MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  2clwwlk2clwwlk Structured version   Visualization version   GIF version

Theorem 2clwwlk2clwwlk 28714
Description: An element of the value of operation 𝐶, i.e., a word being a double loop of length 𝑁 on vertex 𝑋, is composed of two closed walks. (Contributed by AV, 28-Apr-2022.) (Proof shortened by AV, 3-Nov-2022.)
Hypothesis
Ref Expression
2clwwlk.c 𝐶 = (𝑣𝑉, 𝑛 ∈ (ℤ‘2) ↦ {𝑤 ∈ (𝑣(ClWWalksNOn‘𝐺)𝑛) ∣ (𝑤‘(𝑛 − 2)) = 𝑣})
Assertion
Ref Expression
2clwwlk2clwwlk ((𝑋𝑉𝑁 ∈ (ℤ‘3)) → (𝑊 ∈ (𝑋𝐶𝑁) ↔ ∃𝑎 ∈ (𝑋(ClWWalksNOn‘𝐺)(𝑁 − 2))∃𝑏 ∈ (𝑋(ClWWalksNOn‘𝐺)2)𝑊 = (𝑎 ++ 𝑏)))
Distinct variable groups:   𝑛,𝐺,𝑣,𝑤   𝑛,𝑁,𝑣,𝑤   𝑛,𝑉,𝑣   𝑛,𝑋,𝑣,𝑤   𝑤,𝑊   𝐶,𝑎,𝑏   𝐺,𝑎,𝑏   𝑁,𝑎,𝑏,𝑤   𝑉,𝑎,𝑏   𝑊,𝑎,𝑏   𝑋,𝑎,𝑏
Allowed substitution hints:   𝐶(𝑤,𝑣,𝑛)   𝑉(𝑤)   𝑊(𝑣,𝑛)

Proof of Theorem 2clwwlk2clwwlk
StepHypRef Expression
1 uzuzle23 12629 . . . . 5 (𝑁 ∈ (ℤ‘3) → 𝑁 ∈ (ℤ‘2))
2 2clwwlk.c . . . . . 6 𝐶 = (𝑣𝑉, 𝑛 ∈ (ℤ‘2) ↦ {𝑤 ∈ (𝑣(ClWWalksNOn‘𝐺)𝑛) ∣ (𝑤‘(𝑛 − 2)) = 𝑣})
322clwwlkel 28713 . . . . 5 ((𝑋𝑉𝑁 ∈ (ℤ‘2)) → (𝑊 ∈ (𝑋𝐶𝑁) ↔ (𝑊 ∈ (𝑋(ClWWalksNOn‘𝐺)𝑁) ∧ (𝑊‘(𝑁 − 2)) = 𝑋)))
41, 3sylan2 593 . . . 4 ((𝑋𝑉𝑁 ∈ (ℤ‘3)) → (𝑊 ∈ (𝑋𝐶𝑁) ↔ (𝑊 ∈ (𝑋(ClWWalksNOn‘𝐺)𝑁) ∧ (𝑊‘(𝑁 − 2)) = 𝑋)))
5 simpr 485 . . . . . . . . 9 ((𝑋𝑉𝑁 ∈ (ℤ‘3)) → 𝑁 ∈ (ℤ‘3))
65anim1i 615 . . . . . . . 8 (((𝑋𝑉𝑁 ∈ (ℤ‘3)) ∧ (𝑊 ∈ (𝑋(ClWWalksNOn‘𝐺)𝑁) ∧ (𝑊‘(𝑁 − 2)) = 𝑋)) → (𝑁 ∈ (ℤ‘3) ∧ (𝑊 ∈ (𝑋(ClWWalksNOn‘𝐺)𝑁) ∧ (𝑊‘(𝑁 − 2)) = 𝑋)))
7 3anass 1094 . . . . . . . 8 ((𝑁 ∈ (ℤ‘3) ∧ 𝑊 ∈ (𝑋(ClWWalksNOn‘𝐺)𝑁) ∧ (𝑊‘(𝑁 − 2)) = 𝑋) ↔ (𝑁 ∈ (ℤ‘3) ∧ (𝑊 ∈ (𝑋(ClWWalksNOn‘𝐺)𝑁) ∧ (𝑊‘(𝑁 − 2)) = 𝑋)))
86, 7sylibr 233 . . . . . . 7 (((𝑋𝑉𝑁 ∈ (ℤ‘3)) ∧ (𝑊 ∈ (𝑋(ClWWalksNOn‘𝐺)𝑁) ∧ (𝑊‘(𝑁 − 2)) = 𝑋)) → (𝑁 ∈ (ℤ‘3) ∧ 𝑊 ∈ (𝑋(ClWWalksNOn‘𝐺)𝑁) ∧ (𝑊‘(𝑁 − 2)) = 𝑋))
9 clwwnonrepclwwnon 28709 . . . . . . 7 ((𝑁 ∈ (ℤ‘3) ∧ 𝑊 ∈ (𝑋(ClWWalksNOn‘𝐺)𝑁) ∧ (𝑊‘(𝑁 − 2)) = 𝑋) → (𝑊 prefix (𝑁 − 2)) ∈ (𝑋(ClWWalksNOn‘𝐺)(𝑁 − 2)))
108, 9syl 17 . . . . . 6 (((𝑋𝑉𝑁 ∈ (ℤ‘3)) ∧ (𝑊 ∈ (𝑋(ClWWalksNOn‘𝐺)𝑁) ∧ (𝑊‘(𝑁 − 2)) = 𝑋)) → (𝑊 prefix (𝑁 − 2)) ∈ (𝑋(ClWWalksNOn‘𝐺)(𝑁 − 2)))
115adantr 481 . . . . . . 7 (((𝑋𝑉𝑁 ∈ (ℤ‘3)) ∧ (𝑊 ∈ (𝑋(ClWWalksNOn‘𝐺)𝑁) ∧ (𝑊‘(𝑁 − 2)) = 𝑋)) → 𝑁 ∈ (ℤ‘3))
12 simprl 768 . . . . . . 7 (((𝑋𝑉𝑁 ∈ (ℤ‘3)) ∧ (𝑊 ∈ (𝑋(ClWWalksNOn‘𝐺)𝑁) ∧ (𝑊‘(𝑁 − 2)) = 𝑋)) → 𝑊 ∈ (𝑋(ClWWalksNOn‘𝐺)𝑁))
13 simprr 770 . . . . . . . 8 (((𝑋𝑉𝑁 ∈ (ℤ‘3)) ∧ (𝑊 ∈ (𝑋(ClWWalksNOn‘𝐺)𝑁) ∧ (𝑊‘(𝑁 − 2)) = 𝑋)) → (𝑊‘(𝑁 − 2)) = 𝑋)
14 isclwwlknon 28455 . . . . . . . . . 10 (𝑊 ∈ (𝑋(ClWWalksNOn‘𝐺)𝑁) ↔ (𝑊 ∈ (𝑁 ClWWalksN 𝐺) ∧ (𝑊‘0) = 𝑋))
15 simpr 485 . . . . . . . . . . 11 ((𝑊 ∈ (𝑁 ClWWalksN 𝐺) ∧ (𝑊‘0) = 𝑋) → (𝑊‘0) = 𝑋)
1615eqcomd 2744 . . . . . . . . . 10 ((𝑊 ∈ (𝑁 ClWWalksN 𝐺) ∧ (𝑊‘0) = 𝑋) → 𝑋 = (𝑊‘0))
1714, 16sylbi 216 . . . . . . . . 9 (𝑊 ∈ (𝑋(ClWWalksNOn‘𝐺)𝑁) → 𝑋 = (𝑊‘0))
1817ad2antrl 725 . . . . . . . 8 (((𝑋𝑉𝑁 ∈ (ℤ‘3)) ∧ (𝑊 ∈ (𝑋(ClWWalksNOn‘𝐺)𝑁) ∧ (𝑊‘(𝑁 − 2)) = 𝑋)) → 𝑋 = (𝑊‘0))
1913, 18eqtrd 2778 . . . . . . 7 (((𝑋𝑉𝑁 ∈ (ℤ‘3)) ∧ (𝑊 ∈ (𝑋(ClWWalksNOn‘𝐺)𝑁) ∧ (𝑊‘(𝑁 − 2)) = 𝑋)) → (𝑊‘(𝑁 − 2)) = (𝑊‘0))
20 2clwwlk2clwwlklem 28710 . . . . . . 7 ((𝑁 ∈ (ℤ‘3) ∧ 𝑊 ∈ (𝑋(ClWWalksNOn‘𝐺)𝑁) ∧ (𝑊‘(𝑁 − 2)) = (𝑊‘0)) → (𝑊 substr ⟨(𝑁 − 2), 𝑁⟩) ∈ (𝑋(ClWWalksNOn‘𝐺)2))
2111, 12, 19, 20syl3anc 1370 . . . . . 6 (((𝑋𝑉𝑁 ∈ (ℤ‘3)) ∧ (𝑊 ∈ (𝑋(ClWWalksNOn‘𝐺)𝑁) ∧ (𝑊‘(𝑁 − 2)) = 𝑋)) → (𝑊 substr ⟨(𝑁 − 2), 𝑁⟩) ∈ (𝑋(ClWWalksNOn‘𝐺)2))
22 eqid 2738 . . . . . . . . . . . . . 14 (Vtx‘𝐺) = (Vtx‘𝐺)
2322clwwlknbp 28399 . . . . . . . . . . . . 13 (𝑊 ∈ (𝑁 ClWWalksN 𝐺) → (𝑊 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑊) = 𝑁))
24 opeq2 4805 . . . . . . . . . . . . . . . . . 18 (𝑁 = (♯‘𝑊) → ⟨(𝑁 − 2), 𝑁⟩ = ⟨(𝑁 − 2), (♯‘𝑊)⟩)
2524oveq2d 7291 . . . . . . . . . . . . . . . . 17 (𝑁 = (♯‘𝑊) → (𝑊 substr ⟨(𝑁 − 2), 𝑁⟩) = (𝑊 substr ⟨(𝑁 − 2), (♯‘𝑊)⟩))
2625oveq2d 7291 . . . . . . . . . . . . . . . 16 (𝑁 = (♯‘𝑊) → ((𝑊 prefix (𝑁 − 2)) ++ (𝑊 substr ⟨(𝑁 − 2), 𝑁⟩)) = ((𝑊 prefix (𝑁 − 2)) ++ (𝑊 substr ⟨(𝑁 − 2), (♯‘𝑊)⟩)))
2726eqcoms 2746 . . . . . . . . . . . . . . 15 ((♯‘𝑊) = 𝑁 → ((𝑊 prefix (𝑁 − 2)) ++ (𝑊 substr ⟨(𝑁 − 2), 𝑁⟩)) = ((𝑊 prefix (𝑁 − 2)) ++ (𝑊 substr ⟨(𝑁 − 2), (♯‘𝑊)⟩)))
2827ad2antlr 724 . . . . . . . . . . . . . 14 (((𝑊 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑊) = 𝑁) ∧ (𝑋𝑉𝑁 ∈ (ℤ‘3))) → ((𝑊 prefix (𝑁 − 2)) ++ (𝑊 substr ⟨(𝑁 − 2), 𝑁⟩)) = ((𝑊 prefix (𝑁 − 2)) ++ (𝑊 substr ⟨(𝑁 − 2), (♯‘𝑊)⟩)))
29 simpl 483 . . . . . . . . . . . . . . 15 ((𝑊 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑊) = 𝑁) → 𝑊 ∈ Word (Vtx‘𝐺))
30 fz1ssfz0 13352 . . . . . . . . . . . . . . . . . . 19 (1...𝑁) ⊆ (0...𝑁)
31 ige3m2fz 13280 . . . . . . . . . . . . . . . . . . 19 (𝑁 ∈ (ℤ‘3) → (𝑁 − 2) ∈ (1...𝑁))
3230, 31sselid 3919 . . . . . . . . . . . . . . . . . 18 (𝑁 ∈ (ℤ‘3) → (𝑁 − 2) ∈ (0...𝑁))
3332adantl 482 . . . . . . . . . . . . . . . . 17 ((𝑋𝑉𝑁 ∈ (ℤ‘3)) → (𝑁 − 2) ∈ (0...𝑁))
3433adantl 482 . . . . . . . . . . . . . . . 16 (((𝑊 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑊) = 𝑁) ∧ (𝑋𝑉𝑁 ∈ (ℤ‘3))) → (𝑁 − 2) ∈ (0...𝑁))
35 oveq2 7283 . . . . . . . . . . . . . . . . . 18 ((♯‘𝑊) = 𝑁 → (0...(♯‘𝑊)) = (0...𝑁))
3635eleq2d 2824 . . . . . . . . . . . . . . . . 17 ((♯‘𝑊) = 𝑁 → ((𝑁 − 2) ∈ (0...(♯‘𝑊)) ↔ (𝑁 − 2) ∈ (0...𝑁)))
3736ad2antlr 724 . . . . . . . . . . . . . . . 16 (((𝑊 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑊) = 𝑁) ∧ (𝑋𝑉𝑁 ∈ (ℤ‘3))) → ((𝑁 − 2) ∈ (0...(♯‘𝑊)) ↔ (𝑁 − 2) ∈ (0...𝑁)))
3834, 37mpbird 256 . . . . . . . . . . . . . . 15 (((𝑊 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑊) = 𝑁) ∧ (𝑋𝑉𝑁 ∈ (ℤ‘3))) → (𝑁 − 2) ∈ (0...(♯‘𝑊)))
39 pfxcctswrd 14423 . . . . . . . . . . . . . . 15 ((𝑊 ∈ Word (Vtx‘𝐺) ∧ (𝑁 − 2) ∈ (0...(♯‘𝑊))) → ((𝑊 prefix (𝑁 − 2)) ++ (𝑊 substr ⟨(𝑁 − 2), (♯‘𝑊)⟩)) = 𝑊)
4029, 38, 39syl2an2r 682 . . . . . . . . . . . . . 14 (((𝑊 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑊) = 𝑁) ∧ (𝑋𝑉𝑁 ∈ (ℤ‘3))) → ((𝑊 prefix (𝑁 − 2)) ++ (𝑊 substr ⟨(𝑁 − 2), (♯‘𝑊)⟩)) = 𝑊)
4128, 40eqtrd 2778 . . . . . . . . . . . . 13 (((𝑊 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑊) = 𝑁) ∧ (𝑋𝑉𝑁 ∈ (ℤ‘3))) → ((𝑊 prefix (𝑁 − 2)) ++ (𝑊 substr ⟨(𝑁 − 2), 𝑁⟩)) = 𝑊)
4223, 41sylan 580 . . . . . . . . . . . 12 ((𝑊 ∈ (𝑁 ClWWalksN 𝐺) ∧ (𝑋𝑉𝑁 ∈ (ℤ‘3))) → ((𝑊 prefix (𝑁 − 2)) ++ (𝑊 substr ⟨(𝑁 − 2), 𝑁⟩)) = 𝑊)
4342ex 413 . . . . . . . . . . 11 (𝑊 ∈ (𝑁 ClWWalksN 𝐺) → ((𝑋𝑉𝑁 ∈ (ℤ‘3)) → ((𝑊 prefix (𝑁 − 2)) ++ (𝑊 substr ⟨(𝑁 − 2), 𝑁⟩)) = 𝑊))
4443adantr 481 . . . . . . . . . 10 ((𝑊 ∈ (𝑁 ClWWalksN 𝐺) ∧ (𝑊‘0) = 𝑋) → ((𝑋𝑉𝑁 ∈ (ℤ‘3)) → ((𝑊 prefix (𝑁 − 2)) ++ (𝑊 substr ⟨(𝑁 − 2), 𝑁⟩)) = 𝑊))
4514, 44sylbi 216 . . . . . . . . 9 (𝑊 ∈ (𝑋(ClWWalksNOn‘𝐺)𝑁) → ((𝑋𝑉𝑁 ∈ (ℤ‘3)) → ((𝑊 prefix (𝑁 − 2)) ++ (𝑊 substr ⟨(𝑁 − 2), 𝑁⟩)) = 𝑊))
4645adantr 481 . . . . . . . 8 ((𝑊 ∈ (𝑋(ClWWalksNOn‘𝐺)𝑁) ∧ (𝑊‘(𝑁 − 2)) = 𝑋) → ((𝑋𝑉𝑁 ∈ (ℤ‘3)) → ((𝑊 prefix (𝑁 − 2)) ++ (𝑊 substr ⟨(𝑁 − 2), 𝑁⟩)) = 𝑊))
4746impcom 408 . . . . . . 7 (((𝑋𝑉𝑁 ∈ (ℤ‘3)) ∧ (𝑊 ∈ (𝑋(ClWWalksNOn‘𝐺)𝑁) ∧ (𝑊‘(𝑁 − 2)) = 𝑋)) → ((𝑊 prefix (𝑁 − 2)) ++ (𝑊 substr ⟨(𝑁 − 2), 𝑁⟩)) = 𝑊)
4847eqcomd 2744 . . . . . 6 (((𝑋𝑉𝑁 ∈ (ℤ‘3)) ∧ (𝑊 ∈ (𝑋(ClWWalksNOn‘𝐺)𝑁) ∧ (𝑊‘(𝑁 − 2)) = 𝑋)) → 𝑊 = ((𝑊 prefix (𝑁 − 2)) ++ (𝑊 substr ⟨(𝑁 − 2), 𝑁⟩)))
4910, 21, 483jca 1127 . . . . 5 (((𝑋𝑉𝑁 ∈ (ℤ‘3)) ∧ (𝑊 ∈ (𝑋(ClWWalksNOn‘𝐺)𝑁) ∧ (𝑊‘(𝑁 − 2)) = 𝑋)) → ((𝑊 prefix (𝑁 − 2)) ∈ (𝑋(ClWWalksNOn‘𝐺)(𝑁 − 2)) ∧ (𝑊 substr ⟨(𝑁 − 2), 𝑁⟩) ∈ (𝑋(ClWWalksNOn‘𝐺)2) ∧ 𝑊 = ((𝑊 prefix (𝑁 − 2)) ++ (𝑊 substr ⟨(𝑁 − 2), 𝑁⟩))))
5049ex 413 . . . 4 ((𝑋𝑉𝑁 ∈ (ℤ‘3)) → ((𝑊 ∈ (𝑋(ClWWalksNOn‘𝐺)𝑁) ∧ (𝑊‘(𝑁 − 2)) = 𝑋) → ((𝑊 prefix (𝑁 − 2)) ∈ (𝑋(ClWWalksNOn‘𝐺)(𝑁 − 2)) ∧ (𝑊 substr ⟨(𝑁 − 2), 𝑁⟩) ∈ (𝑋(ClWWalksNOn‘𝐺)2) ∧ 𝑊 = ((𝑊 prefix (𝑁 − 2)) ++ (𝑊 substr ⟨(𝑁 − 2), 𝑁⟩)))))
514, 50sylbid 239 . . 3 ((𝑋𝑉𝑁 ∈ (ℤ‘3)) → (𝑊 ∈ (𝑋𝐶𝑁) → ((𝑊 prefix (𝑁 − 2)) ∈ (𝑋(ClWWalksNOn‘𝐺)(𝑁 − 2)) ∧ (𝑊 substr ⟨(𝑁 − 2), 𝑁⟩) ∈ (𝑋(ClWWalksNOn‘𝐺)2) ∧ 𝑊 = ((𝑊 prefix (𝑁 − 2)) ++ (𝑊 substr ⟨(𝑁 − 2), 𝑁⟩)))))
52 rspceov 7322 . . 3 (((𝑊 prefix (𝑁 − 2)) ∈ (𝑋(ClWWalksNOn‘𝐺)(𝑁 − 2)) ∧ (𝑊 substr ⟨(𝑁 − 2), 𝑁⟩) ∈ (𝑋(ClWWalksNOn‘𝐺)2) ∧ 𝑊 = ((𝑊 prefix (𝑁 − 2)) ++ (𝑊 substr ⟨(𝑁 − 2), 𝑁⟩))) → ∃𝑎 ∈ (𝑋(ClWWalksNOn‘𝐺)(𝑁 − 2))∃𝑏 ∈ (𝑋(ClWWalksNOn‘𝐺)2)𝑊 = (𝑎 ++ 𝑏))
5351, 52syl6 35 . 2 ((𝑋𝑉𝑁 ∈ (ℤ‘3)) → (𝑊 ∈ (𝑋𝐶𝑁) → ∃𝑎 ∈ (𝑋(ClWWalksNOn‘𝐺)(𝑁 − 2))∃𝑏 ∈ (𝑋(ClWWalksNOn‘𝐺)2)𝑊 = (𝑎 ++ 𝑏)))
54 eluzelcn 12594 . . . . . . . . . . 11 (𝑁 ∈ (ℤ‘3) → 𝑁 ∈ ℂ)
55 2cnd 12051 . . . . . . . . . . 11 (𝑁 ∈ (ℤ‘3) → 2 ∈ ℂ)
5654, 55npcand 11336 . . . . . . . . . 10 (𝑁 ∈ (ℤ‘3) → ((𝑁 − 2) + 2) = 𝑁)
5756adantl 482 . . . . . . . . 9 ((𝑋𝑉𝑁 ∈ (ℤ‘3)) → ((𝑁 − 2) + 2) = 𝑁)
5857oveq2d 7291 . . . . . . . 8 ((𝑋𝑉𝑁 ∈ (ℤ‘3)) → (𝑋(ClWWalksNOn‘𝐺)((𝑁 − 2) + 2)) = (𝑋(ClWWalksNOn‘𝐺)𝑁))
5958eleq2d 2824 . . . . . . 7 ((𝑋𝑉𝑁 ∈ (ℤ‘3)) → ((𝑎 ++ 𝑏) ∈ (𝑋(ClWWalksNOn‘𝐺)((𝑁 − 2) + 2)) ↔ (𝑎 ++ 𝑏) ∈ (𝑋(ClWWalksNOn‘𝐺)𝑁)))
6059biimpd 228 . . . . . 6 ((𝑋𝑉𝑁 ∈ (ℤ‘3)) → ((𝑎 ++ 𝑏) ∈ (𝑋(ClWWalksNOn‘𝐺)((𝑁 − 2) + 2)) → (𝑎 ++ 𝑏) ∈ (𝑋(ClWWalksNOn‘𝐺)𝑁)))
61 clwwlknonccat 28460 . . . . . 6 ((𝑎 ∈ (𝑋(ClWWalksNOn‘𝐺)(𝑁 − 2)) ∧ 𝑏 ∈ (𝑋(ClWWalksNOn‘𝐺)2)) → (𝑎 ++ 𝑏) ∈ (𝑋(ClWWalksNOn‘𝐺)((𝑁 − 2) + 2)))
6260, 61impel 506 . . . . 5 (((𝑋𝑉𝑁 ∈ (ℤ‘3)) ∧ (𝑎 ∈ (𝑋(ClWWalksNOn‘𝐺)(𝑁 − 2)) ∧ 𝑏 ∈ (𝑋(ClWWalksNOn‘𝐺)2))) → (𝑎 ++ 𝑏) ∈ (𝑋(ClWWalksNOn‘𝐺)𝑁))
63 isclwwlknon 28455 . . . . . . . 8 (𝑏 ∈ (𝑋(ClWWalksNOn‘𝐺)2) ↔ (𝑏 ∈ (2 ClWWalksN 𝐺) ∧ (𝑏‘0) = 𝑋))
64 clwwlkn2 28408 . . . . . . . . . 10 (𝑏 ∈ (2 ClWWalksN 𝐺) ↔ ((♯‘𝑏) = 2 ∧ 𝑏 ∈ Word (Vtx‘𝐺) ∧ {(𝑏‘0), (𝑏‘1)} ∈ (Edg‘𝐺)))
65 isclwwlknon 28455 . . . . . . . . . . . . 13 (𝑎 ∈ (𝑋(ClWWalksNOn‘𝐺)(𝑁 − 2)) ↔ (𝑎 ∈ ((𝑁 − 2) ClWWalksN 𝐺) ∧ (𝑎‘0) = 𝑋))
6622clwwlknbp 28399 . . . . . . . . . . . . . . 15 (𝑎 ∈ ((𝑁 − 2) ClWWalksN 𝐺) → (𝑎 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑎) = (𝑁 − 2)))
67 simpl 483 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝑎 ∈ Word (Vtx‘𝐺) ∧ ((♯‘𝑏) = 2 ∧ 𝑏 ∈ Word (Vtx‘𝐺))) → 𝑎 ∈ Word (Vtx‘𝐺))
68 simprr 770 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝑎 ∈ Word (Vtx‘𝐺) ∧ ((♯‘𝑏) = 2 ∧ 𝑏 ∈ Word (Vtx‘𝐺))) → 𝑏 ∈ Word (Vtx‘𝐺))
69 2nn 12046 . . . . . . . . . . . . . . . . . . . . . . . . . 26 2 ∈ ℕ
70 lbfzo0 13427 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (0 ∈ (0..^2) ↔ 2 ∈ ℕ)
7169, 70mpbir 230 . . . . . . . . . . . . . . . . . . . . . . . . 25 0 ∈ (0..^2)
72 oveq2 7283 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((♯‘𝑏) = 2 → (0..^(♯‘𝑏)) = (0..^2))
7371, 72eleqtrrid 2846 . . . . . . . . . . . . . . . . . . . . . . . 24 ((♯‘𝑏) = 2 → 0 ∈ (0..^(♯‘𝑏)))
7473ad2antrl 725 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝑎 ∈ Word (Vtx‘𝐺) ∧ ((♯‘𝑏) = 2 ∧ 𝑏 ∈ Word (Vtx‘𝐺))) → 0 ∈ (0..^(♯‘𝑏)))
7567, 68, 743jca 1127 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑎 ∈ Word (Vtx‘𝐺) ∧ ((♯‘𝑏) = 2 ∧ 𝑏 ∈ Word (Vtx‘𝐺))) → (𝑎 ∈ Word (Vtx‘𝐺) ∧ 𝑏 ∈ Word (Vtx‘𝐺) ∧ 0 ∈ (0..^(♯‘𝑏))))
7675adantr 481 . . . . . . . . . . . . . . . . . . . . 21 (((𝑎 ∈ Word (Vtx‘𝐺) ∧ ((♯‘𝑏) = 2 ∧ 𝑏 ∈ Word (Vtx‘𝐺))) ∧ ((𝑏‘0) = 𝑋 ∧ (♯‘𝑎) = (𝑁 − 2))) → (𝑎 ∈ Word (Vtx‘𝐺) ∧ 𝑏 ∈ Word (Vtx‘𝐺) ∧ 0 ∈ (0..^(♯‘𝑏))))
7776adantr 481 . . . . . . . . . . . . . . . . . . . 20 ((((𝑎 ∈ Word (Vtx‘𝐺) ∧ ((♯‘𝑏) = 2 ∧ 𝑏 ∈ Word (Vtx‘𝐺))) ∧ ((𝑏‘0) = 𝑋 ∧ (♯‘𝑎) = (𝑁 − 2))) ∧ (𝑋𝑉𝑁 ∈ (ℤ‘3))) → (𝑎 ∈ Word (Vtx‘𝐺) ∧ 𝑏 ∈ Word (Vtx‘𝐺) ∧ 0 ∈ (0..^(♯‘𝑏))))
78 ccatval3 14284 . . . . . . . . . . . . . . . . . . . 20 ((𝑎 ∈ Word (Vtx‘𝐺) ∧ 𝑏 ∈ Word (Vtx‘𝐺) ∧ 0 ∈ (0..^(♯‘𝑏))) → ((𝑎 ++ 𝑏)‘(0 + (♯‘𝑎))) = (𝑏‘0))
7977, 78syl 17 . . . . . . . . . . . . . . . . . . 19 ((((𝑎 ∈ Word (Vtx‘𝐺) ∧ ((♯‘𝑏) = 2 ∧ 𝑏 ∈ Word (Vtx‘𝐺))) ∧ ((𝑏‘0) = 𝑋 ∧ (♯‘𝑎) = (𝑁 − 2))) ∧ (𝑋𝑉𝑁 ∈ (ℤ‘3))) → ((𝑎 ++ 𝑏)‘(0 + (♯‘𝑎))) = (𝑏‘0))
80 simpr 485 . . . . . . . . . . . . . . . . . . . . . . . 24 (((𝑏‘0) = 𝑋 ∧ (♯‘𝑎) = (𝑁 − 2)) → (♯‘𝑎) = (𝑁 − 2))
8180oveq2d 7291 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝑏‘0) = 𝑋 ∧ (♯‘𝑎) = (𝑁 − 2)) → (0 + (♯‘𝑎)) = (0 + (𝑁 − 2)))
8281adantl 482 . . . . . . . . . . . . . . . . . . . . . 22 (((𝑎 ∈ Word (Vtx‘𝐺) ∧ ((♯‘𝑏) = 2 ∧ 𝑏 ∈ Word (Vtx‘𝐺))) ∧ ((𝑏‘0) = 𝑋 ∧ (♯‘𝑎) = (𝑁 − 2))) → (0 + (♯‘𝑎)) = (0 + (𝑁 − 2)))
8354, 55subcld 11332 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑁 ∈ (ℤ‘3) → (𝑁 − 2) ∈ ℂ)
8483addid2d 11176 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑁 ∈ (ℤ‘3) → (0 + (𝑁 − 2)) = (𝑁 − 2))
8584adantl 482 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑋𝑉𝑁 ∈ (ℤ‘3)) → (0 + (𝑁 − 2)) = (𝑁 − 2))
8682, 85sylan9eq 2798 . . . . . . . . . . . . . . . . . . . . 21 ((((𝑎 ∈ Word (Vtx‘𝐺) ∧ ((♯‘𝑏) = 2 ∧ 𝑏 ∈ Word (Vtx‘𝐺))) ∧ ((𝑏‘0) = 𝑋 ∧ (♯‘𝑎) = (𝑁 − 2))) ∧ (𝑋𝑉𝑁 ∈ (ℤ‘3))) → (0 + (♯‘𝑎)) = (𝑁 − 2))
8786eqcomd 2744 . . . . . . . . . . . . . . . . . . . 20 ((((𝑎 ∈ Word (Vtx‘𝐺) ∧ ((♯‘𝑏) = 2 ∧ 𝑏 ∈ Word (Vtx‘𝐺))) ∧ ((𝑏‘0) = 𝑋 ∧ (♯‘𝑎) = (𝑁 − 2))) ∧ (𝑋𝑉𝑁 ∈ (ℤ‘3))) → (𝑁 − 2) = (0 + (♯‘𝑎)))
8887fveq2d 6778 . . . . . . . . . . . . . . . . . . 19 ((((𝑎 ∈ Word (Vtx‘𝐺) ∧ ((♯‘𝑏) = 2 ∧ 𝑏 ∈ Word (Vtx‘𝐺))) ∧ ((𝑏‘0) = 𝑋 ∧ (♯‘𝑎) = (𝑁 − 2))) ∧ (𝑋𝑉𝑁 ∈ (ℤ‘3))) → ((𝑎 ++ 𝑏)‘(𝑁 − 2)) = ((𝑎 ++ 𝑏)‘(0 + (♯‘𝑎))))
89 simpl 483 . . . . . . . . . . . . . . . . . . . . 21 (((𝑏‘0) = 𝑋 ∧ (♯‘𝑎) = (𝑁 − 2)) → (𝑏‘0) = 𝑋)
9089eqcomd 2744 . . . . . . . . . . . . . . . . . . . 20 (((𝑏‘0) = 𝑋 ∧ (♯‘𝑎) = (𝑁 − 2)) → 𝑋 = (𝑏‘0))
9190ad2antlr 724 . . . . . . . . . . . . . . . . . . 19 ((((𝑎 ∈ Word (Vtx‘𝐺) ∧ ((♯‘𝑏) = 2 ∧ 𝑏 ∈ Word (Vtx‘𝐺))) ∧ ((𝑏‘0) = 𝑋 ∧ (♯‘𝑎) = (𝑁 − 2))) ∧ (𝑋𝑉𝑁 ∈ (ℤ‘3))) → 𝑋 = (𝑏‘0))
9279, 88, 913eqtr4d 2788 . . . . . . . . . . . . . . . . . 18 ((((𝑎 ∈ Word (Vtx‘𝐺) ∧ ((♯‘𝑏) = 2 ∧ 𝑏 ∈ Word (Vtx‘𝐺))) ∧ ((𝑏‘0) = 𝑋 ∧ (♯‘𝑎) = (𝑁 − 2))) ∧ (𝑋𝑉𝑁 ∈ (ℤ‘3))) → ((𝑎 ++ 𝑏)‘(𝑁 − 2)) = 𝑋)
9392exp53 448 . . . . . . . . . . . . . . . . 17 (𝑎 ∈ Word (Vtx‘𝐺) → (((♯‘𝑏) = 2 ∧ 𝑏 ∈ Word (Vtx‘𝐺)) → ((𝑏‘0) = 𝑋 → ((♯‘𝑎) = (𝑁 − 2) → ((𝑋𝑉𝑁 ∈ (ℤ‘3)) → ((𝑎 ++ 𝑏)‘(𝑁 − 2)) = 𝑋)))))
9493com24 95 . . . . . . . . . . . . . . . 16 (𝑎 ∈ Word (Vtx‘𝐺) → ((♯‘𝑎) = (𝑁 − 2) → ((𝑏‘0) = 𝑋 → (((♯‘𝑏) = 2 ∧ 𝑏 ∈ Word (Vtx‘𝐺)) → ((𝑋𝑉𝑁 ∈ (ℤ‘3)) → ((𝑎 ++ 𝑏)‘(𝑁 − 2)) = 𝑋)))))
9594imp 407 . . . . . . . . . . . . . . 15 ((𝑎 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑎) = (𝑁 − 2)) → ((𝑏‘0) = 𝑋 → (((♯‘𝑏) = 2 ∧ 𝑏 ∈ Word (Vtx‘𝐺)) → ((𝑋𝑉𝑁 ∈ (ℤ‘3)) → ((𝑎 ++ 𝑏)‘(𝑁 − 2)) = 𝑋))))
9666, 95syl 17 . . . . . . . . . . . . . 14 (𝑎 ∈ ((𝑁 − 2) ClWWalksN 𝐺) → ((𝑏‘0) = 𝑋 → (((♯‘𝑏) = 2 ∧ 𝑏 ∈ Word (Vtx‘𝐺)) → ((𝑋𝑉𝑁 ∈ (ℤ‘3)) → ((𝑎 ++ 𝑏)‘(𝑁 − 2)) = 𝑋))))
9796adantr 481 . . . . . . . . . . . . 13 ((𝑎 ∈ ((𝑁 − 2) ClWWalksN 𝐺) ∧ (𝑎‘0) = 𝑋) → ((𝑏‘0) = 𝑋 → (((♯‘𝑏) = 2 ∧ 𝑏 ∈ Word (Vtx‘𝐺)) → ((𝑋𝑉𝑁 ∈ (ℤ‘3)) → ((𝑎 ++ 𝑏)‘(𝑁 − 2)) = 𝑋))))
9865, 97sylbi 216 . . . . . . . . . . . 12 (𝑎 ∈ (𝑋(ClWWalksNOn‘𝐺)(𝑁 − 2)) → ((𝑏‘0) = 𝑋 → (((♯‘𝑏) = 2 ∧ 𝑏 ∈ Word (Vtx‘𝐺)) → ((𝑋𝑉𝑁 ∈ (ℤ‘3)) → ((𝑎 ++ 𝑏)‘(𝑁 − 2)) = 𝑋))))
9998com13 88 . . . . . . . . . . 11 (((♯‘𝑏) = 2 ∧ 𝑏 ∈ Word (Vtx‘𝐺)) → ((𝑏‘0) = 𝑋 → (𝑎 ∈ (𝑋(ClWWalksNOn‘𝐺)(𝑁 − 2)) → ((𝑋𝑉𝑁 ∈ (ℤ‘3)) → ((𝑎 ++ 𝑏)‘(𝑁 − 2)) = 𝑋))))
100993adant3 1131 . . . . . . . . . 10 (((♯‘𝑏) = 2 ∧ 𝑏 ∈ Word (Vtx‘𝐺) ∧ {(𝑏‘0), (𝑏‘1)} ∈ (Edg‘𝐺)) → ((𝑏‘0) = 𝑋 → (𝑎 ∈ (𝑋(ClWWalksNOn‘𝐺)(𝑁 − 2)) → ((𝑋𝑉𝑁 ∈ (ℤ‘3)) → ((𝑎 ++ 𝑏)‘(𝑁 − 2)) = 𝑋))))
10164, 100sylbi 216 . . . . . . . . 9 (𝑏 ∈ (2 ClWWalksN 𝐺) → ((𝑏‘0) = 𝑋 → (𝑎 ∈ (𝑋(ClWWalksNOn‘𝐺)(𝑁 − 2)) → ((𝑋𝑉𝑁 ∈ (ℤ‘3)) → ((𝑎 ++ 𝑏)‘(𝑁 − 2)) = 𝑋))))
102101imp 407 . . . . . . . 8 ((𝑏 ∈ (2 ClWWalksN 𝐺) ∧ (𝑏‘0) = 𝑋) → (𝑎 ∈ (𝑋(ClWWalksNOn‘𝐺)(𝑁 − 2)) → ((𝑋𝑉𝑁 ∈ (ℤ‘3)) → ((𝑎 ++ 𝑏)‘(𝑁 − 2)) = 𝑋)))
10363, 102sylbi 216 . . . . . . 7 (𝑏 ∈ (𝑋(ClWWalksNOn‘𝐺)2) → (𝑎 ∈ (𝑋(ClWWalksNOn‘𝐺)(𝑁 − 2)) → ((𝑋𝑉𝑁 ∈ (ℤ‘3)) → ((𝑎 ++ 𝑏)‘(𝑁 − 2)) = 𝑋)))
104103impcom 408 . . . . . 6 ((𝑎 ∈ (𝑋(ClWWalksNOn‘𝐺)(𝑁 − 2)) ∧ 𝑏 ∈ (𝑋(ClWWalksNOn‘𝐺)2)) → ((𝑋𝑉𝑁 ∈ (ℤ‘3)) → ((𝑎 ++ 𝑏)‘(𝑁 − 2)) = 𝑋))
105104impcom 408 . . . . 5 (((𝑋𝑉𝑁 ∈ (ℤ‘3)) ∧ (𝑎 ∈ (𝑋(ClWWalksNOn‘𝐺)(𝑁 − 2)) ∧ 𝑏 ∈ (𝑋(ClWWalksNOn‘𝐺)2))) → ((𝑎 ++ 𝑏)‘(𝑁 − 2)) = 𝑋)
10622clwwlkel 28713 . . . . . . 7 ((𝑋𝑉𝑁 ∈ (ℤ‘2)) → ((𝑎 ++ 𝑏) ∈ (𝑋𝐶𝑁) ↔ ((𝑎 ++ 𝑏) ∈ (𝑋(ClWWalksNOn‘𝐺)𝑁) ∧ ((𝑎 ++ 𝑏)‘(𝑁 − 2)) = 𝑋)))
1071, 106sylan2 593 . . . . . 6 ((𝑋𝑉𝑁 ∈ (ℤ‘3)) → ((𝑎 ++ 𝑏) ∈ (𝑋𝐶𝑁) ↔ ((𝑎 ++ 𝑏) ∈ (𝑋(ClWWalksNOn‘𝐺)𝑁) ∧ ((𝑎 ++ 𝑏)‘(𝑁 − 2)) = 𝑋)))
108107adantr 481 . . . . 5 (((𝑋𝑉𝑁 ∈ (ℤ‘3)) ∧ (𝑎 ∈ (𝑋(ClWWalksNOn‘𝐺)(𝑁 − 2)) ∧ 𝑏 ∈ (𝑋(ClWWalksNOn‘𝐺)2))) → ((𝑎 ++ 𝑏) ∈ (𝑋𝐶𝑁) ↔ ((𝑎 ++ 𝑏) ∈ (𝑋(ClWWalksNOn‘𝐺)𝑁) ∧ ((𝑎 ++ 𝑏)‘(𝑁 − 2)) = 𝑋)))
10962, 105, 108mpbir2and 710 . . . 4 (((𝑋𝑉𝑁 ∈ (ℤ‘3)) ∧ (𝑎 ∈ (𝑋(ClWWalksNOn‘𝐺)(𝑁 − 2)) ∧ 𝑏 ∈ (𝑋(ClWWalksNOn‘𝐺)2))) → (𝑎 ++ 𝑏) ∈ (𝑋𝐶𝑁))
110 eleq1 2826 . . . 4 (𝑊 = (𝑎 ++ 𝑏) → (𝑊 ∈ (𝑋𝐶𝑁) ↔ (𝑎 ++ 𝑏) ∈ (𝑋𝐶𝑁)))
111109, 110syl5ibrcom 246 . . 3 (((𝑋𝑉𝑁 ∈ (ℤ‘3)) ∧ (𝑎 ∈ (𝑋(ClWWalksNOn‘𝐺)(𝑁 − 2)) ∧ 𝑏 ∈ (𝑋(ClWWalksNOn‘𝐺)2))) → (𝑊 = (𝑎 ++ 𝑏) → 𝑊 ∈ (𝑋𝐶𝑁)))
112111rexlimdvva 3223 . 2 ((𝑋𝑉𝑁 ∈ (ℤ‘3)) → (∃𝑎 ∈ (𝑋(ClWWalksNOn‘𝐺)(𝑁 − 2))∃𝑏 ∈ (𝑋(ClWWalksNOn‘𝐺)2)𝑊 = (𝑎 ++ 𝑏) → 𝑊 ∈ (𝑋𝐶𝑁)))
11353, 112impbid 211 1 ((𝑋𝑉𝑁 ∈ (ℤ‘3)) → (𝑊 ∈ (𝑋𝐶𝑁) ↔ ∃𝑎 ∈ (𝑋(ClWWalksNOn‘𝐺)(𝑁 − 2))∃𝑏 ∈ (𝑋(ClWWalksNOn‘𝐺)2)𝑊 = (𝑎 ++ 𝑏)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396  w3a 1086   = wceq 1539  wcel 2106  wrex 3065  {crab 3068  {cpr 4563  cop 4567  cfv 6433  (class class class)co 7275  cmpo 7277  0cc0 10871  1c1 10872   + caddc 10874  cmin 11205  cn 11973  2c2 12028  3c3 12029  cuz 12582  ...cfz 13239  ..^cfzo 13382  chash 14044  Word cword 14217   ++ cconcat 14273   substr csubstr 14353   prefix cpfx 14383  Vtxcvtx 27366  Edgcedg 27417   ClWWalksN cclwwlkn 28388  ClWWalksNOncclwwlknon 28451
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-rep 5209  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7588  ax-cnex 10927  ax-resscn 10928  ax-1cn 10929  ax-icn 10930  ax-addcl 10931  ax-addrcl 10932  ax-mulcl 10933  ax-mulrcl 10934  ax-mulcom 10935  ax-addass 10936  ax-mulass 10937  ax-distr 10938  ax-i2m1 10939  ax-1ne0 10940  ax-1rid 10941  ax-rnegex 10942  ax-rrecex 10943  ax-cnre 10944  ax-pre-lttri 10945  ax-pre-lttrn 10946  ax-pre-ltadd 10947  ax-pre-mulgt0 10948
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3069  df-rex 3070  df-reu 3072  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-pss 3906  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-int 4880  df-iun 4926  df-br 5075  df-opab 5137  df-mpt 5158  df-tr 5192  df-id 5489  df-eprel 5495  df-po 5503  df-so 5504  df-fr 5544  df-we 5546  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-pred 6202  df-ord 6269  df-on 6270  df-lim 6271  df-suc 6272  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440  df-fv 6441  df-riota 7232  df-ov 7278  df-oprab 7279  df-mpo 7280  df-om 7713  df-1st 7831  df-2nd 7832  df-frecs 8097  df-wrecs 8128  df-recs 8202  df-rdg 8241  df-1o 8297  df-oadd 8301  df-er 8498  df-map 8617  df-en 8734  df-dom 8735  df-sdom 8736  df-fin 8737  df-card 9697  df-pnf 11011  df-mnf 11012  df-xr 11013  df-ltxr 11014  df-le 11015  df-sub 11207  df-neg 11208  df-nn 11974  df-2 12036  df-3 12037  df-n0 12234  df-xnn0 12306  df-z 12320  df-uz 12583  df-rp 12731  df-fz 13240  df-fzo 13383  df-hash 14045  df-word 14218  df-lsw 14266  df-concat 14274  df-s1 14301  df-substr 14354  df-pfx 14384  df-s2 14561  df-wwlks 28195  df-wwlksn 28196  df-clwwlk 28346  df-clwwlkn 28389  df-clwwlknon 28452
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator