Proof of Theorem grpolcan
Step | Hyp | Ref
| Expression |
1 | | oveq2 7263 |
. . . . . 6
⊢ ((𝐶𝐺𝐴) = (𝐶𝐺𝐵) → (((inv‘𝐺)‘𝐶)𝐺(𝐶𝐺𝐴)) = (((inv‘𝐺)‘𝐶)𝐺(𝐶𝐺𝐵))) |
2 | 1 | adantl 481 |
. . . . 5
⊢ ((((𝐺 ∈ GrpOp ∧ 𝐴 ∈ 𝑋) ∧ (𝐵 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋)) ∧ (𝐶𝐺𝐴) = (𝐶𝐺𝐵)) → (((inv‘𝐺)‘𝐶)𝐺(𝐶𝐺𝐴)) = (((inv‘𝐺)‘𝐶)𝐺(𝐶𝐺𝐵))) |
3 | | grplcan.1 |
. . . . . . . . . . 11
⊢ 𝑋 = ran 𝐺 |
4 | | eqid 2738 |
. . . . . . . . . . 11
⊢
(GId‘𝐺) =
(GId‘𝐺) |
5 | | eqid 2738 |
. . . . . . . . . . 11
⊢
(inv‘𝐺) =
(inv‘𝐺) |
6 | 3, 4, 5 | grpolinv 28789 |
. . . . . . . . . 10
⊢ ((𝐺 ∈ GrpOp ∧ 𝐶 ∈ 𝑋) → (((inv‘𝐺)‘𝐶)𝐺𝐶) = (GId‘𝐺)) |
7 | 6 | adantlr 711 |
. . . . . . . . 9
⊢ (((𝐺 ∈ GrpOp ∧ 𝐴 ∈ 𝑋) ∧ 𝐶 ∈ 𝑋) → (((inv‘𝐺)‘𝐶)𝐺𝐶) = (GId‘𝐺)) |
8 | 7 | oveq1d 7270 |
. . . . . . . 8
⊢ (((𝐺 ∈ GrpOp ∧ 𝐴 ∈ 𝑋) ∧ 𝐶 ∈ 𝑋) → ((((inv‘𝐺)‘𝐶)𝐺𝐶)𝐺𝐴) = ((GId‘𝐺)𝐺𝐴)) |
9 | 3, 5 | grpoinvcl 28787 |
. . . . . . . . . . . 12
⊢ ((𝐺 ∈ GrpOp ∧ 𝐶 ∈ 𝑋) → ((inv‘𝐺)‘𝐶) ∈ 𝑋) |
10 | 9 | adantrl 712 |
. . . . . . . . . . 11
⊢ ((𝐺 ∈ GrpOp ∧ (𝐴 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋)) → ((inv‘𝐺)‘𝐶) ∈ 𝑋) |
11 | | simprr 769 |
. . . . . . . . . . 11
⊢ ((𝐺 ∈ GrpOp ∧ (𝐴 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋)) → 𝐶 ∈ 𝑋) |
12 | | simprl 767 |
. . . . . . . . . . 11
⊢ ((𝐺 ∈ GrpOp ∧ (𝐴 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋)) → 𝐴 ∈ 𝑋) |
13 | 10, 11, 12 | 3jca 1126 |
. . . . . . . . . 10
⊢ ((𝐺 ∈ GrpOp ∧ (𝐴 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋)) → (((inv‘𝐺)‘𝐶) ∈ 𝑋 ∧ 𝐶 ∈ 𝑋 ∧ 𝐴 ∈ 𝑋)) |
14 | 3 | grpoass 28766 |
. . . . . . . . . 10
⊢ ((𝐺 ∈ GrpOp ∧
(((inv‘𝐺)‘𝐶) ∈ 𝑋 ∧ 𝐶 ∈ 𝑋 ∧ 𝐴 ∈ 𝑋)) → ((((inv‘𝐺)‘𝐶)𝐺𝐶)𝐺𝐴) = (((inv‘𝐺)‘𝐶)𝐺(𝐶𝐺𝐴))) |
15 | 13, 14 | syldan 590 |
. . . . . . . . 9
⊢ ((𝐺 ∈ GrpOp ∧ (𝐴 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋)) → ((((inv‘𝐺)‘𝐶)𝐺𝐶)𝐺𝐴) = (((inv‘𝐺)‘𝐶)𝐺(𝐶𝐺𝐴))) |
16 | 15 | anassrs 467 |
. . . . . . . 8
⊢ (((𝐺 ∈ GrpOp ∧ 𝐴 ∈ 𝑋) ∧ 𝐶 ∈ 𝑋) → ((((inv‘𝐺)‘𝐶)𝐺𝐶)𝐺𝐴) = (((inv‘𝐺)‘𝐶)𝐺(𝐶𝐺𝐴))) |
17 | 3, 4 | grpolid 28779 |
. . . . . . . . 9
⊢ ((𝐺 ∈ GrpOp ∧ 𝐴 ∈ 𝑋) → ((GId‘𝐺)𝐺𝐴) = 𝐴) |
18 | 17 | adantr 480 |
. . . . . . . 8
⊢ (((𝐺 ∈ GrpOp ∧ 𝐴 ∈ 𝑋) ∧ 𝐶 ∈ 𝑋) → ((GId‘𝐺)𝐺𝐴) = 𝐴) |
19 | 8, 16, 18 | 3eqtr3d 2786 |
. . . . . . 7
⊢ (((𝐺 ∈ GrpOp ∧ 𝐴 ∈ 𝑋) ∧ 𝐶 ∈ 𝑋) → (((inv‘𝐺)‘𝐶)𝐺(𝐶𝐺𝐴)) = 𝐴) |
20 | 19 | adantrl 712 |
. . . . . 6
⊢ (((𝐺 ∈ GrpOp ∧ 𝐴 ∈ 𝑋) ∧ (𝐵 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋)) → (((inv‘𝐺)‘𝐶)𝐺(𝐶𝐺𝐴)) = 𝐴) |
21 | 20 | adantr 480 |
. . . . 5
⊢ ((((𝐺 ∈ GrpOp ∧ 𝐴 ∈ 𝑋) ∧ (𝐵 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋)) ∧ (𝐶𝐺𝐴) = (𝐶𝐺𝐵)) → (((inv‘𝐺)‘𝐶)𝐺(𝐶𝐺𝐴)) = 𝐴) |
22 | 6 | adantrl 712 |
. . . . . . . . 9
⊢ ((𝐺 ∈ GrpOp ∧ (𝐵 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋)) → (((inv‘𝐺)‘𝐶)𝐺𝐶) = (GId‘𝐺)) |
23 | 22 | oveq1d 7270 |
. . . . . . . 8
⊢ ((𝐺 ∈ GrpOp ∧ (𝐵 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋)) → ((((inv‘𝐺)‘𝐶)𝐺𝐶)𝐺𝐵) = ((GId‘𝐺)𝐺𝐵)) |
24 | 9 | adantrl 712 |
. . . . . . . . . 10
⊢ ((𝐺 ∈ GrpOp ∧ (𝐵 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋)) → ((inv‘𝐺)‘𝐶) ∈ 𝑋) |
25 | | simprr 769 |
. . . . . . . . . 10
⊢ ((𝐺 ∈ GrpOp ∧ (𝐵 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋)) → 𝐶 ∈ 𝑋) |
26 | | simprl 767 |
. . . . . . . . . 10
⊢ ((𝐺 ∈ GrpOp ∧ (𝐵 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋)) → 𝐵 ∈ 𝑋) |
27 | 24, 25, 26 | 3jca 1126 |
. . . . . . . . 9
⊢ ((𝐺 ∈ GrpOp ∧ (𝐵 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋)) → (((inv‘𝐺)‘𝐶) ∈ 𝑋 ∧ 𝐶 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋)) |
28 | 3 | grpoass 28766 |
. . . . . . . . 9
⊢ ((𝐺 ∈ GrpOp ∧
(((inv‘𝐺)‘𝐶) ∈ 𝑋 ∧ 𝐶 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋)) → ((((inv‘𝐺)‘𝐶)𝐺𝐶)𝐺𝐵) = (((inv‘𝐺)‘𝐶)𝐺(𝐶𝐺𝐵))) |
29 | 27, 28 | syldan 590 |
. . . . . . . 8
⊢ ((𝐺 ∈ GrpOp ∧ (𝐵 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋)) → ((((inv‘𝐺)‘𝐶)𝐺𝐶)𝐺𝐵) = (((inv‘𝐺)‘𝐶)𝐺(𝐶𝐺𝐵))) |
30 | 3, 4 | grpolid 28779 |
. . . . . . . . 9
⊢ ((𝐺 ∈ GrpOp ∧ 𝐵 ∈ 𝑋) → ((GId‘𝐺)𝐺𝐵) = 𝐵) |
31 | 30 | adantrr 713 |
. . . . . . . 8
⊢ ((𝐺 ∈ GrpOp ∧ (𝐵 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋)) → ((GId‘𝐺)𝐺𝐵) = 𝐵) |
32 | 23, 29, 31 | 3eqtr3d 2786 |
. . . . . . 7
⊢ ((𝐺 ∈ GrpOp ∧ (𝐵 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋)) → (((inv‘𝐺)‘𝐶)𝐺(𝐶𝐺𝐵)) = 𝐵) |
33 | 32 | adantlr 711 |
. . . . . 6
⊢ (((𝐺 ∈ GrpOp ∧ 𝐴 ∈ 𝑋) ∧ (𝐵 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋)) → (((inv‘𝐺)‘𝐶)𝐺(𝐶𝐺𝐵)) = 𝐵) |
34 | 33 | adantr 480 |
. . . . 5
⊢ ((((𝐺 ∈ GrpOp ∧ 𝐴 ∈ 𝑋) ∧ (𝐵 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋)) ∧ (𝐶𝐺𝐴) = (𝐶𝐺𝐵)) → (((inv‘𝐺)‘𝐶)𝐺(𝐶𝐺𝐵)) = 𝐵) |
35 | 2, 21, 34 | 3eqtr3d 2786 |
. . . 4
⊢ ((((𝐺 ∈ GrpOp ∧ 𝐴 ∈ 𝑋) ∧ (𝐵 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋)) ∧ (𝐶𝐺𝐴) = (𝐶𝐺𝐵)) → 𝐴 = 𝐵) |
36 | 35 | exp53 447 |
. . 3
⊢ (𝐺 ∈ GrpOp → (𝐴 ∈ 𝑋 → (𝐵 ∈ 𝑋 → (𝐶 ∈ 𝑋 → ((𝐶𝐺𝐴) = (𝐶𝐺𝐵) → 𝐴 = 𝐵))))) |
37 | 36 | 3imp2 1347 |
. 2
⊢ ((𝐺 ∈ GrpOp ∧ (𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋)) → ((𝐶𝐺𝐴) = (𝐶𝐺𝐵) → 𝐴 = 𝐵)) |
38 | | oveq2 7263 |
. 2
⊢ (𝐴 = 𝐵 → (𝐶𝐺𝐴) = (𝐶𝐺𝐵)) |
39 | 37, 38 | impbid1 224 |
1
⊢ ((𝐺 ∈ GrpOp ∧ (𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋)) → ((𝐶𝐺𝐴) = (𝐶𝐺𝐵) ↔ 𝐴 = 𝐵)) |