Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bj-dfid2ALT Structured version   Visualization version   GIF version

Theorem bj-dfid2ALT 35223
Description: Alternate version of dfid2 5488. (Contributed by BJ, 9-Nov-2024.) (Proof modification is discouraged.) Use df-id 5486 instead to make the semantics of the construction df-opab 5138 clearer. (New usage is discouraged.)
Assertion
Ref Expression
bj-dfid2ALT I = {⟨𝑥, 𝑥⟩ ∣ ⊤}

Proof of Theorem bj-dfid2ALT
Dummy variables 𝑦 𝑧 𝑢 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-id 5486 . 2 I = {⟨𝑥, 𝑦⟩ ∣ 𝑥 = 𝑦}
2 equcomi 2020 . . . . . . . . . . . 12 (𝑥 = 𝑦𝑦 = 𝑥)
32opeq2d 4813 . . . . . . . . . . 11 (𝑥 = 𝑦 → ⟨𝑥, 𝑦⟩ = ⟨𝑥, 𝑥⟩)
43eqeq2d 2749 . . . . . . . . . 10 (𝑥 = 𝑦 → (𝑧 = ⟨𝑥, 𝑦⟩ ↔ 𝑧 = ⟨𝑥, 𝑥⟩))
54pm5.32ri 576 . . . . . . . . 9 ((𝑧 = ⟨𝑥, 𝑦⟩ ∧ 𝑥 = 𝑦) ↔ (𝑧 = ⟨𝑥, 𝑥⟩ ∧ 𝑥 = 𝑦))
65exbii 1850 . . . . . . . 8 (∃𝑦(𝑧 = ⟨𝑥, 𝑦⟩ ∧ 𝑥 = 𝑦) ↔ ∃𝑦(𝑧 = ⟨𝑥, 𝑥⟩ ∧ 𝑥 = 𝑦))
7 ax6evr 2018 . . . . . . . . 9 𝑦 𝑥 = 𝑦
8 19.42v 1957 . . . . . . . . 9 (∃𝑦(𝑧 = ⟨𝑥, 𝑥⟩ ∧ 𝑥 = 𝑦) ↔ (𝑧 = ⟨𝑥, 𝑥⟩ ∧ ∃𝑦 𝑥 = 𝑦))
97, 8mpbiran2 707 . . . . . . . 8 (∃𝑦(𝑧 = ⟨𝑥, 𝑥⟩ ∧ 𝑥 = 𝑦) ↔ 𝑧 = ⟨𝑥, 𝑥⟩)
106, 9bitri 274 . . . . . . 7 (∃𝑦(𝑧 = ⟨𝑥, 𝑦⟩ ∧ 𝑥 = 𝑦) ↔ 𝑧 = ⟨𝑥, 𝑥⟩)
1110exbii 1850 . . . . . 6 (∃𝑥𝑦(𝑧 = ⟨𝑥, 𝑦⟩ ∧ 𝑥 = 𝑦) ↔ ∃𝑥 𝑧 = ⟨𝑥, 𝑥⟩)
12 id 22 . . . . . . . . 9 (𝑥 = 𝑢𝑥 = 𝑢)
1312, 12opeq12d 4814 . . . . . . . 8 (𝑥 = 𝑢 → ⟨𝑥, 𝑥⟩ = ⟨𝑢, 𝑢⟩)
1413eqeq2d 2749 . . . . . . 7 (𝑥 = 𝑢 → (𝑧 = ⟨𝑥, 𝑥⟩ ↔ 𝑧 = ⟨𝑢, 𝑢⟩))
1514exexw 2054 . . . . . 6 (∃𝑥 𝑧 = ⟨𝑥, 𝑥⟩ ↔ ∃𝑥𝑥 𝑧 = ⟨𝑥, 𝑥⟩)
1611, 15bitri 274 . . . . 5 (∃𝑥𝑦(𝑧 = ⟨𝑥, 𝑦⟩ ∧ 𝑥 = 𝑦) ↔ ∃𝑥𝑥 𝑧 = ⟨𝑥, 𝑥⟩)
17 tru 1543 . . . . . . . 8
1817biantru 530 . . . . . . 7 (𝑧 = ⟨𝑥, 𝑥⟩ ↔ (𝑧 = ⟨𝑥, 𝑥⟩ ∧ ⊤))
1918exbii 1850 . . . . . 6 (∃𝑥 𝑧 = ⟨𝑥, 𝑥⟩ ↔ ∃𝑥(𝑧 = ⟨𝑥, 𝑥⟩ ∧ ⊤))
2019exbii 1850 . . . . 5 (∃𝑥𝑥 𝑧 = ⟨𝑥, 𝑥⟩ ↔ ∃𝑥𝑥(𝑧 = ⟨𝑥, 𝑥⟩ ∧ ⊤))
2116, 20bitri 274 . . . 4 (∃𝑥𝑦(𝑧 = ⟨𝑥, 𝑦⟩ ∧ 𝑥 = 𝑦) ↔ ∃𝑥𝑥(𝑧 = ⟨𝑥, 𝑥⟩ ∧ ⊤))
2221abbii 2808 . . 3 {𝑧 ∣ ∃𝑥𝑦(𝑧 = ⟨𝑥, 𝑦⟩ ∧ 𝑥 = 𝑦)} = {𝑧 ∣ ∃𝑥𝑥(𝑧 = ⟨𝑥, 𝑥⟩ ∧ ⊤)}
23 df-opab 5138 . . 3 {⟨𝑥, 𝑦⟩ ∣ 𝑥 = 𝑦} = {𝑧 ∣ ∃𝑥𝑦(𝑧 = ⟨𝑥, 𝑦⟩ ∧ 𝑥 = 𝑦)}
24 df-opab 5138 . . 3 {⟨𝑥, 𝑥⟩ ∣ ⊤} = {𝑧 ∣ ∃𝑥𝑥(𝑧 = ⟨𝑥, 𝑥⟩ ∧ ⊤)}
2522, 23, 243eqtr4i 2776 . 2 {⟨𝑥, 𝑦⟩ ∣ 𝑥 = 𝑦} = {⟨𝑥, 𝑥⟩ ∣ ⊤}
261, 25eqtri 2766 1 I = {⟨𝑥, 𝑥⟩ ∣ ⊤}
Colors of variables: wff setvar class
Syntax hints:  wa 396   = wceq 1539  wtru 1540  wex 1782  {cab 2715  cop 4569  {copab 5137   I cid 5485
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-ext 2709
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-sb 2068  df-clab 2716  df-cleq 2730  df-clel 2816  df-rab 3073  df-v 3433  df-dif 3891  df-un 3893  df-nul 4259  df-if 4462  df-sn 4564  df-pr 4566  df-op 4570  df-opab 5138  df-id 5486
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator