MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  f1omvdco2 Structured version   Visualization version   GIF version

Theorem f1omvdco2 19466
Description: If exactly one of two permutations is limited to a set of points, then the composition will not be. (Contributed by Stefan O'Rear, 23-Aug-2015.)
Assertion
Ref Expression
f1omvdco2 ((𝐹:𝐴1-1-onto𝐴𝐺:𝐴1-1-onto𝐴 ∧ (dom (𝐹 ∖ I ) ⊆ 𝑋 ⊻ dom (𝐺 ∖ I ) ⊆ 𝑋)) → ¬ dom ((𝐹𝐺) ∖ I ) ⊆ 𝑋)

Proof of Theorem f1omvdco2
StepHypRef Expression
1 excxor 1516 . . 3 ((dom (𝐹 ∖ I ) ⊆ 𝑋 ⊻ dom (𝐺 ∖ I ) ⊆ 𝑋) ↔ ((dom (𝐹 ∖ I ) ⊆ 𝑋 ∧ ¬ dom (𝐺 ∖ I ) ⊆ 𝑋) ∨ (¬ dom (𝐹 ∖ I ) ⊆ 𝑋 ∧ dom (𝐺 ∖ I ) ⊆ 𝑋)))
2 coass 6285 . . . . . . . . . . . 12 ((𝐹𝐹) ∘ 𝐺) = (𝐹 ∘ (𝐹𝐺))
3 f1ococnv1 6877 . . . . . . . . . . . . . 14 (𝐹:𝐴1-1-onto𝐴 → (𝐹𝐹) = ( I ↾ 𝐴))
43coeq1d 5872 . . . . . . . . . . . . 13 (𝐹:𝐴1-1-onto𝐴 → ((𝐹𝐹) ∘ 𝐺) = (( I ↾ 𝐴) ∘ 𝐺))
5 f1of 6848 . . . . . . . . . . . . . 14 (𝐺:𝐴1-1-onto𝐴𝐺:𝐴𝐴)
6 fcoi2 6783 . . . . . . . . . . . . . 14 (𝐺:𝐴𝐴 → (( I ↾ 𝐴) ∘ 𝐺) = 𝐺)
75, 6syl 17 . . . . . . . . . . . . 13 (𝐺:𝐴1-1-onto𝐴 → (( I ↾ 𝐴) ∘ 𝐺) = 𝐺)
84, 7sylan9eq 2797 . . . . . . . . . . . 12 ((𝐹:𝐴1-1-onto𝐴𝐺:𝐴1-1-onto𝐴) → ((𝐹𝐹) ∘ 𝐺) = 𝐺)
92, 8eqtr3id 2791 . . . . . . . . . . 11 ((𝐹:𝐴1-1-onto𝐴𝐺:𝐴1-1-onto𝐴) → (𝐹 ∘ (𝐹𝐺)) = 𝐺)
109difeq1d 4125 . . . . . . . . . 10 ((𝐹:𝐴1-1-onto𝐴𝐺:𝐴1-1-onto𝐴) → ((𝐹 ∘ (𝐹𝐺)) ∖ I ) = (𝐺 ∖ I ))
1110dmeqd 5916 . . . . . . . . 9 ((𝐹:𝐴1-1-onto𝐴𝐺:𝐴1-1-onto𝐴) → dom ((𝐹 ∘ (𝐹𝐺)) ∖ I ) = dom (𝐺 ∖ I ))
1211adantr 480 . . . . . . . 8 (((𝐹:𝐴1-1-onto𝐴𝐺:𝐴1-1-onto𝐴) ∧ (dom (𝐹 ∖ I ) ⊆ 𝑋 ∧ dom ((𝐹𝐺) ∖ I ) ⊆ 𝑋)) → dom ((𝐹 ∘ (𝐹𝐺)) ∖ I ) = dom (𝐺 ∖ I ))
13 mvdco 19463 . . . . . . . . 9 dom ((𝐹 ∘ (𝐹𝐺)) ∖ I ) ⊆ (dom (𝐹 ∖ I ) ∪ dom ((𝐹𝐺) ∖ I ))
14 f1omvdcnv 19462 . . . . . . . . . . . 12 (𝐹:𝐴1-1-onto𝐴 → dom (𝐹 ∖ I ) = dom (𝐹 ∖ I ))
1514ad2antrr 726 . . . . . . . . . . 11 (((𝐹:𝐴1-1-onto𝐴𝐺:𝐴1-1-onto𝐴) ∧ (dom (𝐹 ∖ I ) ⊆ 𝑋 ∧ dom ((𝐹𝐺) ∖ I ) ⊆ 𝑋)) → dom (𝐹 ∖ I ) = dom (𝐹 ∖ I ))
16 simprl 771 . . . . . . . . . . 11 (((𝐹:𝐴1-1-onto𝐴𝐺:𝐴1-1-onto𝐴) ∧ (dom (𝐹 ∖ I ) ⊆ 𝑋 ∧ dom ((𝐹𝐺) ∖ I ) ⊆ 𝑋)) → dom (𝐹 ∖ I ) ⊆ 𝑋)
1715, 16eqsstrd 4018 . . . . . . . . . 10 (((𝐹:𝐴1-1-onto𝐴𝐺:𝐴1-1-onto𝐴) ∧ (dom (𝐹 ∖ I ) ⊆ 𝑋 ∧ dom ((𝐹𝐺) ∖ I ) ⊆ 𝑋)) → dom (𝐹 ∖ I ) ⊆ 𝑋)
18 simprr 773 . . . . . . . . . 10 (((𝐹:𝐴1-1-onto𝐴𝐺:𝐴1-1-onto𝐴) ∧ (dom (𝐹 ∖ I ) ⊆ 𝑋 ∧ dom ((𝐹𝐺) ∖ I ) ⊆ 𝑋)) → dom ((𝐹𝐺) ∖ I ) ⊆ 𝑋)
1917, 18unssd 4192 . . . . . . . . 9 (((𝐹:𝐴1-1-onto𝐴𝐺:𝐴1-1-onto𝐴) ∧ (dom (𝐹 ∖ I ) ⊆ 𝑋 ∧ dom ((𝐹𝐺) ∖ I ) ⊆ 𝑋)) → (dom (𝐹 ∖ I ) ∪ dom ((𝐹𝐺) ∖ I )) ⊆ 𝑋)
2013, 19sstrid 3995 . . . . . . . 8 (((𝐹:𝐴1-1-onto𝐴𝐺:𝐴1-1-onto𝐴) ∧ (dom (𝐹 ∖ I ) ⊆ 𝑋 ∧ dom ((𝐹𝐺) ∖ I ) ⊆ 𝑋)) → dom ((𝐹 ∘ (𝐹𝐺)) ∖ I ) ⊆ 𝑋)
2112, 20eqsstrrd 4019 . . . . . . 7 (((𝐹:𝐴1-1-onto𝐴𝐺:𝐴1-1-onto𝐴) ∧ (dom (𝐹 ∖ I ) ⊆ 𝑋 ∧ dom ((𝐹𝐺) ∖ I ) ⊆ 𝑋)) → dom (𝐺 ∖ I ) ⊆ 𝑋)
2221expr 456 . . . . . 6 (((𝐹:𝐴1-1-onto𝐴𝐺:𝐴1-1-onto𝐴) ∧ dom (𝐹 ∖ I ) ⊆ 𝑋) → (dom ((𝐹𝐺) ∖ I ) ⊆ 𝑋 → dom (𝐺 ∖ I ) ⊆ 𝑋))
2322con3d 152 . . . . 5 (((𝐹:𝐴1-1-onto𝐴𝐺:𝐴1-1-onto𝐴) ∧ dom (𝐹 ∖ I ) ⊆ 𝑋) → (¬ dom (𝐺 ∖ I ) ⊆ 𝑋 → ¬ dom ((𝐹𝐺) ∖ I ) ⊆ 𝑋))
2423expimpd 453 . . . 4 ((𝐹:𝐴1-1-onto𝐴𝐺:𝐴1-1-onto𝐴) → ((dom (𝐹 ∖ I ) ⊆ 𝑋 ∧ ¬ dom (𝐺 ∖ I ) ⊆ 𝑋) → ¬ dom ((𝐹𝐺) ∖ I ) ⊆ 𝑋))
25 coass 6285 . . . . . . . . . . . . 13 ((𝐹𝐺) ∘ 𝐺) = (𝐹 ∘ (𝐺𝐺))
26 f1ococnv2 6875 . . . . . . . . . . . . . . 15 (𝐺:𝐴1-1-onto𝐴 → (𝐺𝐺) = ( I ↾ 𝐴))
2726coeq2d 5873 . . . . . . . . . . . . . 14 (𝐺:𝐴1-1-onto𝐴 → (𝐹 ∘ (𝐺𝐺)) = (𝐹 ∘ ( I ↾ 𝐴)))
28 f1of 6848 . . . . . . . . . . . . . . 15 (𝐹:𝐴1-1-onto𝐴𝐹:𝐴𝐴)
29 fcoi1 6782 . . . . . . . . . . . . . . 15 (𝐹:𝐴𝐴 → (𝐹 ∘ ( I ↾ 𝐴)) = 𝐹)
3028, 29syl 17 . . . . . . . . . . . . . 14 (𝐹:𝐴1-1-onto𝐴 → (𝐹 ∘ ( I ↾ 𝐴)) = 𝐹)
3127, 30sylan9eqr 2799 . . . . . . . . . . . . 13 ((𝐹:𝐴1-1-onto𝐴𝐺:𝐴1-1-onto𝐴) → (𝐹 ∘ (𝐺𝐺)) = 𝐹)
3225, 31eqtrid 2789 . . . . . . . . . . . 12 ((𝐹:𝐴1-1-onto𝐴𝐺:𝐴1-1-onto𝐴) → ((𝐹𝐺) ∘ 𝐺) = 𝐹)
3332difeq1d 4125 . . . . . . . . . . 11 ((𝐹:𝐴1-1-onto𝐴𝐺:𝐴1-1-onto𝐴) → (((𝐹𝐺) ∘ 𝐺) ∖ I ) = (𝐹 ∖ I ))
3433dmeqd 5916 . . . . . . . . . 10 ((𝐹:𝐴1-1-onto𝐴𝐺:𝐴1-1-onto𝐴) → dom (((𝐹𝐺) ∘ 𝐺) ∖ I ) = dom (𝐹 ∖ I ))
3534adantr 480 . . . . . . . . 9 (((𝐹:𝐴1-1-onto𝐴𝐺:𝐴1-1-onto𝐴) ∧ (dom (𝐺 ∖ I ) ⊆ 𝑋 ∧ dom ((𝐹𝐺) ∖ I ) ⊆ 𝑋)) → dom (((𝐹𝐺) ∘ 𝐺) ∖ I ) = dom (𝐹 ∖ I ))
36 mvdco 19463 . . . . . . . . . 10 dom (((𝐹𝐺) ∘ 𝐺) ∖ I ) ⊆ (dom ((𝐹𝐺) ∖ I ) ∪ dom (𝐺 ∖ I ))
37 simprr 773 . . . . . . . . . . 11 (((𝐹:𝐴1-1-onto𝐴𝐺:𝐴1-1-onto𝐴) ∧ (dom (𝐺 ∖ I ) ⊆ 𝑋 ∧ dom ((𝐹𝐺) ∖ I ) ⊆ 𝑋)) → dom ((𝐹𝐺) ∖ I ) ⊆ 𝑋)
38 f1omvdcnv 19462 . . . . . . . . . . . . 13 (𝐺:𝐴1-1-onto𝐴 → dom (𝐺 ∖ I ) = dom (𝐺 ∖ I ))
3938ad2antlr 727 . . . . . . . . . . . 12 (((𝐹:𝐴1-1-onto𝐴𝐺:𝐴1-1-onto𝐴) ∧ (dom (𝐺 ∖ I ) ⊆ 𝑋 ∧ dom ((𝐹𝐺) ∖ I ) ⊆ 𝑋)) → dom (𝐺 ∖ I ) = dom (𝐺 ∖ I ))
40 simprl 771 . . . . . . . . . . . 12 (((𝐹:𝐴1-1-onto𝐴𝐺:𝐴1-1-onto𝐴) ∧ (dom (𝐺 ∖ I ) ⊆ 𝑋 ∧ dom ((𝐹𝐺) ∖ I ) ⊆ 𝑋)) → dom (𝐺 ∖ I ) ⊆ 𝑋)
4139, 40eqsstrd 4018 . . . . . . . . . . 11 (((𝐹:𝐴1-1-onto𝐴𝐺:𝐴1-1-onto𝐴) ∧ (dom (𝐺 ∖ I ) ⊆ 𝑋 ∧ dom ((𝐹𝐺) ∖ I ) ⊆ 𝑋)) → dom (𝐺 ∖ I ) ⊆ 𝑋)
4237, 41unssd 4192 . . . . . . . . . 10 (((𝐹:𝐴1-1-onto𝐴𝐺:𝐴1-1-onto𝐴) ∧ (dom (𝐺 ∖ I ) ⊆ 𝑋 ∧ dom ((𝐹𝐺) ∖ I ) ⊆ 𝑋)) → (dom ((𝐹𝐺) ∖ I ) ∪ dom (𝐺 ∖ I )) ⊆ 𝑋)
4336, 42sstrid 3995 . . . . . . . . 9 (((𝐹:𝐴1-1-onto𝐴𝐺:𝐴1-1-onto𝐴) ∧ (dom (𝐺 ∖ I ) ⊆ 𝑋 ∧ dom ((𝐹𝐺) ∖ I ) ⊆ 𝑋)) → dom (((𝐹𝐺) ∘ 𝐺) ∖ I ) ⊆ 𝑋)
4435, 43eqsstrrd 4019 . . . . . . . 8 (((𝐹:𝐴1-1-onto𝐴𝐺:𝐴1-1-onto𝐴) ∧ (dom (𝐺 ∖ I ) ⊆ 𝑋 ∧ dom ((𝐹𝐺) ∖ I ) ⊆ 𝑋)) → dom (𝐹 ∖ I ) ⊆ 𝑋)
4544expr 456 . . . . . . 7 (((𝐹:𝐴1-1-onto𝐴𝐺:𝐴1-1-onto𝐴) ∧ dom (𝐺 ∖ I ) ⊆ 𝑋) → (dom ((𝐹𝐺) ∖ I ) ⊆ 𝑋 → dom (𝐹 ∖ I ) ⊆ 𝑋))
4645con3d 152 . . . . . 6 (((𝐹:𝐴1-1-onto𝐴𝐺:𝐴1-1-onto𝐴) ∧ dom (𝐺 ∖ I ) ⊆ 𝑋) → (¬ dom (𝐹 ∖ I ) ⊆ 𝑋 → ¬ dom ((𝐹𝐺) ∖ I ) ⊆ 𝑋))
4746expimpd 453 . . . . 5 ((𝐹:𝐴1-1-onto𝐴𝐺:𝐴1-1-onto𝐴) → ((dom (𝐺 ∖ I ) ⊆ 𝑋 ∧ ¬ dom (𝐹 ∖ I ) ⊆ 𝑋) → ¬ dom ((𝐹𝐺) ∖ I ) ⊆ 𝑋))
4847ancomsd 465 . . . 4 ((𝐹:𝐴1-1-onto𝐴𝐺:𝐴1-1-onto𝐴) → ((¬ dom (𝐹 ∖ I ) ⊆ 𝑋 ∧ dom (𝐺 ∖ I ) ⊆ 𝑋) → ¬ dom ((𝐹𝐺) ∖ I ) ⊆ 𝑋))
4924, 48jaod 860 . . 3 ((𝐹:𝐴1-1-onto𝐴𝐺:𝐴1-1-onto𝐴) → (((dom (𝐹 ∖ I ) ⊆ 𝑋 ∧ ¬ dom (𝐺 ∖ I ) ⊆ 𝑋) ∨ (¬ dom (𝐹 ∖ I ) ⊆ 𝑋 ∧ dom (𝐺 ∖ I ) ⊆ 𝑋)) → ¬ dom ((𝐹𝐺) ∖ I ) ⊆ 𝑋))
501, 49biimtrid 242 . 2 ((𝐹:𝐴1-1-onto𝐴𝐺:𝐴1-1-onto𝐴) → ((dom (𝐹 ∖ I ) ⊆ 𝑋 ⊻ dom (𝐺 ∖ I ) ⊆ 𝑋) → ¬ dom ((𝐹𝐺) ∖ I ) ⊆ 𝑋))
51503impia 1118 1 ((𝐹:𝐴1-1-onto𝐴𝐺:𝐴1-1-onto𝐴 ∧ (dom (𝐹 ∖ I ) ⊆ 𝑋 ⊻ dom (𝐺 ∖ I ) ⊆ 𝑋)) → ¬ dom ((𝐹𝐺) ∖ I ) ⊆ 𝑋)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395  wo 848  w3a 1087  wxo 1511   = wceq 1540  cdif 3948  cun 3949  wss 3951   I cid 5577  ccnv 5684  dom cdm 5685  cres 5687  ccom 5689  wf 6557  1-1-ontowf1o 6560
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2708  ax-sep 5296  ax-nul 5306  ax-pr 5432
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3an 1089  df-xor 1512  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2729  df-clel 2816  df-ne 2941  df-ral 3062  df-rex 3071  df-rab 3437  df-v 3482  df-dif 3954  df-un 3956  df-in 3958  df-ss 3968  df-nul 4334  df-if 4526  df-sn 4627  df-pr 4629  df-op 4633  df-uni 4908  df-br 5144  df-opab 5206  df-id 5578  df-xp 5691  df-rel 5692  df-cnv 5693  df-co 5694  df-dm 5695  df-rn 5696  df-res 5697  df-ima 5698  df-iota 6514  df-fun 6563  df-fn 6564  df-f 6565  df-f1 6566  df-fo 6567  df-f1o 6568  df-fv 6569
This theorem is referenced by:  f1omvdco3  19467
  Copyright terms: Public domain W3C validator