MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  2clwwlk2clwwlk Structured version   Visualization version   GIF version

Theorem 2clwwlk2clwwlk 28123
Description: An element of the value of operation 𝐶, i.e., a word being a double loop of length 𝑁 on vertex 𝑋, is composed of two closed walks. (Contributed by AV, 28-Apr-2022.) (Proof shortened by AV, 3-Nov-2022.)
Hypothesis
Ref Expression
2clwwlk.c 𝐶 = (𝑣𝑉, 𝑛 ∈ (ℤ‘2) ↦ {𝑤 ∈ (𝑣(ClWWalksNOn‘𝐺)𝑛) ∣ (𝑤‘(𝑛 − 2)) = 𝑣})
Assertion
Ref Expression
2clwwlk2clwwlk ((𝑋𝑉𝑁 ∈ (ℤ‘3)) → (𝑊 ∈ (𝑋𝐶𝑁) ↔ ∃𝑎 ∈ (𝑋(ClWWalksNOn‘𝐺)(𝑁 − 2))∃𝑏 ∈ (𝑋(ClWWalksNOn‘𝐺)2)𝑊 = (𝑎 ++ 𝑏)))
Distinct variable groups:   𝑛,𝐺,𝑣,𝑤   𝑛,𝑁,𝑣,𝑤   𝑛,𝑉,𝑣   𝑛,𝑋,𝑣,𝑤   𝑤,𝑊   𝐶,𝑎,𝑏   𝐺,𝑎,𝑏   𝑁,𝑎,𝑏,𝑤   𝑉,𝑎,𝑏   𝑊,𝑎,𝑏   𝑋,𝑎,𝑏
Allowed substitution hints:   𝐶(𝑤,𝑣,𝑛)   𝑉(𝑤)   𝑊(𝑣,𝑛)

Proof of Theorem 2clwwlk2clwwlk
StepHypRef Expression
1 uzuzle23 12283 . . . . 5 (𝑁 ∈ (ℤ‘3) → 𝑁 ∈ (ℤ‘2))
2 2clwwlk.c . . . . . 6 𝐶 = (𝑣𝑉, 𝑛 ∈ (ℤ‘2) ↦ {𝑤 ∈ (𝑣(ClWWalksNOn‘𝐺)𝑛) ∣ (𝑤‘(𝑛 − 2)) = 𝑣})
322clwwlkel 28122 . . . . 5 ((𝑋𝑉𝑁 ∈ (ℤ‘2)) → (𝑊 ∈ (𝑋𝐶𝑁) ↔ (𝑊 ∈ (𝑋(ClWWalksNOn‘𝐺)𝑁) ∧ (𝑊‘(𝑁 − 2)) = 𝑋)))
41, 3sylan2 594 . . . 4 ((𝑋𝑉𝑁 ∈ (ℤ‘3)) → (𝑊 ∈ (𝑋𝐶𝑁) ↔ (𝑊 ∈ (𝑋(ClWWalksNOn‘𝐺)𝑁) ∧ (𝑊‘(𝑁 − 2)) = 𝑋)))
5 simpr 487 . . . . . . . . 9 ((𝑋𝑉𝑁 ∈ (ℤ‘3)) → 𝑁 ∈ (ℤ‘3))
65anim1i 616 . . . . . . . 8 (((𝑋𝑉𝑁 ∈ (ℤ‘3)) ∧ (𝑊 ∈ (𝑋(ClWWalksNOn‘𝐺)𝑁) ∧ (𝑊‘(𝑁 − 2)) = 𝑋)) → (𝑁 ∈ (ℤ‘3) ∧ (𝑊 ∈ (𝑋(ClWWalksNOn‘𝐺)𝑁) ∧ (𝑊‘(𝑁 − 2)) = 𝑋)))
7 3anass 1091 . . . . . . . 8 ((𝑁 ∈ (ℤ‘3) ∧ 𝑊 ∈ (𝑋(ClWWalksNOn‘𝐺)𝑁) ∧ (𝑊‘(𝑁 − 2)) = 𝑋) ↔ (𝑁 ∈ (ℤ‘3) ∧ (𝑊 ∈ (𝑋(ClWWalksNOn‘𝐺)𝑁) ∧ (𝑊‘(𝑁 − 2)) = 𝑋)))
86, 7sylibr 236 . . . . . . 7 (((𝑋𝑉𝑁 ∈ (ℤ‘3)) ∧ (𝑊 ∈ (𝑋(ClWWalksNOn‘𝐺)𝑁) ∧ (𝑊‘(𝑁 − 2)) = 𝑋)) → (𝑁 ∈ (ℤ‘3) ∧ 𝑊 ∈ (𝑋(ClWWalksNOn‘𝐺)𝑁) ∧ (𝑊‘(𝑁 − 2)) = 𝑋))
9 clwwnonrepclwwnon 28118 . . . . . . 7 ((𝑁 ∈ (ℤ‘3) ∧ 𝑊 ∈ (𝑋(ClWWalksNOn‘𝐺)𝑁) ∧ (𝑊‘(𝑁 − 2)) = 𝑋) → (𝑊 prefix (𝑁 − 2)) ∈ (𝑋(ClWWalksNOn‘𝐺)(𝑁 − 2)))
108, 9syl 17 . . . . . 6 (((𝑋𝑉𝑁 ∈ (ℤ‘3)) ∧ (𝑊 ∈ (𝑋(ClWWalksNOn‘𝐺)𝑁) ∧ (𝑊‘(𝑁 − 2)) = 𝑋)) → (𝑊 prefix (𝑁 − 2)) ∈ (𝑋(ClWWalksNOn‘𝐺)(𝑁 − 2)))
115adantr 483 . . . . . . 7 (((𝑋𝑉𝑁 ∈ (ℤ‘3)) ∧ (𝑊 ∈ (𝑋(ClWWalksNOn‘𝐺)𝑁) ∧ (𝑊‘(𝑁 − 2)) = 𝑋)) → 𝑁 ∈ (ℤ‘3))
12 simprl 769 . . . . . . 7 (((𝑋𝑉𝑁 ∈ (ℤ‘3)) ∧ (𝑊 ∈ (𝑋(ClWWalksNOn‘𝐺)𝑁) ∧ (𝑊‘(𝑁 − 2)) = 𝑋)) → 𝑊 ∈ (𝑋(ClWWalksNOn‘𝐺)𝑁))
13 simprr 771 . . . . . . . 8 (((𝑋𝑉𝑁 ∈ (ℤ‘3)) ∧ (𝑊 ∈ (𝑋(ClWWalksNOn‘𝐺)𝑁) ∧ (𝑊‘(𝑁 − 2)) = 𝑋)) → (𝑊‘(𝑁 − 2)) = 𝑋)
14 isclwwlknon 27864 . . . . . . . . . 10 (𝑊 ∈ (𝑋(ClWWalksNOn‘𝐺)𝑁) ↔ (𝑊 ∈ (𝑁 ClWWalksN 𝐺) ∧ (𝑊‘0) = 𝑋))
15 simpr 487 . . . . . . . . . . 11 ((𝑊 ∈ (𝑁 ClWWalksN 𝐺) ∧ (𝑊‘0) = 𝑋) → (𝑊‘0) = 𝑋)
1615eqcomd 2827 . . . . . . . . . 10 ((𝑊 ∈ (𝑁 ClWWalksN 𝐺) ∧ (𝑊‘0) = 𝑋) → 𝑋 = (𝑊‘0))
1714, 16sylbi 219 . . . . . . . . 9 (𝑊 ∈ (𝑋(ClWWalksNOn‘𝐺)𝑁) → 𝑋 = (𝑊‘0))
1817ad2antrl 726 . . . . . . . 8 (((𝑋𝑉𝑁 ∈ (ℤ‘3)) ∧ (𝑊 ∈ (𝑋(ClWWalksNOn‘𝐺)𝑁) ∧ (𝑊‘(𝑁 − 2)) = 𝑋)) → 𝑋 = (𝑊‘0))
1913, 18eqtrd 2856 . . . . . . 7 (((𝑋𝑉𝑁 ∈ (ℤ‘3)) ∧ (𝑊 ∈ (𝑋(ClWWalksNOn‘𝐺)𝑁) ∧ (𝑊‘(𝑁 − 2)) = 𝑋)) → (𝑊‘(𝑁 − 2)) = (𝑊‘0))
20 2clwwlk2clwwlklem 28119 . . . . . . 7 ((𝑁 ∈ (ℤ‘3) ∧ 𝑊 ∈ (𝑋(ClWWalksNOn‘𝐺)𝑁) ∧ (𝑊‘(𝑁 − 2)) = (𝑊‘0)) → (𝑊 substr ⟨(𝑁 − 2), 𝑁⟩) ∈ (𝑋(ClWWalksNOn‘𝐺)2))
2111, 12, 19, 20syl3anc 1367 . . . . . 6 (((𝑋𝑉𝑁 ∈ (ℤ‘3)) ∧ (𝑊 ∈ (𝑋(ClWWalksNOn‘𝐺)𝑁) ∧ (𝑊‘(𝑁 − 2)) = 𝑋)) → (𝑊 substr ⟨(𝑁 − 2), 𝑁⟩) ∈ (𝑋(ClWWalksNOn‘𝐺)2))
22 eqid 2821 . . . . . . . . . . . . . 14 (Vtx‘𝐺) = (Vtx‘𝐺)
2322clwwlknbp 27807 . . . . . . . . . . . . 13 (𝑊 ∈ (𝑁 ClWWalksN 𝐺) → (𝑊 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑊) = 𝑁))
24 opeq2 4798 . . . . . . . . . . . . . . . . . 18 (𝑁 = (♯‘𝑊) → ⟨(𝑁 − 2), 𝑁⟩ = ⟨(𝑁 − 2), (♯‘𝑊)⟩)
2524oveq2d 7166 . . . . . . . . . . . . . . . . 17 (𝑁 = (♯‘𝑊) → (𝑊 substr ⟨(𝑁 − 2), 𝑁⟩) = (𝑊 substr ⟨(𝑁 − 2), (♯‘𝑊)⟩))
2625oveq2d 7166 . . . . . . . . . . . . . . . 16 (𝑁 = (♯‘𝑊) → ((𝑊 prefix (𝑁 − 2)) ++ (𝑊 substr ⟨(𝑁 − 2), 𝑁⟩)) = ((𝑊 prefix (𝑁 − 2)) ++ (𝑊 substr ⟨(𝑁 − 2), (♯‘𝑊)⟩)))
2726eqcoms 2829 . . . . . . . . . . . . . . 15 ((♯‘𝑊) = 𝑁 → ((𝑊 prefix (𝑁 − 2)) ++ (𝑊 substr ⟨(𝑁 − 2), 𝑁⟩)) = ((𝑊 prefix (𝑁 − 2)) ++ (𝑊 substr ⟨(𝑁 − 2), (♯‘𝑊)⟩)))
2827ad2antlr 725 . . . . . . . . . . . . . 14 (((𝑊 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑊) = 𝑁) ∧ (𝑋𝑉𝑁 ∈ (ℤ‘3))) → ((𝑊 prefix (𝑁 − 2)) ++ (𝑊 substr ⟨(𝑁 − 2), 𝑁⟩)) = ((𝑊 prefix (𝑁 − 2)) ++ (𝑊 substr ⟨(𝑁 − 2), (♯‘𝑊)⟩)))
29 simpl 485 . . . . . . . . . . . . . . 15 ((𝑊 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑊) = 𝑁) → 𝑊 ∈ Word (Vtx‘𝐺))
30 fz1ssfz0 12997 . . . . . . . . . . . . . . . . . . 19 (1...𝑁) ⊆ (0...𝑁)
31 ige3m2fz 12925 . . . . . . . . . . . . . . . . . . 19 (𝑁 ∈ (ℤ‘3) → (𝑁 − 2) ∈ (1...𝑁))
3230, 31sseldi 3965 . . . . . . . . . . . . . . . . . 18 (𝑁 ∈ (ℤ‘3) → (𝑁 − 2) ∈ (0...𝑁))
3332adantl 484 . . . . . . . . . . . . . . . . 17 ((𝑋𝑉𝑁 ∈ (ℤ‘3)) → (𝑁 − 2) ∈ (0...𝑁))
3433adantl 484 . . . . . . . . . . . . . . . 16 (((𝑊 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑊) = 𝑁) ∧ (𝑋𝑉𝑁 ∈ (ℤ‘3))) → (𝑁 − 2) ∈ (0...𝑁))
35 oveq2 7158 . . . . . . . . . . . . . . . . . 18 ((♯‘𝑊) = 𝑁 → (0...(♯‘𝑊)) = (0...𝑁))
3635eleq2d 2898 . . . . . . . . . . . . . . . . 17 ((♯‘𝑊) = 𝑁 → ((𝑁 − 2) ∈ (0...(♯‘𝑊)) ↔ (𝑁 − 2) ∈ (0...𝑁)))
3736ad2antlr 725 . . . . . . . . . . . . . . . 16 (((𝑊 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑊) = 𝑁) ∧ (𝑋𝑉𝑁 ∈ (ℤ‘3))) → ((𝑁 − 2) ∈ (0...(♯‘𝑊)) ↔ (𝑁 − 2) ∈ (0...𝑁)))
3834, 37mpbird 259 . . . . . . . . . . . . . . 15 (((𝑊 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑊) = 𝑁) ∧ (𝑋𝑉𝑁 ∈ (ℤ‘3))) → (𝑁 − 2) ∈ (0...(♯‘𝑊)))
39 pfxcctswrd 14066 . . . . . . . . . . . . . . 15 ((𝑊 ∈ Word (Vtx‘𝐺) ∧ (𝑁 − 2) ∈ (0...(♯‘𝑊))) → ((𝑊 prefix (𝑁 − 2)) ++ (𝑊 substr ⟨(𝑁 − 2), (♯‘𝑊)⟩)) = 𝑊)
4029, 38, 39syl2an2r 683 . . . . . . . . . . . . . 14 (((𝑊 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑊) = 𝑁) ∧ (𝑋𝑉𝑁 ∈ (ℤ‘3))) → ((𝑊 prefix (𝑁 − 2)) ++ (𝑊 substr ⟨(𝑁 − 2), (♯‘𝑊)⟩)) = 𝑊)
4128, 40eqtrd 2856 . . . . . . . . . . . . 13 (((𝑊 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑊) = 𝑁) ∧ (𝑋𝑉𝑁 ∈ (ℤ‘3))) → ((𝑊 prefix (𝑁 − 2)) ++ (𝑊 substr ⟨(𝑁 − 2), 𝑁⟩)) = 𝑊)
4223, 41sylan 582 . . . . . . . . . . . 12 ((𝑊 ∈ (𝑁 ClWWalksN 𝐺) ∧ (𝑋𝑉𝑁 ∈ (ℤ‘3))) → ((𝑊 prefix (𝑁 − 2)) ++ (𝑊 substr ⟨(𝑁 − 2), 𝑁⟩)) = 𝑊)
4342ex 415 . . . . . . . . . . 11 (𝑊 ∈ (𝑁 ClWWalksN 𝐺) → ((𝑋𝑉𝑁 ∈ (ℤ‘3)) → ((𝑊 prefix (𝑁 − 2)) ++ (𝑊 substr ⟨(𝑁 − 2), 𝑁⟩)) = 𝑊))
4443adantr 483 . . . . . . . . . 10 ((𝑊 ∈ (𝑁 ClWWalksN 𝐺) ∧ (𝑊‘0) = 𝑋) → ((𝑋𝑉𝑁 ∈ (ℤ‘3)) → ((𝑊 prefix (𝑁 − 2)) ++ (𝑊 substr ⟨(𝑁 − 2), 𝑁⟩)) = 𝑊))
4514, 44sylbi 219 . . . . . . . . 9 (𝑊 ∈ (𝑋(ClWWalksNOn‘𝐺)𝑁) → ((𝑋𝑉𝑁 ∈ (ℤ‘3)) → ((𝑊 prefix (𝑁 − 2)) ++ (𝑊 substr ⟨(𝑁 − 2), 𝑁⟩)) = 𝑊))
4645adantr 483 . . . . . . . 8 ((𝑊 ∈ (𝑋(ClWWalksNOn‘𝐺)𝑁) ∧ (𝑊‘(𝑁 − 2)) = 𝑋) → ((𝑋𝑉𝑁 ∈ (ℤ‘3)) → ((𝑊 prefix (𝑁 − 2)) ++ (𝑊 substr ⟨(𝑁 − 2), 𝑁⟩)) = 𝑊))
4746impcom 410 . . . . . . 7 (((𝑋𝑉𝑁 ∈ (ℤ‘3)) ∧ (𝑊 ∈ (𝑋(ClWWalksNOn‘𝐺)𝑁) ∧ (𝑊‘(𝑁 − 2)) = 𝑋)) → ((𝑊 prefix (𝑁 − 2)) ++ (𝑊 substr ⟨(𝑁 − 2), 𝑁⟩)) = 𝑊)
4847eqcomd 2827 . . . . . 6 (((𝑋𝑉𝑁 ∈ (ℤ‘3)) ∧ (𝑊 ∈ (𝑋(ClWWalksNOn‘𝐺)𝑁) ∧ (𝑊‘(𝑁 − 2)) = 𝑋)) → 𝑊 = ((𝑊 prefix (𝑁 − 2)) ++ (𝑊 substr ⟨(𝑁 − 2), 𝑁⟩)))
4910, 21, 483jca 1124 . . . . 5 (((𝑋𝑉𝑁 ∈ (ℤ‘3)) ∧ (𝑊 ∈ (𝑋(ClWWalksNOn‘𝐺)𝑁) ∧ (𝑊‘(𝑁 − 2)) = 𝑋)) → ((𝑊 prefix (𝑁 − 2)) ∈ (𝑋(ClWWalksNOn‘𝐺)(𝑁 − 2)) ∧ (𝑊 substr ⟨(𝑁 − 2), 𝑁⟩) ∈ (𝑋(ClWWalksNOn‘𝐺)2) ∧ 𝑊 = ((𝑊 prefix (𝑁 − 2)) ++ (𝑊 substr ⟨(𝑁 − 2), 𝑁⟩))))
5049ex 415 . . . 4 ((𝑋𝑉𝑁 ∈ (ℤ‘3)) → ((𝑊 ∈ (𝑋(ClWWalksNOn‘𝐺)𝑁) ∧ (𝑊‘(𝑁 − 2)) = 𝑋) → ((𝑊 prefix (𝑁 − 2)) ∈ (𝑋(ClWWalksNOn‘𝐺)(𝑁 − 2)) ∧ (𝑊 substr ⟨(𝑁 − 2), 𝑁⟩) ∈ (𝑋(ClWWalksNOn‘𝐺)2) ∧ 𝑊 = ((𝑊 prefix (𝑁 − 2)) ++ (𝑊 substr ⟨(𝑁 − 2), 𝑁⟩)))))
514, 50sylbid 242 . . 3 ((𝑋𝑉𝑁 ∈ (ℤ‘3)) → (𝑊 ∈ (𝑋𝐶𝑁) → ((𝑊 prefix (𝑁 − 2)) ∈ (𝑋(ClWWalksNOn‘𝐺)(𝑁 − 2)) ∧ (𝑊 substr ⟨(𝑁 − 2), 𝑁⟩) ∈ (𝑋(ClWWalksNOn‘𝐺)2) ∧ 𝑊 = ((𝑊 prefix (𝑁 − 2)) ++ (𝑊 substr ⟨(𝑁 − 2), 𝑁⟩)))))
52 rspceov 7197 . . 3 (((𝑊 prefix (𝑁 − 2)) ∈ (𝑋(ClWWalksNOn‘𝐺)(𝑁 − 2)) ∧ (𝑊 substr ⟨(𝑁 − 2), 𝑁⟩) ∈ (𝑋(ClWWalksNOn‘𝐺)2) ∧ 𝑊 = ((𝑊 prefix (𝑁 − 2)) ++ (𝑊 substr ⟨(𝑁 − 2), 𝑁⟩))) → ∃𝑎 ∈ (𝑋(ClWWalksNOn‘𝐺)(𝑁 − 2))∃𝑏 ∈ (𝑋(ClWWalksNOn‘𝐺)2)𝑊 = (𝑎 ++ 𝑏))
5351, 52syl6 35 . 2 ((𝑋𝑉𝑁 ∈ (ℤ‘3)) → (𝑊 ∈ (𝑋𝐶𝑁) → ∃𝑎 ∈ (𝑋(ClWWalksNOn‘𝐺)(𝑁 − 2))∃𝑏 ∈ (𝑋(ClWWalksNOn‘𝐺)2)𝑊 = (𝑎 ++ 𝑏)))
54 eluzelcn 12249 . . . . . . . . . . 11 (𝑁 ∈ (ℤ‘3) → 𝑁 ∈ ℂ)
55 2cnd 11709 . . . . . . . . . . 11 (𝑁 ∈ (ℤ‘3) → 2 ∈ ℂ)
5654, 55npcand 10995 . . . . . . . . . 10 (𝑁 ∈ (ℤ‘3) → ((𝑁 − 2) + 2) = 𝑁)
5756adantl 484 . . . . . . . . 9 ((𝑋𝑉𝑁 ∈ (ℤ‘3)) → ((𝑁 − 2) + 2) = 𝑁)
5857oveq2d 7166 . . . . . . . 8 ((𝑋𝑉𝑁 ∈ (ℤ‘3)) → (𝑋(ClWWalksNOn‘𝐺)((𝑁 − 2) + 2)) = (𝑋(ClWWalksNOn‘𝐺)𝑁))
5958eleq2d 2898 . . . . . . 7 ((𝑋𝑉𝑁 ∈ (ℤ‘3)) → ((𝑎 ++ 𝑏) ∈ (𝑋(ClWWalksNOn‘𝐺)((𝑁 − 2) + 2)) ↔ (𝑎 ++ 𝑏) ∈ (𝑋(ClWWalksNOn‘𝐺)𝑁)))
6059biimpd 231 . . . . . 6 ((𝑋𝑉𝑁 ∈ (ℤ‘3)) → ((𝑎 ++ 𝑏) ∈ (𝑋(ClWWalksNOn‘𝐺)((𝑁 − 2) + 2)) → (𝑎 ++ 𝑏) ∈ (𝑋(ClWWalksNOn‘𝐺)𝑁)))
61 clwwlknonccat 27869 . . . . . 6 ((𝑎 ∈ (𝑋(ClWWalksNOn‘𝐺)(𝑁 − 2)) ∧ 𝑏 ∈ (𝑋(ClWWalksNOn‘𝐺)2)) → (𝑎 ++ 𝑏) ∈ (𝑋(ClWWalksNOn‘𝐺)((𝑁 − 2) + 2)))
6260, 61impel 508 . . . . 5 (((𝑋𝑉𝑁 ∈ (ℤ‘3)) ∧ (𝑎 ∈ (𝑋(ClWWalksNOn‘𝐺)(𝑁 − 2)) ∧ 𝑏 ∈ (𝑋(ClWWalksNOn‘𝐺)2))) → (𝑎 ++ 𝑏) ∈ (𝑋(ClWWalksNOn‘𝐺)𝑁))
63 isclwwlknon 27864 . . . . . . . 8 (𝑏 ∈ (𝑋(ClWWalksNOn‘𝐺)2) ↔ (𝑏 ∈ (2 ClWWalksN 𝐺) ∧ (𝑏‘0) = 𝑋))
64 clwwlkn2 27816 . . . . . . . . . 10 (𝑏 ∈ (2 ClWWalksN 𝐺) ↔ ((♯‘𝑏) = 2 ∧ 𝑏 ∈ Word (Vtx‘𝐺) ∧ {(𝑏‘0), (𝑏‘1)} ∈ (Edg‘𝐺)))
65 isclwwlknon 27864 . . . . . . . . . . . . 13 (𝑎 ∈ (𝑋(ClWWalksNOn‘𝐺)(𝑁 − 2)) ↔ (𝑎 ∈ ((𝑁 − 2) ClWWalksN 𝐺) ∧ (𝑎‘0) = 𝑋))
6622clwwlknbp 27807 . . . . . . . . . . . . . . 15 (𝑎 ∈ ((𝑁 − 2) ClWWalksN 𝐺) → (𝑎 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑎) = (𝑁 − 2)))
67 simpl 485 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝑎 ∈ Word (Vtx‘𝐺) ∧ ((♯‘𝑏) = 2 ∧ 𝑏 ∈ Word (Vtx‘𝐺))) → 𝑎 ∈ Word (Vtx‘𝐺))
68 simprr 771 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝑎 ∈ Word (Vtx‘𝐺) ∧ ((♯‘𝑏) = 2 ∧ 𝑏 ∈ Word (Vtx‘𝐺))) → 𝑏 ∈ Word (Vtx‘𝐺))
69 2nn 11704 . . . . . . . . . . . . . . . . . . . . . . . . . 26 2 ∈ ℕ
70 lbfzo0 13071 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (0 ∈ (0..^2) ↔ 2 ∈ ℕ)
7169, 70mpbir 233 . . . . . . . . . . . . . . . . . . . . . . . . 25 0 ∈ (0..^2)
72 oveq2 7158 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((♯‘𝑏) = 2 → (0..^(♯‘𝑏)) = (0..^2))
7371, 72eleqtrrid 2920 . . . . . . . . . . . . . . . . . . . . . . . 24 ((♯‘𝑏) = 2 → 0 ∈ (0..^(♯‘𝑏)))
7473ad2antrl 726 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝑎 ∈ Word (Vtx‘𝐺) ∧ ((♯‘𝑏) = 2 ∧ 𝑏 ∈ Word (Vtx‘𝐺))) → 0 ∈ (0..^(♯‘𝑏)))
7567, 68, 743jca 1124 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑎 ∈ Word (Vtx‘𝐺) ∧ ((♯‘𝑏) = 2 ∧ 𝑏 ∈ Word (Vtx‘𝐺))) → (𝑎 ∈ Word (Vtx‘𝐺) ∧ 𝑏 ∈ Word (Vtx‘𝐺) ∧ 0 ∈ (0..^(♯‘𝑏))))
7675adantr 483 . . . . . . . . . . . . . . . . . . . . 21 (((𝑎 ∈ Word (Vtx‘𝐺) ∧ ((♯‘𝑏) = 2 ∧ 𝑏 ∈ Word (Vtx‘𝐺))) ∧ ((𝑏‘0) = 𝑋 ∧ (♯‘𝑎) = (𝑁 − 2))) → (𝑎 ∈ Word (Vtx‘𝐺) ∧ 𝑏 ∈ Word (Vtx‘𝐺) ∧ 0 ∈ (0..^(♯‘𝑏))))
7776adantr 483 . . . . . . . . . . . . . . . . . . . 20 ((((𝑎 ∈ Word (Vtx‘𝐺) ∧ ((♯‘𝑏) = 2 ∧ 𝑏 ∈ Word (Vtx‘𝐺))) ∧ ((𝑏‘0) = 𝑋 ∧ (♯‘𝑎) = (𝑁 − 2))) ∧ (𝑋𝑉𝑁 ∈ (ℤ‘3))) → (𝑎 ∈ Word (Vtx‘𝐺) ∧ 𝑏 ∈ Word (Vtx‘𝐺) ∧ 0 ∈ (0..^(♯‘𝑏))))
78 ccatval3 13927 . . . . . . . . . . . . . . . . . . . 20 ((𝑎 ∈ Word (Vtx‘𝐺) ∧ 𝑏 ∈ Word (Vtx‘𝐺) ∧ 0 ∈ (0..^(♯‘𝑏))) → ((𝑎 ++ 𝑏)‘(0 + (♯‘𝑎))) = (𝑏‘0))
7977, 78syl 17 . . . . . . . . . . . . . . . . . . 19 ((((𝑎 ∈ Word (Vtx‘𝐺) ∧ ((♯‘𝑏) = 2 ∧ 𝑏 ∈ Word (Vtx‘𝐺))) ∧ ((𝑏‘0) = 𝑋 ∧ (♯‘𝑎) = (𝑁 − 2))) ∧ (𝑋𝑉𝑁 ∈ (ℤ‘3))) → ((𝑎 ++ 𝑏)‘(0 + (♯‘𝑎))) = (𝑏‘0))
80 simpr 487 . . . . . . . . . . . . . . . . . . . . . . . 24 (((𝑏‘0) = 𝑋 ∧ (♯‘𝑎) = (𝑁 − 2)) → (♯‘𝑎) = (𝑁 − 2))
8180oveq2d 7166 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝑏‘0) = 𝑋 ∧ (♯‘𝑎) = (𝑁 − 2)) → (0 + (♯‘𝑎)) = (0 + (𝑁 − 2)))
8281adantl 484 . . . . . . . . . . . . . . . . . . . . . 22 (((𝑎 ∈ Word (Vtx‘𝐺) ∧ ((♯‘𝑏) = 2 ∧ 𝑏 ∈ Word (Vtx‘𝐺))) ∧ ((𝑏‘0) = 𝑋 ∧ (♯‘𝑎) = (𝑁 − 2))) → (0 + (♯‘𝑎)) = (0 + (𝑁 − 2)))
8354, 55subcld 10991 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑁 ∈ (ℤ‘3) → (𝑁 − 2) ∈ ℂ)
8483addid2d 10835 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑁 ∈ (ℤ‘3) → (0 + (𝑁 − 2)) = (𝑁 − 2))
8584adantl 484 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑋𝑉𝑁 ∈ (ℤ‘3)) → (0 + (𝑁 − 2)) = (𝑁 − 2))
8682, 85sylan9eq 2876 . . . . . . . . . . . . . . . . . . . . 21 ((((𝑎 ∈ Word (Vtx‘𝐺) ∧ ((♯‘𝑏) = 2 ∧ 𝑏 ∈ Word (Vtx‘𝐺))) ∧ ((𝑏‘0) = 𝑋 ∧ (♯‘𝑎) = (𝑁 − 2))) ∧ (𝑋𝑉𝑁 ∈ (ℤ‘3))) → (0 + (♯‘𝑎)) = (𝑁 − 2))
8786eqcomd 2827 . . . . . . . . . . . . . . . . . . . 20 ((((𝑎 ∈ Word (Vtx‘𝐺) ∧ ((♯‘𝑏) = 2 ∧ 𝑏 ∈ Word (Vtx‘𝐺))) ∧ ((𝑏‘0) = 𝑋 ∧ (♯‘𝑎) = (𝑁 − 2))) ∧ (𝑋𝑉𝑁 ∈ (ℤ‘3))) → (𝑁 − 2) = (0 + (♯‘𝑎)))
8887fveq2d 6669 . . . . . . . . . . . . . . . . . . 19 ((((𝑎 ∈ Word (Vtx‘𝐺) ∧ ((♯‘𝑏) = 2 ∧ 𝑏 ∈ Word (Vtx‘𝐺))) ∧ ((𝑏‘0) = 𝑋 ∧ (♯‘𝑎) = (𝑁 − 2))) ∧ (𝑋𝑉𝑁 ∈ (ℤ‘3))) → ((𝑎 ++ 𝑏)‘(𝑁 − 2)) = ((𝑎 ++ 𝑏)‘(0 + (♯‘𝑎))))
89 simpl 485 . . . . . . . . . . . . . . . . . . . . 21 (((𝑏‘0) = 𝑋 ∧ (♯‘𝑎) = (𝑁 − 2)) → (𝑏‘0) = 𝑋)
9089eqcomd 2827 . . . . . . . . . . . . . . . . . . . 20 (((𝑏‘0) = 𝑋 ∧ (♯‘𝑎) = (𝑁 − 2)) → 𝑋 = (𝑏‘0))
9190ad2antlr 725 . . . . . . . . . . . . . . . . . . 19 ((((𝑎 ∈ Word (Vtx‘𝐺) ∧ ((♯‘𝑏) = 2 ∧ 𝑏 ∈ Word (Vtx‘𝐺))) ∧ ((𝑏‘0) = 𝑋 ∧ (♯‘𝑎) = (𝑁 − 2))) ∧ (𝑋𝑉𝑁 ∈ (ℤ‘3))) → 𝑋 = (𝑏‘0))
9279, 88, 913eqtr4d 2866 . . . . . . . . . . . . . . . . . 18 ((((𝑎 ∈ Word (Vtx‘𝐺) ∧ ((♯‘𝑏) = 2 ∧ 𝑏 ∈ Word (Vtx‘𝐺))) ∧ ((𝑏‘0) = 𝑋 ∧ (♯‘𝑎) = (𝑁 − 2))) ∧ (𝑋𝑉𝑁 ∈ (ℤ‘3))) → ((𝑎 ++ 𝑏)‘(𝑁 − 2)) = 𝑋)
9392exp53 450 . . . . . . . . . . . . . . . . 17 (𝑎 ∈ Word (Vtx‘𝐺) → (((♯‘𝑏) = 2 ∧ 𝑏 ∈ Word (Vtx‘𝐺)) → ((𝑏‘0) = 𝑋 → ((♯‘𝑎) = (𝑁 − 2) → ((𝑋𝑉𝑁 ∈ (ℤ‘3)) → ((𝑎 ++ 𝑏)‘(𝑁 − 2)) = 𝑋)))))
9493com24 95 . . . . . . . . . . . . . . . 16 (𝑎 ∈ Word (Vtx‘𝐺) → ((♯‘𝑎) = (𝑁 − 2) → ((𝑏‘0) = 𝑋 → (((♯‘𝑏) = 2 ∧ 𝑏 ∈ Word (Vtx‘𝐺)) → ((𝑋𝑉𝑁 ∈ (ℤ‘3)) → ((𝑎 ++ 𝑏)‘(𝑁 − 2)) = 𝑋)))))
9594imp 409 . . . . . . . . . . . . . . 15 ((𝑎 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑎) = (𝑁 − 2)) → ((𝑏‘0) = 𝑋 → (((♯‘𝑏) = 2 ∧ 𝑏 ∈ Word (Vtx‘𝐺)) → ((𝑋𝑉𝑁 ∈ (ℤ‘3)) → ((𝑎 ++ 𝑏)‘(𝑁 − 2)) = 𝑋))))
9666, 95syl 17 . . . . . . . . . . . . . 14 (𝑎 ∈ ((𝑁 − 2) ClWWalksN 𝐺) → ((𝑏‘0) = 𝑋 → (((♯‘𝑏) = 2 ∧ 𝑏 ∈ Word (Vtx‘𝐺)) → ((𝑋𝑉𝑁 ∈ (ℤ‘3)) → ((𝑎 ++ 𝑏)‘(𝑁 − 2)) = 𝑋))))
9796adantr 483 . . . . . . . . . . . . 13 ((𝑎 ∈ ((𝑁 − 2) ClWWalksN 𝐺) ∧ (𝑎‘0) = 𝑋) → ((𝑏‘0) = 𝑋 → (((♯‘𝑏) = 2 ∧ 𝑏 ∈ Word (Vtx‘𝐺)) → ((𝑋𝑉𝑁 ∈ (ℤ‘3)) → ((𝑎 ++ 𝑏)‘(𝑁 − 2)) = 𝑋))))
9865, 97sylbi 219 . . . . . . . . . . . 12 (𝑎 ∈ (𝑋(ClWWalksNOn‘𝐺)(𝑁 − 2)) → ((𝑏‘0) = 𝑋 → (((♯‘𝑏) = 2 ∧ 𝑏 ∈ Word (Vtx‘𝐺)) → ((𝑋𝑉𝑁 ∈ (ℤ‘3)) → ((𝑎 ++ 𝑏)‘(𝑁 − 2)) = 𝑋))))
9998com13 88 . . . . . . . . . . 11 (((♯‘𝑏) = 2 ∧ 𝑏 ∈ Word (Vtx‘𝐺)) → ((𝑏‘0) = 𝑋 → (𝑎 ∈ (𝑋(ClWWalksNOn‘𝐺)(𝑁 − 2)) → ((𝑋𝑉𝑁 ∈ (ℤ‘3)) → ((𝑎 ++ 𝑏)‘(𝑁 − 2)) = 𝑋))))
100993adant3 1128 . . . . . . . . . 10 (((♯‘𝑏) = 2 ∧ 𝑏 ∈ Word (Vtx‘𝐺) ∧ {(𝑏‘0), (𝑏‘1)} ∈ (Edg‘𝐺)) → ((𝑏‘0) = 𝑋 → (𝑎 ∈ (𝑋(ClWWalksNOn‘𝐺)(𝑁 − 2)) → ((𝑋𝑉𝑁 ∈ (ℤ‘3)) → ((𝑎 ++ 𝑏)‘(𝑁 − 2)) = 𝑋))))
10164, 100sylbi 219 . . . . . . . . 9 (𝑏 ∈ (2 ClWWalksN 𝐺) → ((𝑏‘0) = 𝑋 → (𝑎 ∈ (𝑋(ClWWalksNOn‘𝐺)(𝑁 − 2)) → ((𝑋𝑉𝑁 ∈ (ℤ‘3)) → ((𝑎 ++ 𝑏)‘(𝑁 − 2)) = 𝑋))))
102101imp 409 . . . . . . . 8 ((𝑏 ∈ (2 ClWWalksN 𝐺) ∧ (𝑏‘0) = 𝑋) → (𝑎 ∈ (𝑋(ClWWalksNOn‘𝐺)(𝑁 − 2)) → ((𝑋𝑉𝑁 ∈ (ℤ‘3)) → ((𝑎 ++ 𝑏)‘(𝑁 − 2)) = 𝑋)))
10363, 102sylbi 219 . . . . . . 7 (𝑏 ∈ (𝑋(ClWWalksNOn‘𝐺)2) → (𝑎 ∈ (𝑋(ClWWalksNOn‘𝐺)(𝑁 − 2)) → ((𝑋𝑉𝑁 ∈ (ℤ‘3)) → ((𝑎 ++ 𝑏)‘(𝑁 − 2)) = 𝑋)))
104103impcom 410 . . . . . 6 ((𝑎 ∈ (𝑋(ClWWalksNOn‘𝐺)(𝑁 − 2)) ∧ 𝑏 ∈ (𝑋(ClWWalksNOn‘𝐺)2)) → ((𝑋𝑉𝑁 ∈ (ℤ‘3)) → ((𝑎 ++ 𝑏)‘(𝑁 − 2)) = 𝑋))
105104impcom 410 . . . . 5 (((𝑋𝑉𝑁 ∈ (ℤ‘3)) ∧ (𝑎 ∈ (𝑋(ClWWalksNOn‘𝐺)(𝑁 − 2)) ∧ 𝑏 ∈ (𝑋(ClWWalksNOn‘𝐺)2))) → ((𝑎 ++ 𝑏)‘(𝑁 − 2)) = 𝑋)
10622clwwlkel 28122 . . . . . . 7 ((𝑋𝑉𝑁 ∈ (ℤ‘2)) → ((𝑎 ++ 𝑏) ∈ (𝑋𝐶𝑁) ↔ ((𝑎 ++ 𝑏) ∈ (𝑋(ClWWalksNOn‘𝐺)𝑁) ∧ ((𝑎 ++ 𝑏)‘(𝑁 − 2)) = 𝑋)))
1071, 106sylan2 594 . . . . . 6 ((𝑋𝑉𝑁 ∈ (ℤ‘3)) → ((𝑎 ++ 𝑏) ∈ (𝑋𝐶𝑁) ↔ ((𝑎 ++ 𝑏) ∈ (𝑋(ClWWalksNOn‘𝐺)𝑁) ∧ ((𝑎 ++ 𝑏)‘(𝑁 − 2)) = 𝑋)))
108107adantr 483 . . . . 5 (((𝑋𝑉𝑁 ∈ (ℤ‘3)) ∧ (𝑎 ∈ (𝑋(ClWWalksNOn‘𝐺)(𝑁 − 2)) ∧ 𝑏 ∈ (𝑋(ClWWalksNOn‘𝐺)2))) → ((𝑎 ++ 𝑏) ∈ (𝑋𝐶𝑁) ↔ ((𝑎 ++ 𝑏) ∈ (𝑋(ClWWalksNOn‘𝐺)𝑁) ∧ ((𝑎 ++ 𝑏)‘(𝑁 − 2)) = 𝑋)))
10962, 105, 108mpbir2and 711 . . . 4 (((𝑋𝑉𝑁 ∈ (ℤ‘3)) ∧ (𝑎 ∈ (𝑋(ClWWalksNOn‘𝐺)(𝑁 − 2)) ∧ 𝑏 ∈ (𝑋(ClWWalksNOn‘𝐺)2))) → (𝑎 ++ 𝑏) ∈ (𝑋𝐶𝑁))
110 eleq1 2900 . . . 4 (𝑊 = (𝑎 ++ 𝑏) → (𝑊 ∈ (𝑋𝐶𝑁) ↔ (𝑎 ++ 𝑏) ∈ (𝑋𝐶𝑁)))
111109, 110syl5ibrcom 249 . . 3 (((𝑋𝑉𝑁 ∈ (ℤ‘3)) ∧ (𝑎 ∈ (𝑋(ClWWalksNOn‘𝐺)(𝑁 − 2)) ∧ 𝑏 ∈ (𝑋(ClWWalksNOn‘𝐺)2))) → (𝑊 = (𝑎 ++ 𝑏) → 𝑊 ∈ (𝑋𝐶𝑁)))
112111rexlimdvva 3294 . 2 ((𝑋𝑉𝑁 ∈ (ℤ‘3)) → (∃𝑎 ∈ (𝑋(ClWWalksNOn‘𝐺)(𝑁 − 2))∃𝑏 ∈ (𝑋(ClWWalksNOn‘𝐺)2)𝑊 = (𝑎 ++ 𝑏) → 𝑊 ∈ (𝑋𝐶𝑁)))
11353, 112impbid 214 1 ((𝑋𝑉𝑁 ∈ (ℤ‘3)) → (𝑊 ∈ (𝑋𝐶𝑁) ↔ ∃𝑎 ∈ (𝑋(ClWWalksNOn‘𝐺)(𝑁 − 2))∃𝑏 ∈ (𝑋(ClWWalksNOn‘𝐺)2)𝑊 = (𝑎 ++ 𝑏)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 208  wa 398  w3a 1083   = wceq 1533  wcel 2110  wrex 3139  {crab 3142  {cpr 4563  cop 4567  cfv 6350  (class class class)co 7150  cmpo 7152  0cc0 10531  1c1 10532   + caddc 10534  cmin 10864  cn 11632  2c2 11686  3c3 11687  cuz 12237  ...cfz 12886  ..^cfzo 13027  chash 13684  Word cword 13855   ++ cconcat 13916   substr csubstr 13996   prefix cpfx 14026  Vtxcvtx 26775  Edgcedg 26826   ClWWalksN cclwwlkn 27796  ClWWalksNOncclwwlknon 27860
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1907  ax-6 1966  ax-7 2011  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2156  ax-12 2172  ax-ext 2793  ax-rep 5183  ax-sep 5196  ax-nul 5203  ax-pow 5259  ax-pr 5322  ax-un 7455  ax-cnex 10587  ax-resscn 10588  ax-1cn 10589  ax-icn 10590  ax-addcl 10591  ax-addrcl 10592  ax-mulcl 10593  ax-mulrcl 10594  ax-mulcom 10595  ax-addass 10596  ax-mulass 10597  ax-distr 10598  ax-i2m1 10599  ax-1ne0 10600  ax-1rid 10601  ax-rnegex 10602  ax-rrecex 10603  ax-cnre 10604  ax-pre-lttri 10605  ax-pre-lttrn 10606  ax-pre-ltadd 10607  ax-pre-mulgt0 10608
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1536  df-ex 1777  df-nf 1781  df-sb 2066  df-mo 2618  df-eu 2650  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-nel 3124  df-ral 3143  df-rex 3144  df-reu 3145  df-rab 3147  df-v 3497  df-sbc 3773  df-csb 3884  df-dif 3939  df-un 3941  df-in 3943  df-ss 3952  df-pss 3954  df-nul 4292  df-if 4468  df-pw 4541  df-sn 4562  df-pr 4564  df-tp 4566  df-op 4568  df-uni 4833  df-int 4870  df-iun 4914  df-br 5060  df-opab 5122  df-mpt 5140  df-tr 5166  df-id 5455  df-eprel 5460  df-po 5469  df-so 5470  df-fr 5509  df-we 5511  df-xp 5556  df-rel 5557  df-cnv 5558  df-co 5559  df-dm 5560  df-rn 5561  df-res 5562  df-ima 5563  df-pred 6143  df-ord 6189  df-on 6190  df-lim 6191  df-suc 6192  df-iota 6309  df-fun 6352  df-fn 6353  df-f 6354  df-f1 6355  df-fo 6356  df-f1o 6357  df-fv 6358  df-riota 7108  df-ov 7153  df-oprab 7154  df-mpo 7155  df-om 7575  df-1st 7683  df-2nd 7684  df-wrecs 7941  df-recs 8002  df-rdg 8040  df-1o 8096  df-oadd 8100  df-er 8283  df-map 8402  df-en 8504  df-dom 8505  df-sdom 8506  df-fin 8507  df-card 9362  df-pnf 10671  df-mnf 10672  df-xr 10673  df-ltxr 10674  df-le 10675  df-sub 10866  df-neg 10867  df-nn 11633  df-2 11694  df-3 11695  df-n0 11892  df-xnn0 11962  df-z 11976  df-uz 12238  df-rp 12384  df-fz 12887  df-fzo 13028  df-hash 13685  df-word 13856  df-lsw 13909  df-concat 13917  df-s1 13944  df-substr 13997  df-pfx 14027  df-s2 14204  df-wwlks 27602  df-wwlksn 27603  df-clwwlk 27754  df-clwwlkn 27797  df-clwwlknon 27861
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator