MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  grpolcan Structured version   Visualization version   GIF version

Theorem grpolcan 30514
Description: Left cancellation law for groups. (Contributed by NM, 27-Oct-2006.) (New usage is discouraged.)
Hypothesis
Ref Expression
grplcan.1 𝑋 = ran 𝐺
Assertion
Ref Expression
grpolcan ((𝐺 ∈ GrpOp ∧ (𝐴𝑋𝐵𝑋𝐶𝑋)) → ((𝐶𝐺𝐴) = (𝐶𝐺𝐵) ↔ 𝐴 = 𝐵))

Proof of Theorem grpolcan
StepHypRef Expression
1 oveq2 7362 . . . . . 6 ((𝐶𝐺𝐴) = (𝐶𝐺𝐵) → (((inv‘𝐺)‘𝐶)𝐺(𝐶𝐺𝐴)) = (((inv‘𝐺)‘𝐶)𝐺(𝐶𝐺𝐵)))
21adantl 481 . . . . 5 ((((𝐺 ∈ GrpOp ∧ 𝐴𝑋) ∧ (𝐵𝑋𝐶𝑋)) ∧ (𝐶𝐺𝐴) = (𝐶𝐺𝐵)) → (((inv‘𝐺)‘𝐶)𝐺(𝐶𝐺𝐴)) = (((inv‘𝐺)‘𝐶)𝐺(𝐶𝐺𝐵)))
3 grplcan.1 . . . . . . . . . . 11 𝑋 = ran 𝐺
4 eqid 2733 . . . . . . . . . . 11 (GId‘𝐺) = (GId‘𝐺)
5 eqid 2733 . . . . . . . . . . 11 (inv‘𝐺) = (inv‘𝐺)
63, 4, 5grpolinv 30510 . . . . . . . . . 10 ((𝐺 ∈ GrpOp ∧ 𝐶𝑋) → (((inv‘𝐺)‘𝐶)𝐺𝐶) = (GId‘𝐺))
76adantlr 715 . . . . . . . . 9 (((𝐺 ∈ GrpOp ∧ 𝐴𝑋) ∧ 𝐶𝑋) → (((inv‘𝐺)‘𝐶)𝐺𝐶) = (GId‘𝐺))
87oveq1d 7369 . . . . . . . 8 (((𝐺 ∈ GrpOp ∧ 𝐴𝑋) ∧ 𝐶𝑋) → ((((inv‘𝐺)‘𝐶)𝐺𝐶)𝐺𝐴) = ((GId‘𝐺)𝐺𝐴))
93, 5grpoinvcl 30508 . . . . . . . . . . . 12 ((𝐺 ∈ GrpOp ∧ 𝐶𝑋) → ((inv‘𝐺)‘𝐶) ∈ 𝑋)
109adantrl 716 . . . . . . . . . . 11 ((𝐺 ∈ GrpOp ∧ (𝐴𝑋𝐶𝑋)) → ((inv‘𝐺)‘𝐶) ∈ 𝑋)
11 simprr 772 . . . . . . . . . . 11 ((𝐺 ∈ GrpOp ∧ (𝐴𝑋𝐶𝑋)) → 𝐶𝑋)
12 simprl 770 . . . . . . . . . . 11 ((𝐺 ∈ GrpOp ∧ (𝐴𝑋𝐶𝑋)) → 𝐴𝑋)
1310, 11, 123jca 1128 . . . . . . . . . 10 ((𝐺 ∈ GrpOp ∧ (𝐴𝑋𝐶𝑋)) → (((inv‘𝐺)‘𝐶) ∈ 𝑋𝐶𝑋𝐴𝑋))
143grpoass 30487 . . . . . . . . . 10 ((𝐺 ∈ GrpOp ∧ (((inv‘𝐺)‘𝐶) ∈ 𝑋𝐶𝑋𝐴𝑋)) → ((((inv‘𝐺)‘𝐶)𝐺𝐶)𝐺𝐴) = (((inv‘𝐺)‘𝐶)𝐺(𝐶𝐺𝐴)))
1513, 14syldan 591 . . . . . . . . 9 ((𝐺 ∈ GrpOp ∧ (𝐴𝑋𝐶𝑋)) → ((((inv‘𝐺)‘𝐶)𝐺𝐶)𝐺𝐴) = (((inv‘𝐺)‘𝐶)𝐺(𝐶𝐺𝐴)))
1615anassrs 467 . . . . . . . 8 (((𝐺 ∈ GrpOp ∧ 𝐴𝑋) ∧ 𝐶𝑋) → ((((inv‘𝐺)‘𝐶)𝐺𝐶)𝐺𝐴) = (((inv‘𝐺)‘𝐶)𝐺(𝐶𝐺𝐴)))
173, 4grpolid 30500 . . . . . . . . 9 ((𝐺 ∈ GrpOp ∧ 𝐴𝑋) → ((GId‘𝐺)𝐺𝐴) = 𝐴)
1817adantr 480 . . . . . . . 8 (((𝐺 ∈ GrpOp ∧ 𝐴𝑋) ∧ 𝐶𝑋) → ((GId‘𝐺)𝐺𝐴) = 𝐴)
198, 16, 183eqtr3d 2776 . . . . . . 7 (((𝐺 ∈ GrpOp ∧ 𝐴𝑋) ∧ 𝐶𝑋) → (((inv‘𝐺)‘𝐶)𝐺(𝐶𝐺𝐴)) = 𝐴)
2019adantrl 716 . . . . . 6 (((𝐺 ∈ GrpOp ∧ 𝐴𝑋) ∧ (𝐵𝑋𝐶𝑋)) → (((inv‘𝐺)‘𝐶)𝐺(𝐶𝐺𝐴)) = 𝐴)
2120adantr 480 . . . . 5 ((((𝐺 ∈ GrpOp ∧ 𝐴𝑋) ∧ (𝐵𝑋𝐶𝑋)) ∧ (𝐶𝐺𝐴) = (𝐶𝐺𝐵)) → (((inv‘𝐺)‘𝐶)𝐺(𝐶𝐺𝐴)) = 𝐴)
226adantrl 716 . . . . . . . . 9 ((𝐺 ∈ GrpOp ∧ (𝐵𝑋𝐶𝑋)) → (((inv‘𝐺)‘𝐶)𝐺𝐶) = (GId‘𝐺))
2322oveq1d 7369 . . . . . . . 8 ((𝐺 ∈ GrpOp ∧ (𝐵𝑋𝐶𝑋)) → ((((inv‘𝐺)‘𝐶)𝐺𝐶)𝐺𝐵) = ((GId‘𝐺)𝐺𝐵))
249adantrl 716 . . . . . . . . . 10 ((𝐺 ∈ GrpOp ∧ (𝐵𝑋𝐶𝑋)) → ((inv‘𝐺)‘𝐶) ∈ 𝑋)
25 simprr 772 . . . . . . . . . 10 ((𝐺 ∈ GrpOp ∧ (𝐵𝑋𝐶𝑋)) → 𝐶𝑋)
26 simprl 770 . . . . . . . . . 10 ((𝐺 ∈ GrpOp ∧ (𝐵𝑋𝐶𝑋)) → 𝐵𝑋)
2724, 25, 263jca 1128 . . . . . . . . 9 ((𝐺 ∈ GrpOp ∧ (𝐵𝑋𝐶𝑋)) → (((inv‘𝐺)‘𝐶) ∈ 𝑋𝐶𝑋𝐵𝑋))
283grpoass 30487 . . . . . . . . 9 ((𝐺 ∈ GrpOp ∧ (((inv‘𝐺)‘𝐶) ∈ 𝑋𝐶𝑋𝐵𝑋)) → ((((inv‘𝐺)‘𝐶)𝐺𝐶)𝐺𝐵) = (((inv‘𝐺)‘𝐶)𝐺(𝐶𝐺𝐵)))
2927, 28syldan 591 . . . . . . . 8 ((𝐺 ∈ GrpOp ∧ (𝐵𝑋𝐶𝑋)) → ((((inv‘𝐺)‘𝐶)𝐺𝐶)𝐺𝐵) = (((inv‘𝐺)‘𝐶)𝐺(𝐶𝐺𝐵)))
303, 4grpolid 30500 . . . . . . . . 9 ((𝐺 ∈ GrpOp ∧ 𝐵𝑋) → ((GId‘𝐺)𝐺𝐵) = 𝐵)
3130adantrr 717 . . . . . . . 8 ((𝐺 ∈ GrpOp ∧ (𝐵𝑋𝐶𝑋)) → ((GId‘𝐺)𝐺𝐵) = 𝐵)
3223, 29, 313eqtr3d 2776 . . . . . . 7 ((𝐺 ∈ GrpOp ∧ (𝐵𝑋𝐶𝑋)) → (((inv‘𝐺)‘𝐶)𝐺(𝐶𝐺𝐵)) = 𝐵)
3332adantlr 715 . . . . . 6 (((𝐺 ∈ GrpOp ∧ 𝐴𝑋) ∧ (𝐵𝑋𝐶𝑋)) → (((inv‘𝐺)‘𝐶)𝐺(𝐶𝐺𝐵)) = 𝐵)
3433adantr 480 . . . . 5 ((((𝐺 ∈ GrpOp ∧ 𝐴𝑋) ∧ (𝐵𝑋𝐶𝑋)) ∧ (𝐶𝐺𝐴) = (𝐶𝐺𝐵)) → (((inv‘𝐺)‘𝐶)𝐺(𝐶𝐺𝐵)) = 𝐵)
352, 21, 343eqtr3d 2776 . . . 4 ((((𝐺 ∈ GrpOp ∧ 𝐴𝑋) ∧ (𝐵𝑋𝐶𝑋)) ∧ (𝐶𝐺𝐴) = (𝐶𝐺𝐵)) → 𝐴 = 𝐵)
3635exp53 447 . . 3 (𝐺 ∈ GrpOp → (𝐴𝑋 → (𝐵𝑋 → (𝐶𝑋 → ((𝐶𝐺𝐴) = (𝐶𝐺𝐵) → 𝐴 = 𝐵)))))
37363imp2 1350 . 2 ((𝐺 ∈ GrpOp ∧ (𝐴𝑋𝐵𝑋𝐶𝑋)) → ((𝐶𝐺𝐴) = (𝐶𝐺𝐵) → 𝐴 = 𝐵))
38 oveq2 7362 . 2 (𝐴 = 𝐵 → (𝐶𝐺𝐴) = (𝐶𝐺𝐵))
3937, 38impbid1 225 1 ((𝐺 ∈ GrpOp ∧ (𝐴𝑋𝐵𝑋𝐶𝑋)) → ((𝐶𝐺𝐴) = (𝐶𝐺𝐵) ↔ 𝐴 = 𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1541  wcel 2113  ran crn 5622  cfv 6488  (class class class)co 7354  GrpOpcgr 30473  GIdcgi 30474  invcgn 30475
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-11 2162  ax-12 2182  ax-ext 2705  ax-rep 5221  ax-sep 5238  ax-nul 5248  ax-pr 5374  ax-un 7676
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2725  df-clel 2808  df-nfc 2882  df-ne 2930  df-ral 3049  df-rex 3058  df-reu 3348  df-rab 3397  df-v 3439  df-sbc 3738  df-csb 3847  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-nul 4283  df-if 4477  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4861  df-iun 4945  df-br 5096  df-opab 5158  df-mpt 5177  df-id 5516  df-xp 5627  df-rel 5628  df-cnv 5629  df-co 5630  df-dm 5631  df-rn 5632  df-res 5633  df-ima 5634  df-iota 6444  df-fun 6490  df-fn 6491  df-f 6492  df-f1 6493  df-fo 6494  df-f1o 6495  df-fv 6496  df-riota 7311  df-ov 7357  df-grpo 30477  df-gid 30478  df-ginv 30479
This theorem is referenced by:  grpo2inv  30515  vclcan  30555  rngolcan  37981  rngolz  37985
  Copyright terms: Public domain W3C validator