MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  elfzodifsumelfzo Structured version   Visualization version   GIF version

Theorem elfzodifsumelfzo 12953
Description: If an integer is in a half-open range of nonnegative integers with a difference as upper bound, the sum of the integer with the subtrahend of the difference is in the a half-open range of nonnegative integers containing the minuend of the difference. (Contributed by AV, 13-Nov-2018.)
Assertion
Ref Expression
elfzodifsumelfzo ((𝑀 ∈ (0...𝑁) ∧ 𝑁 ∈ (0...𝑃)) → (𝐼 ∈ (0..^(𝑁𝑀)) → (𝐼 + 𝑀) ∈ (0..^𝑃)))

Proof of Theorem elfzodifsumelfzo
StepHypRef Expression
1 elfz2nn0 12848 . . 3 (𝑀 ∈ (0...𝑁) ↔ (𝑀 ∈ ℕ0𝑁 ∈ ℕ0𝑀𝑁))
2 elfz2nn0 12848 . . . . 5 (𝑁 ∈ (0...𝑃) ↔ (𝑁 ∈ ℕ0𝑃 ∈ ℕ0𝑁𝑃))
3 elfzo0 12928 . . . . . . . 8 (𝐼 ∈ (0..^(𝑁𝑀)) ↔ (𝐼 ∈ ℕ0 ∧ (𝑁𝑀) ∈ ℕ ∧ 𝐼 < (𝑁𝑀)))
4 nn0z 11854 . . . . . . . . . . . . 13 (𝑀 ∈ ℕ0𝑀 ∈ ℤ)
5 nn0z 11854 . . . . . . . . . . . . 13 (𝑁 ∈ ℕ0𝑁 ∈ ℤ)
6 znnsub 11877 . . . . . . . . . . . . 13 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀 < 𝑁 ↔ (𝑁𝑀) ∈ ℕ))
74, 5, 6syl2an 595 . . . . . . . . . . . 12 ((𝑀 ∈ ℕ0𝑁 ∈ ℕ0) → (𝑀 < 𝑁 ↔ (𝑁𝑀) ∈ ℕ))
8 simpr 485 . . . . . . . . . . . . . . . 16 ((𝐼 < (𝑁𝑀) ∧ 𝐼 ∈ ℕ0) → 𝐼 ∈ ℕ0)
9 simpll 763 . . . . . . . . . . . . . . . 16 (((𝑀 ∈ ℕ0𝑁 ∈ ℕ0) ∧ 𝑀 < 𝑁) → 𝑀 ∈ ℕ0)
10 nn0addcl 11780 . . . . . . . . . . . . . . . 16 ((𝐼 ∈ ℕ0𝑀 ∈ ℕ0) → (𝐼 + 𝑀) ∈ ℕ0)
118, 9, 10syl2anr 596 . . . . . . . . . . . . . . 15 ((((𝑀 ∈ ℕ0𝑁 ∈ ℕ0) ∧ 𝑀 < 𝑁) ∧ (𝐼 < (𝑁𝑀) ∧ 𝐼 ∈ ℕ0)) → (𝐼 + 𝑀) ∈ ℕ0)
1211adantr 481 . . . . . . . . . . . . . 14 (((((𝑀 ∈ ℕ0𝑁 ∈ ℕ0) ∧ 𝑀 < 𝑁) ∧ (𝐼 < (𝑁𝑀) ∧ 𝐼 ∈ ℕ0)) ∧ (𝑃 ∈ ℕ0𝑁𝑃)) → (𝐼 + 𝑀) ∈ ℕ0)
13 0red 10490 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑀 ∈ ℕ0𝑁 ∈ ℕ0) → 0 ∈ ℝ)
14 nn0re 11754 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑀 ∈ ℕ0𝑀 ∈ ℝ)
1514adantr 481 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑀 ∈ ℕ0𝑁 ∈ ℕ0) → 𝑀 ∈ ℝ)
16 nn0re 11754 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑁 ∈ ℕ0𝑁 ∈ ℝ)
1716adantl 482 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑀 ∈ ℕ0𝑁 ∈ ℕ0) → 𝑁 ∈ ℝ)
1813, 15, 173jca 1121 . . . . . . . . . . . . . . . . . . . . 21 ((𝑀 ∈ ℕ0𝑁 ∈ ℕ0) → (0 ∈ ℝ ∧ 𝑀 ∈ ℝ ∧ 𝑁 ∈ ℝ))
1918adantr 481 . . . . . . . . . . . . . . . . . . . 20 (((𝑀 ∈ ℕ0𝑁 ∈ ℕ0) ∧ 𝑀 < 𝑁) → (0 ∈ ℝ ∧ 𝑀 ∈ ℝ ∧ 𝑁 ∈ ℝ))
20 nn0ge0 11770 . . . . . . . . . . . . . . . . . . . . . 22 (𝑀 ∈ ℕ0 → 0 ≤ 𝑀)
2120adantr 481 . . . . . . . . . . . . . . . . . . . . 21 ((𝑀 ∈ ℕ0𝑁 ∈ ℕ0) → 0 ≤ 𝑀)
2221anim1i 614 . . . . . . . . . . . . . . . . . . . 20 (((𝑀 ∈ ℕ0𝑁 ∈ ℕ0) ∧ 𝑀 < 𝑁) → (0 ≤ 𝑀𝑀 < 𝑁))
23 lelttr 10578 . . . . . . . . . . . . . . . . . . . 20 ((0 ∈ ℝ ∧ 𝑀 ∈ ℝ ∧ 𝑁 ∈ ℝ) → ((0 ≤ 𝑀𝑀 < 𝑁) → 0 < 𝑁))
2419, 22, 23sylc 65 . . . . . . . . . . . . . . . . . . 19 (((𝑀 ∈ ℕ0𝑁 ∈ ℕ0) ∧ 𝑀 < 𝑁) → 0 < 𝑁)
2524ex 413 . . . . . . . . . . . . . . . . . 18 ((𝑀 ∈ ℕ0𝑁 ∈ ℕ0) → (𝑀 < 𝑁 → 0 < 𝑁))
26 0red 10490 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝑃 ∈ ℕ0𝑁 ∈ ℕ0) → 0 ∈ ℝ)
2716adantl 482 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝑃 ∈ ℕ0𝑁 ∈ ℕ0) → 𝑁 ∈ ℝ)
28 nn0re 11754 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝑃 ∈ ℕ0𝑃 ∈ ℝ)
2928adantr 481 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝑃 ∈ ℕ0𝑁 ∈ ℕ0) → 𝑃 ∈ ℝ)
30 ltletr 10579 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((0 ∈ ℝ ∧ 𝑁 ∈ ℝ ∧ 𝑃 ∈ ℝ) → ((0 < 𝑁𝑁𝑃) → 0 < 𝑃))
3126, 27, 29, 30syl3anc 1364 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝑃 ∈ ℕ0𝑁 ∈ ℕ0) → ((0 < 𝑁𝑁𝑃) → 0 < 𝑃))
32 nn0z 11854 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝑃 ∈ ℕ0𝑃 ∈ ℤ)
33 elnnz 11839 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (𝑃 ∈ ℕ ↔ (𝑃 ∈ ℤ ∧ 0 < 𝑃))
3433simplbi2 501 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝑃 ∈ ℤ → (0 < 𝑃𝑃 ∈ ℕ))
3532, 34syl 17 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑃 ∈ ℕ0 → (0 < 𝑃𝑃 ∈ ℕ))
3635adantr 481 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝑃 ∈ ℕ0𝑁 ∈ ℕ0) → (0 < 𝑃𝑃 ∈ ℕ))
3731, 36syld 47 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝑃 ∈ ℕ0𝑁 ∈ ℕ0) → ((0 < 𝑁𝑁𝑃) → 𝑃 ∈ ℕ))
3837exp4b 431 . . . . . . . . . . . . . . . . . . . . . 22 (𝑃 ∈ ℕ0 → (𝑁 ∈ ℕ0 → (0 < 𝑁 → (𝑁𝑃𝑃 ∈ ℕ))))
3938com24 95 . . . . . . . . . . . . . . . . . . . . 21 (𝑃 ∈ ℕ0 → (𝑁𝑃 → (0 < 𝑁 → (𝑁 ∈ ℕ0𝑃 ∈ ℕ))))
4039imp 407 . . . . . . . . . . . . . . . . . . . 20 ((𝑃 ∈ ℕ0𝑁𝑃) → (0 < 𝑁 → (𝑁 ∈ ℕ0𝑃 ∈ ℕ)))
4140com13 88 . . . . . . . . . . . . . . . . . . 19 (𝑁 ∈ ℕ0 → (0 < 𝑁 → ((𝑃 ∈ ℕ0𝑁𝑃) → 𝑃 ∈ ℕ)))
4241adantl 482 . . . . . . . . . . . . . . . . . 18 ((𝑀 ∈ ℕ0𝑁 ∈ ℕ0) → (0 < 𝑁 → ((𝑃 ∈ ℕ0𝑁𝑃) → 𝑃 ∈ ℕ)))
4325, 42syld 47 . . . . . . . . . . . . . . . . 17 ((𝑀 ∈ ℕ0𝑁 ∈ ℕ0) → (𝑀 < 𝑁 → ((𝑃 ∈ ℕ0𝑁𝑃) → 𝑃 ∈ ℕ)))
4443imp 407 . . . . . . . . . . . . . . . 16 (((𝑀 ∈ ℕ0𝑁 ∈ ℕ0) ∧ 𝑀 < 𝑁) → ((𝑃 ∈ ℕ0𝑁𝑃) → 𝑃 ∈ ℕ))
4544adantr 481 . . . . . . . . . . . . . . 15 ((((𝑀 ∈ ℕ0𝑁 ∈ ℕ0) ∧ 𝑀 < 𝑁) ∧ (𝐼 < (𝑁𝑀) ∧ 𝐼 ∈ ℕ0)) → ((𝑃 ∈ ℕ0𝑁𝑃) → 𝑃 ∈ ℕ))
4645imp 407 . . . . . . . . . . . . . 14 (((((𝑀 ∈ ℕ0𝑁 ∈ ℕ0) ∧ 𝑀 < 𝑁) ∧ (𝐼 < (𝑁𝑀) ∧ 𝐼 ∈ ℕ0)) ∧ (𝑃 ∈ ℕ0𝑁𝑃)) → 𝑃 ∈ ℕ)
47 nn0re 11754 . . . . . . . . . . . . . . . . . . . . 21 (𝐼 ∈ ℕ0𝐼 ∈ ℝ)
4847adantl 482 . . . . . . . . . . . . . . . . . . . 20 ((𝐼 < (𝑁𝑀) ∧ 𝐼 ∈ ℕ0) → 𝐼 ∈ ℝ)
4915adantr 481 . . . . . . . . . . . . . . . . . . . 20 (((𝑀 ∈ ℕ0𝑁 ∈ ℕ0) ∧ 𝑀 < 𝑁) → 𝑀 ∈ ℝ)
50 readdcl 10466 . . . . . . . . . . . . . . . . . . . 20 ((𝐼 ∈ ℝ ∧ 𝑀 ∈ ℝ) → (𝐼 + 𝑀) ∈ ℝ)
5148, 49, 50syl2anr 596 . . . . . . . . . . . . . . . . . . 19 ((((𝑀 ∈ ℕ0𝑁 ∈ ℕ0) ∧ 𝑀 < 𝑁) ∧ (𝐼 < (𝑁𝑀) ∧ 𝐼 ∈ ℕ0)) → (𝐼 + 𝑀) ∈ ℝ)
5251adantr 481 . . . . . . . . . . . . . . . . . 18 (((((𝑀 ∈ ℕ0𝑁 ∈ ℕ0) ∧ 𝑀 < 𝑁) ∧ (𝐼 < (𝑁𝑀) ∧ 𝐼 ∈ ℕ0)) ∧ 𝑃 ∈ ℕ0) → (𝐼 + 𝑀) ∈ ℝ)
5317adantr 481 . . . . . . . . . . . . . . . . . . . 20 (((𝑀 ∈ ℕ0𝑁 ∈ ℕ0) ∧ 𝑀 < 𝑁) → 𝑁 ∈ ℝ)
5453adantr 481 . . . . . . . . . . . . . . . . . . 19 ((((𝑀 ∈ ℕ0𝑁 ∈ ℕ0) ∧ 𝑀 < 𝑁) ∧ (𝐼 < (𝑁𝑀) ∧ 𝐼 ∈ ℕ0)) → 𝑁 ∈ ℝ)
5554adantr 481 . . . . . . . . . . . . . . . . . 18 (((((𝑀 ∈ ℕ0𝑁 ∈ ℕ0) ∧ 𝑀 < 𝑁) ∧ (𝐼 < (𝑁𝑀) ∧ 𝐼 ∈ ℕ0)) ∧ 𝑃 ∈ ℕ0) → 𝑁 ∈ ℝ)
5628adantl 482 . . . . . . . . . . . . . . . . . 18 (((((𝑀 ∈ ℕ0𝑁 ∈ ℕ0) ∧ 𝑀 < 𝑁) ∧ (𝐼 < (𝑁𝑀) ∧ 𝐼 ∈ ℕ0)) ∧ 𝑃 ∈ ℕ0) → 𝑃 ∈ ℝ)
5752, 55, 563jca 1121 . . . . . . . . . . . . . . . . 17 (((((𝑀 ∈ ℕ0𝑁 ∈ ℕ0) ∧ 𝑀 < 𝑁) ∧ (𝐼 < (𝑁𝑀) ∧ 𝐼 ∈ ℕ0)) ∧ 𝑃 ∈ ℕ0) → ((𝐼 + 𝑀) ∈ ℝ ∧ 𝑁 ∈ ℝ ∧ 𝑃 ∈ ℝ))
5857adantr 481 . . . . . . . . . . . . . . . 16 ((((((𝑀 ∈ ℕ0𝑁 ∈ ℕ0) ∧ 𝑀 < 𝑁) ∧ (𝐼 < (𝑁𝑀) ∧ 𝐼 ∈ ℕ0)) ∧ 𝑃 ∈ ℕ0) ∧ 𝑁𝑃) → ((𝐼 + 𝑀) ∈ ℝ ∧ 𝑁 ∈ ℝ ∧ 𝑃 ∈ ℝ))
5947adantl 482 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝑀 ∈ ℕ0𝑁 ∈ ℕ0) ∧ 𝐼 ∈ ℕ0) → 𝐼 ∈ ℝ)
6015adantr 481 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝑀 ∈ ℕ0𝑁 ∈ ℕ0) ∧ 𝐼 ∈ ℕ0) → 𝑀 ∈ ℝ)
6117adantr 481 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝑀 ∈ ℕ0𝑁 ∈ ℕ0) ∧ 𝐼 ∈ ℕ0) → 𝑁 ∈ ℝ)
6259, 60, 61ltaddsubd 11088 . . . . . . . . . . . . . . . . . . . . . 22 (((𝑀 ∈ ℕ0𝑁 ∈ ℕ0) ∧ 𝐼 ∈ ℕ0) → ((𝐼 + 𝑀) < 𝑁𝐼 < (𝑁𝑀)))
6362exbiri 807 . . . . . . . . . . . . . . . . . . . . 21 ((𝑀 ∈ ℕ0𝑁 ∈ ℕ0) → (𝐼 ∈ ℕ0 → (𝐼 < (𝑁𝑀) → (𝐼 + 𝑀) < 𝑁)))
6463impcomd 412 . . . . . . . . . . . . . . . . . . . 20 ((𝑀 ∈ ℕ0𝑁 ∈ ℕ0) → ((𝐼 < (𝑁𝑀) ∧ 𝐼 ∈ ℕ0) → (𝐼 + 𝑀) < 𝑁))
6564adantr 481 . . . . . . . . . . . . . . . . . . 19 (((𝑀 ∈ ℕ0𝑁 ∈ ℕ0) ∧ 𝑀 < 𝑁) → ((𝐼 < (𝑁𝑀) ∧ 𝐼 ∈ ℕ0) → (𝐼 + 𝑀) < 𝑁))
6665imp 407 . . . . . . . . . . . . . . . . . 18 ((((𝑀 ∈ ℕ0𝑁 ∈ ℕ0) ∧ 𝑀 < 𝑁) ∧ (𝐼 < (𝑁𝑀) ∧ 𝐼 ∈ ℕ0)) → (𝐼 + 𝑀) < 𝑁)
6766adantr 481 . . . . . . . . . . . . . . . . 17 (((((𝑀 ∈ ℕ0𝑁 ∈ ℕ0) ∧ 𝑀 < 𝑁) ∧ (𝐼 < (𝑁𝑀) ∧ 𝐼 ∈ ℕ0)) ∧ 𝑃 ∈ ℕ0) → (𝐼 + 𝑀) < 𝑁)
6867anim1i 614 . . . . . . . . . . . . . . . 16 ((((((𝑀 ∈ ℕ0𝑁 ∈ ℕ0) ∧ 𝑀 < 𝑁) ∧ (𝐼 < (𝑁𝑀) ∧ 𝐼 ∈ ℕ0)) ∧ 𝑃 ∈ ℕ0) ∧ 𝑁𝑃) → ((𝐼 + 𝑀) < 𝑁𝑁𝑃))
69 ltletr 10579 . . . . . . . . . . . . . . . 16 (((𝐼 + 𝑀) ∈ ℝ ∧ 𝑁 ∈ ℝ ∧ 𝑃 ∈ ℝ) → (((𝐼 + 𝑀) < 𝑁𝑁𝑃) → (𝐼 + 𝑀) < 𝑃))
7058, 68, 69sylc 65 . . . . . . . . . . . . . . 15 ((((((𝑀 ∈ ℕ0𝑁 ∈ ℕ0) ∧ 𝑀 < 𝑁) ∧ (𝐼 < (𝑁𝑀) ∧ 𝐼 ∈ ℕ0)) ∧ 𝑃 ∈ ℕ0) ∧ 𝑁𝑃) → (𝐼 + 𝑀) < 𝑃)
7170anasss 467 . . . . . . . . . . . . . 14 (((((𝑀 ∈ ℕ0𝑁 ∈ ℕ0) ∧ 𝑀 < 𝑁) ∧ (𝐼 < (𝑁𝑀) ∧ 𝐼 ∈ ℕ0)) ∧ (𝑃 ∈ ℕ0𝑁𝑃)) → (𝐼 + 𝑀) < 𝑃)
72 elfzo0 12928 . . . . . . . . . . . . . 14 ((𝐼 + 𝑀) ∈ (0..^𝑃) ↔ ((𝐼 + 𝑀) ∈ ℕ0𝑃 ∈ ℕ ∧ (𝐼 + 𝑀) < 𝑃))
7312, 46, 71, 72syl3anbrc 1336 . . . . . . . . . . . . 13 (((((𝑀 ∈ ℕ0𝑁 ∈ ℕ0) ∧ 𝑀 < 𝑁) ∧ (𝐼 < (𝑁𝑀) ∧ 𝐼 ∈ ℕ0)) ∧ (𝑃 ∈ ℕ0𝑁𝑃)) → (𝐼 + 𝑀) ∈ (0..^𝑃))
7473exp53 448 . . . . . . . . . . . 12 ((𝑀 ∈ ℕ0𝑁 ∈ ℕ0) → (𝑀 < 𝑁 → (𝐼 < (𝑁𝑀) → (𝐼 ∈ ℕ0 → ((𝑃 ∈ ℕ0𝑁𝑃) → (𝐼 + 𝑀) ∈ (0..^𝑃))))))
757, 74sylbird 261 . . . . . . . . . . 11 ((𝑀 ∈ ℕ0𝑁 ∈ ℕ0) → ((𝑁𝑀) ∈ ℕ → (𝐼 < (𝑁𝑀) → (𝐼 ∈ ℕ0 → ((𝑃 ∈ ℕ0𝑁𝑃) → (𝐼 + 𝑀) ∈ (0..^𝑃))))))
76753adant3 1125 . . . . . . . . . 10 ((𝑀 ∈ ℕ0𝑁 ∈ ℕ0𝑀𝑁) → ((𝑁𝑀) ∈ ℕ → (𝐼 < (𝑁𝑀) → (𝐼 ∈ ℕ0 → ((𝑃 ∈ ℕ0𝑁𝑃) → (𝐼 + 𝑀) ∈ (0..^𝑃))))))
7776com14 96 . . . . . . . . 9 (𝐼 ∈ ℕ0 → ((𝑁𝑀) ∈ ℕ → (𝐼 < (𝑁𝑀) → ((𝑀 ∈ ℕ0𝑁 ∈ ℕ0𝑀𝑁) → ((𝑃 ∈ ℕ0𝑁𝑃) → (𝐼 + 𝑀) ∈ (0..^𝑃))))))
78773imp 1104 . . . . . . . 8 ((𝐼 ∈ ℕ0 ∧ (𝑁𝑀) ∈ ℕ ∧ 𝐼 < (𝑁𝑀)) → ((𝑀 ∈ ℕ0𝑁 ∈ ℕ0𝑀𝑁) → ((𝑃 ∈ ℕ0𝑁𝑃) → (𝐼 + 𝑀) ∈ (0..^𝑃))))
793, 78sylbi 218 . . . . . . 7 (𝐼 ∈ (0..^(𝑁𝑀)) → ((𝑀 ∈ ℕ0𝑁 ∈ ℕ0𝑀𝑁) → ((𝑃 ∈ ℕ0𝑁𝑃) → (𝐼 + 𝑀) ∈ (0..^𝑃))))
8079com13 88 . . . . . 6 ((𝑃 ∈ ℕ0𝑁𝑃) → ((𝑀 ∈ ℕ0𝑁 ∈ ℕ0𝑀𝑁) → (𝐼 ∈ (0..^(𝑁𝑀)) → (𝐼 + 𝑀) ∈ (0..^𝑃))))
81803adant1 1123 . . . . 5 ((𝑁 ∈ ℕ0𝑃 ∈ ℕ0𝑁𝑃) → ((𝑀 ∈ ℕ0𝑁 ∈ ℕ0𝑀𝑁) → (𝐼 ∈ (0..^(𝑁𝑀)) → (𝐼 + 𝑀) ∈ (0..^𝑃))))
822, 81sylbi 218 . . . 4 (𝑁 ∈ (0...𝑃) → ((𝑀 ∈ ℕ0𝑁 ∈ ℕ0𝑀𝑁) → (𝐼 ∈ (0..^(𝑁𝑀)) → (𝐼 + 𝑀) ∈ (0..^𝑃))))
8382com12 32 . . 3 ((𝑀 ∈ ℕ0𝑁 ∈ ℕ0𝑀𝑁) → (𝑁 ∈ (0...𝑃) → (𝐼 ∈ (0..^(𝑁𝑀)) → (𝐼 + 𝑀) ∈ (0..^𝑃))))
841, 83sylbi 218 . 2 (𝑀 ∈ (0...𝑁) → (𝑁 ∈ (0...𝑃) → (𝐼 ∈ (0..^(𝑁𝑀)) → (𝐼 + 𝑀) ∈ (0..^𝑃))))
8584imp 407 1 ((𝑀 ∈ (0...𝑁) ∧ 𝑁 ∈ (0...𝑃)) → (𝐼 ∈ (0..^(𝑁𝑀)) → (𝐼 + 𝑀) ∈ (0..^𝑃)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 207  wa 396  w3a 1080  wcel 2081   class class class wbr 4962  (class class class)co 7016  cr 10382  0cc0 10383   + caddc 10386   < clt 10521  cle 10522  cmin 10717  cn 11486  0cn0 11745  cz 11829  ...cfz 12742  ..^cfzo 12883
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1777  ax-4 1791  ax-5 1888  ax-6 1947  ax-7 1992  ax-8 2083  ax-9 2091  ax-10 2112  ax-11 2126  ax-12 2141  ax-13 2344  ax-ext 2769  ax-sep 5094  ax-nul 5101  ax-pow 5157  ax-pr 5221  ax-un 7319  ax-cnex 10439  ax-resscn 10440  ax-1cn 10441  ax-icn 10442  ax-addcl 10443  ax-addrcl 10444  ax-mulcl 10445  ax-mulrcl 10446  ax-mulcom 10447  ax-addass 10448  ax-mulass 10449  ax-distr 10450  ax-i2m1 10451  ax-1ne0 10452  ax-1rid 10453  ax-rnegex 10454  ax-rrecex 10455  ax-cnre 10456  ax-pre-lttri 10457  ax-pre-lttrn 10458  ax-pre-ltadd 10459  ax-pre-mulgt0 10460
This theorem depends on definitions:  df-bi 208  df-an 397  df-or 843  df-3or 1081  df-3an 1082  df-tru 1525  df-ex 1762  df-nf 1766  df-sb 2043  df-mo 2576  df-eu 2612  df-clab 2776  df-cleq 2788  df-clel 2863  df-nfc 2935  df-ne 2985  df-nel 3091  df-ral 3110  df-rex 3111  df-reu 3112  df-rab 3114  df-v 3439  df-sbc 3707  df-csb 3812  df-dif 3862  df-un 3864  df-in 3866  df-ss 3874  df-pss 3876  df-nul 4212  df-if 4382  df-pw 4455  df-sn 4473  df-pr 4475  df-tp 4477  df-op 4479  df-uni 4746  df-iun 4827  df-br 4963  df-opab 5025  df-mpt 5042  df-tr 5064  df-id 5348  df-eprel 5353  df-po 5362  df-so 5363  df-fr 5402  df-we 5404  df-xp 5449  df-rel 5450  df-cnv 5451  df-co 5452  df-dm 5453  df-rn 5454  df-res 5455  df-ima 5456  df-pred 6023  df-ord 6069  df-on 6070  df-lim 6071  df-suc 6072  df-iota 6189  df-fun 6227  df-fn 6228  df-f 6229  df-f1 6230  df-fo 6231  df-f1o 6232  df-fv 6233  df-riota 6977  df-ov 7019  df-oprab 7020  df-mpo 7021  df-om 7437  df-1st 7545  df-2nd 7546  df-wrecs 7798  df-recs 7860  df-rdg 7898  df-er 8139  df-en 8358  df-dom 8359  df-sdom 8360  df-pnf 10523  df-mnf 10524  df-xr 10525  df-ltxr 10526  df-le 10527  df-sub 10719  df-neg 10720  df-nn 11487  df-n0 11746  df-z 11830  df-uz 12094  df-fz 12743  df-fzo 12884
This theorem is referenced by:  elfzom1elp1fzo  12954  swrdwrdsymb  13860  swrdco  14035
  Copyright terms: Public domain W3C validator