. . . . . . . . . . . . . 14
⊢ (𝐺:𝐴–1-1-onto→𝐴 → 𝐺:𝐴⟶𝐴) |
| 6 | | fcoi2 6783 |
. . . . . . . . . . . . . 14
⊢ (𝐺:𝐴⟶𝐴 → (( I ↾ 𝐴) ∘ 𝐺) = 𝐺) |
| 7 | 5, 6 | syl 17 |
. . . . . . . . . . . . 13
⊢ (𝐺:𝐴–1-1-onto→𝐴 → (( I ↾ 𝐴) ∘ 𝐺) = 𝐺) |
| 8 | 4, 7 | sylan9eq 2797 |
. . . . . . . . . . . 12
⊢ ((𝐹:𝐴–1-1-onto→𝐴 ∧ 𝐺:𝐴–1-1-onto→𝐴) → ((◡𝐹 ∘ 𝐹) ∘ 𝐺) = 𝐺) |
| 9 | 2, 8 | eqtr3id 2791 |
. . . . . . . . . . 11
⊢ ((𝐹:𝐴–1-1-onto→𝐴 ∧ 𝐺:𝐴–1-1-onto→𝐴) → (◡𝐹 ∘ (𝐹 ∘ 𝐺)) = 𝐺) |
| 10 | 9 | difeq1d 4125 |
. . . . . . . . . 10
⊢ ((𝐹:𝐴–1-1-onto→𝐴 ∧ 𝐺:𝐴–1-1-onto→𝐴) → ((◡𝐹 ∘ (𝐹 ∘ 𝐺)) ∖ I ) = (𝐺 ∖ I )) |
| 11 | 10 | dmeqd 5916 |
. . . . . . . . 9
⊢ ((𝐹:𝐴–1-1-onto→𝐴 ∧ 𝐺:𝐴–1-1-onto→𝐴) → dom ((◡𝐹 ∘ (𝐹 ∘ 𝐺)) ∖ I ) = dom (𝐺 ∖ I )) |
| 12 | 11 | adantr 480 |
. . . . . . . 8
⊢ (((𝐹:𝐴–1-1-onto→𝐴 ∧ 𝐺:𝐴–1-1-onto→𝐴) ∧ (dom (𝐹 ∖ I ) ⊆ 𝑋 ∧ dom ((𝐹 ∘ 𝐺) ∖ I ) ⊆ 𝑋)) → dom ((◡𝐹 ∘ (𝐹 ∘ 𝐺)) ∖ I ) = dom (𝐺 ∖ I )) |
| 13 | | mvdco 19463 |
. . . . . . . . 9
⊢ dom
((◡𝐹 ∘ (𝐹 ∘ 𝐺)) ∖ I ) ⊆ (dom (◡𝐹 ∖ I ) ∪ dom ((𝐹 ∘ 𝐺) ∖ I )) |
| 14 | | f1omvdcnv 19462 |
. . . . . . . . . . . 12
⊢ (𝐹:𝐴–1-1-onto→𝐴 → dom (◡𝐹 ∖ I ) = dom (𝐹 ∖ I )) |
| 15 | 14 | ad2antrr 726 |
. . . . . . . . . . 11
⊢ (((𝐹:𝐴–1-1-onto→𝐴 ∧ 𝐺:𝐴–1-1-onto→𝐴) ∧ (dom (𝐹 ∖ I ) ⊆ 𝑋 ∧ dom ((𝐹 ∘ 𝐺) ∖ I ) ⊆ 𝑋)) → dom (◡𝐹 ∖ I ) = dom (𝐹 ∖ I )) |
| 16 | | simprl 771 |
. . . . . . . . . . 11
⊢ (((𝐹:𝐴–1-1-onto→𝐴 ∧ 𝐺:𝐴–1-1-onto→𝐴) ∧ (dom (𝐹 ∖ I ) ⊆ 𝑋 ∧ dom ((𝐹 ∘ 𝐺) ∖ I ) ⊆ 𝑋)) → dom (𝐹 ∖ I ) ⊆ 𝑋) |
| 17 | 15, 16 | eqsstrd 4018 |
. . . . . . . . . 10
⊢ (((𝐹:𝐴–1-1-onto→𝐴 ∧ 𝐺:𝐴–1-1-onto→𝐴) ∧ (dom (𝐹 ∖ I ) ⊆ 𝑋 ∧ dom ((𝐹 ∘ 𝐺) ∖ I ) ⊆ 𝑋)) → dom (◡𝐹 ∖ I ) ⊆ 𝑋) |
| 18 | | simprr 773 |
. . . . . . . . . 10
⊢ (((𝐹:𝐴–1-1-onto→𝐴 ∧ 𝐺:𝐴–1-1-onto→𝐴) ∧ (dom (𝐹 ∖ I ) ⊆ 𝑋 ∧ dom ((𝐹 ∘ 𝐺) ∖ I ) ⊆ 𝑋)) → dom ((𝐹 ∘ 𝐺) ∖ I ) ⊆ 𝑋) |
| 19 | 17, 18 | unssd 4192 |
. . . . . . . . 9
⊢ (((𝐹:𝐴–1-1-onto→𝐴 ∧ 𝐺:𝐴–1-1-onto→𝐴) ∧ (dom (𝐹 ∖ I ) ⊆ 𝑋 ∧ dom ((𝐹 ∘ 𝐺) ∖ I ) ⊆ 𝑋)) → (dom (◡𝐹 ∖ I ) ∪ dom ((𝐹 ∘ 𝐺) ∖ I )) ⊆ 𝑋) |
| 20 | 13, 19 | sstrid 3995 |
. . . . . . . 8
⊢ (((𝐹:𝐴–1-1-onto→𝐴 ∧ 𝐺:𝐴–1-1-onto→𝐴) ∧ (dom (𝐹 ∖ I ) ⊆ 𝑋 ∧ dom ((𝐹 ∘ 𝐺) ∖ I ) ⊆ 𝑋)) → dom ((◡𝐹 ∘ (𝐹 ∘ 𝐺)) ∖ I ) ⊆ 𝑋) |
| 21 | 12, 20 | eqsstrrd 4019 |
. . . . . . 7
⊢ (((𝐹:𝐴–1-1-onto→𝐴 ∧ 𝐺:𝐴–1-1-onto→𝐴) ∧ (dom (𝐹 ∖ I ) ⊆ 𝑋 ∧ dom ((𝐹 ∘ 𝐺) ∖ I ) ⊆ 𝑋)) → dom (𝐺 ∖ I ) ⊆ 𝑋) |
| 22 | 21 | expr 456 |
. . . . . 6
⊢ (((𝐹:𝐴–1-1-onto→𝐴 ∧ 𝐺:𝐴–1-1-onto→𝐴) ∧ dom (𝐹 ∖ I ) ⊆ 𝑋) → (dom ((𝐹 ∘ 𝐺) ∖ I ) ⊆ 𝑋 → dom (𝐺 ∖ I ) ⊆ 𝑋)) |
| 23 | 22 | con3d 152 |
. . . . 5
⊢ (((𝐹:𝐴–1-1-onto→𝐴 ∧ 𝐺:𝐴–1-1-onto→𝐴) ∧ dom (𝐹 ∖ I ) ⊆ 𝑋) → (¬ dom (𝐺 ∖ I ) ⊆ 𝑋 → ¬ dom ((𝐹 ∘ 𝐺) ∖ I ) ⊆ 𝑋)) |
| 24 | 23 | expimpd 453 |
. . . 4
⊢ ((𝐹:𝐴–1-1-onto→𝐴 ∧ 𝐺:𝐴–1-1-onto→𝐴) → ((dom (𝐹 ∖ I ) ⊆ 𝑋 ∧ ¬ dom (𝐺 ∖ I ) ⊆ 𝑋) → ¬ dom ((𝐹 ∘ 𝐺) ∖ I ) ⊆ 𝑋)) |
| 25 | | coass 6285 |
. . . . . . . . . . . . 13
⊢ ((𝐹 ∘ 𝐺) ∘ ◡𝐺) = (𝐹 ∘ (𝐺 ∘ ◡𝐺)) |
| 26 | | f1ococnv2 6875 |
. . . . . . . . . . . . . . 15
⊢ (𝐺:𝐴–1-1-onto→𝐴 → (𝐺 ∘ ◡𝐺) = ( I ↾ 𝐴)) |
| 27 | 26 | coeq2d 5873 |
. . . . . . . . . . . . . 14
⊢ (𝐺:𝐴–1-1-onto→𝐴 → (𝐹 ∘ (𝐺 ∘ ◡𝐺)) = (𝐹 ∘ ( I ↾ 𝐴))) |
| 28 | | f1of 6848 |
. . . . . . . . . . . . . . 15
⊢ (𝐹:𝐴–1-1-onto→𝐴 → 𝐹:𝐴⟶𝐴) |
| 29 | | fcoi1 6782 |
. . . . . . . . . . . . . . 15
⊢ (𝐹:𝐴⟶𝐴 → (𝐹 ∘ ( I ↾ 𝐴)) = 𝐹) |
| 30 | 28, 29 | syl 17 |
. . . . . . . . . . . . . 14
⊢ (𝐹:𝐴–1-1-onto→𝐴 → (𝐹 ∘ ( I ↾ 𝐴)) = 𝐹) |
| 31 | 27, 30 | sylan9eqr 2799 |
. . . . . . . . . . . . 13
⊢ ((𝐹:𝐴–1-1-onto→𝐴 ∧ 𝐺:𝐴–1-1-onto→𝐴) → (𝐹 ∘ (𝐺 ∘ ◡𝐺)) = 𝐹) |
| 32 | 25, 31 | eqtrid 2789 |
. . . . . . . . . . . 12
⊢ ((𝐹:𝐴–1-1-onto→𝐴 ∧ 𝐺:𝐴–1-1-onto→𝐴) → ((𝐹 ∘ 𝐺) ∘ ◡𝐺) = 𝐹) |
| 33 | 32 | difeq1d 4125 |
. . . . . . . . . . 11
⊢ ((𝐹:𝐴–1-1-onto→𝐴 ∧ 𝐺:𝐴–1-1-onto→𝐴) → (((𝐹 ∘ 𝐺) ∘ ◡𝐺) ∖ I ) = (𝐹 ∖ I )) |
| 34 | 33 | dmeqd 5916 |
. . . . . . . . . 10
⊢ ((𝐹:𝐴–1-1-onto→𝐴 ∧ 𝐺:𝐴–1-1-onto→𝐴) → dom (((𝐹 ∘ 𝐺) ∘ ◡𝐺) ∖ I ) = dom (𝐹 ∖ I )) |
| 35 | 34 | adantr 480 |
. . . . . . . . 9
⊢ (((𝐹:𝐴–1-1-onto→𝐴 ∧ 𝐺:𝐴–1-1-onto→𝐴) ∧ (dom (𝐺 ∖ I ) ⊆ 𝑋 ∧ dom ((𝐹 ∘ 𝐺) ∖ I ) ⊆ 𝑋)) → dom (((𝐹 ∘ 𝐺) ∘ ◡𝐺) ∖ I ) = dom (𝐹 ∖ I )) |
| 36 | | mvdco 19463 |
. . . . . . . . . 10
⊢ dom
(((𝐹 ∘ 𝐺) ∘ ◡𝐺) ∖ I ) ⊆ (dom ((𝐹 ∘ 𝐺) ∖ I ) ∪ dom (◡𝐺 ∖ I )) |
| 37 | | simprr 773 |
. . . . . . . . . . 11
⊢ (((𝐹:𝐴–1-1-onto→𝐴 ∧ 𝐺:𝐴–1-1-onto→𝐴) ∧ (dom (𝐺 ∖ I ) ⊆ 𝑋 ∧ dom ((𝐹 ∘ 𝐺) ∖ I ) ⊆ 𝑋)) → dom ((𝐹 ∘ 𝐺) ∖ I ) ⊆ 𝑋) |
| 38 | | f1omvdcnv 19462 |
. . . . . . . . . . . . 13
⊢ (𝐺:𝐴–1-1-onto→𝐴 → dom (◡𝐺 ∖ I ) = dom (𝐺 ∖ I )) |
| 39 | 38 | ad2antlr 727 |
. . . . . . . . . . . 12
⊢ (((𝐹:𝐴–1-1-onto→𝐴 ∧ 𝐺:𝐴–1-1-onto→𝐴) ∧ (dom (𝐺 ∖ I ) ⊆ 𝑋 ∧ dom ((𝐹 ∘ 𝐺) ∖ I ) ⊆ 𝑋)) → dom (◡𝐺 ∖ I ) = dom (𝐺 ∖ I )) |
| 40 | | simprl 771 |
. . . . . . . . . . . 12
⊢ (((𝐹:𝐴–1-1-onto→𝐴 ∧ 𝐺:𝐴–1-1-onto→𝐴) ∧ (dom (𝐺 ∖ I ) ⊆ 𝑋 ∧ dom ((𝐹 ∘ 𝐺) ∖ I ) ⊆ 𝑋)) → dom (𝐺 ∖ I ) ⊆ 𝑋) |
| 41 | 39, 40 | eqsstrd 4018 |
. . . . . . . . . . 11
⊢ (((𝐹:𝐴–1-1-onto→𝐴 ∧ 𝐺:𝐴–1-1-onto→𝐴) ∧ (dom (𝐺 ∖ I ) ⊆ 𝑋 ∧ dom ((𝐹 ∘ 𝐺) ∖ I ) ⊆ 𝑋)) → dom (◡𝐺 ∖ I ) ⊆ 𝑋) |
| 42 | 37, 41 | unssd 4192 |
. . . . . . . . . 10
⊢ (((𝐹:𝐴–1-1-onto→𝐴 ∧ 𝐺:𝐴–1-1-onto→𝐴) ∧ (dom (𝐺 ∖ I ) ⊆ 𝑋 ∧ dom ((𝐹 ∘ 𝐺) ∖ I ) ⊆ 𝑋)) → (dom ((𝐹 ∘ 𝐺) ∖ I ) ∪ dom (◡𝐺 ∖ I )) ⊆ 𝑋) |
| 43 | 36, 42 | sstrid 3995 |
. . . . . . . . 9
⊢ (((𝐹:𝐴–1-1-onto→𝐴 ∧ 𝐺:𝐴–1-1-onto→𝐴) ∧ (dom (𝐺 ∖ I ) ⊆ 𝑋 ∧ dom ((𝐹 ∘ 𝐺) ∖ I ) ⊆ 𝑋)) → dom (((𝐹 ∘ 𝐺) ∘ ◡𝐺) ∖ I ) ⊆ 𝑋) |
| 44 | 35, 43 | eqsstrrd 4019 |
. . . . . . . 8
⊢ (((𝐹:𝐴–1-1-onto→𝐴 ∧ 𝐺:𝐴–1-1-onto→𝐴) ∧ (dom (𝐺 ∖ I ) ⊆ 𝑋 ∧ dom ((𝐹 ∘ 𝐺) ∖ I ) ⊆ 𝑋)) → dom (𝐹 ∖ I ) ⊆ 𝑋) |
| 45 | 44 | expr 456 |
. . . . . . 7
⊢ (((𝐹:𝐴–1-1-onto→𝐴 ∧ 𝐺:𝐴–1-1-onto→𝐴) ∧ dom (𝐺 ∖ I ) ⊆ 𝑋) → (dom ((𝐹 ∘ 𝐺) ∖ I ) ⊆ 𝑋 → dom (𝐹 ∖ I ) ⊆ 𝑋)) |
| 46 | 45 | con3d 152 |
. . . . . 6
⊢ (((𝐹:𝐴–1-1-onto→𝐴 ∧ 𝐺:𝐴–1-1-onto→𝐴) ∧ dom (𝐺 ∖ I ) ⊆ 𝑋) → (¬ dom (𝐹 ∖ I ) ⊆ 𝑋 → ¬ dom ((𝐹 ∘ 𝐺) ∖ I ) ⊆ 𝑋)) |
| 47 | 46 | expimpd 453 |
. . . . 5
⊢ ((𝐹:𝐴–1-1-onto→𝐴 ∧ 𝐺:𝐴–1-1-onto→𝐴) → ((dom (𝐺 ∖ I ) ⊆ 𝑋 ∧ ¬ dom (𝐹 ∖ I ) ⊆ 𝑋) → ¬ dom ((𝐹 ∘ 𝐺) ∖ I ) ⊆ 𝑋)) |
| 48 | 47 | ancomsd 465 |
. . . 4
⊢ ((𝐹:𝐴–1-1-onto→𝐴 ∧ 𝐺:𝐴–1-1-onto→𝐴) → ((¬ dom (𝐹 ∖ I ) ⊆ 𝑋 ∧ dom (𝐺 ∖ I ) ⊆ 𝑋) → ¬ dom ((𝐹 ∘ 𝐺) ∖ I ) ⊆ 𝑋)) |
| 49 | 24, 48 | jaod 860 |
. . 3
⊢ ((𝐹:𝐴–1-1-onto→𝐴 ∧ 𝐺:𝐴–1-1-onto→𝐴) → (((dom (𝐹 ∖ I ) ⊆ 𝑋 ∧ ¬ dom (𝐺 ∖ I ) ⊆ 𝑋) ∨ (¬ dom (𝐹 ∖ I ) ⊆ 𝑋 ∧ dom (𝐺 ∖ I ) ⊆ 𝑋)) → ¬ dom ((𝐹 ∘ 𝐺) ∖ I ) ⊆ 𝑋)) |
| 50 | 1, 49 | biimtrid 242 |
. 2
⊢ ((𝐹:𝐴–1-1-onto→𝐴 ∧ 𝐺:𝐴–1-1-onto→𝐴) → ((dom (𝐹 ∖ I ) ⊆ 𝑋 ⊻ dom (𝐺 ∖ I ) ⊆ 𝑋) → ¬ dom ((𝐹 ∘ 𝐺) ∖ I ) ⊆ 𝑋)) |
| 51 | 50 | 3impia 1118 |
1
⊢ ((𝐹:𝐴–1-1-onto→𝐴 ∧ 𝐺:𝐴–1-1-onto→𝐴 ∧ (dom (𝐹 ∖ I ) ⊆ 𝑋 ⊻ dom (𝐺 ∖ I ) ⊆ 𝑋)) → ¬ dom ((𝐹 ∘ 𝐺) ∖ I ) ⊆ 𝑋) |