MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  grpolcan Structured version   Visualization version   GIF version

Theorem grpolcan 30368
Description: Left cancellation law for groups. (Contributed by NM, 27-Oct-2006.) (New usage is discouraged.)
Hypothesis
Ref Expression
grplcan.1 𝑋 = ran 𝐺
Assertion
Ref Expression
grpolcan ((𝐺 ∈ GrpOp ∧ (𝐴 ∈ 𝑋 ∧ 𝐡 ∈ 𝑋 ∧ 𝐢 ∈ 𝑋)) β†’ ((𝐢𝐺𝐴) = (𝐢𝐺𝐡) ↔ 𝐴 = 𝐡))

Proof of Theorem grpolcan
StepHypRef Expression
1 oveq2 7434 . . . . . 6 ((𝐢𝐺𝐴) = (𝐢𝐺𝐡) β†’ (((invβ€˜πΊ)β€˜πΆ)𝐺(𝐢𝐺𝐴)) = (((invβ€˜πΊ)β€˜πΆ)𝐺(𝐢𝐺𝐡)))
21adantl 480 . . . . 5 ((((𝐺 ∈ GrpOp ∧ 𝐴 ∈ 𝑋) ∧ (𝐡 ∈ 𝑋 ∧ 𝐢 ∈ 𝑋)) ∧ (𝐢𝐺𝐴) = (𝐢𝐺𝐡)) β†’ (((invβ€˜πΊ)β€˜πΆ)𝐺(𝐢𝐺𝐴)) = (((invβ€˜πΊ)β€˜πΆ)𝐺(𝐢𝐺𝐡)))
3 grplcan.1 . . . . . . . . . . 11 𝑋 = ran 𝐺
4 eqid 2728 . . . . . . . . . . 11 (GIdβ€˜πΊ) = (GIdβ€˜πΊ)
5 eqid 2728 . . . . . . . . . . 11 (invβ€˜πΊ) = (invβ€˜πΊ)
63, 4, 5grpolinv 30364 . . . . . . . . . 10 ((𝐺 ∈ GrpOp ∧ 𝐢 ∈ 𝑋) β†’ (((invβ€˜πΊ)β€˜πΆ)𝐺𝐢) = (GIdβ€˜πΊ))
76adantlr 713 . . . . . . . . 9 (((𝐺 ∈ GrpOp ∧ 𝐴 ∈ 𝑋) ∧ 𝐢 ∈ 𝑋) β†’ (((invβ€˜πΊ)β€˜πΆ)𝐺𝐢) = (GIdβ€˜πΊ))
87oveq1d 7441 . . . . . . . 8 (((𝐺 ∈ GrpOp ∧ 𝐴 ∈ 𝑋) ∧ 𝐢 ∈ 𝑋) β†’ ((((invβ€˜πΊ)β€˜πΆ)𝐺𝐢)𝐺𝐴) = ((GIdβ€˜πΊ)𝐺𝐴))
93, 5grpoinvcl 30362 . . . . . . . . . . . 12 ((𝐺 ∈ GrpOp ∧ 𝐢 ∈ 𝑋) β†’ ((invβ€˜πΊ)β€˜πΆ) ∈ 𝑋)
109adantrl 714 . . . . . . . . . . 11 ((𝐺 ∈ GrpOp ∧ (𝐴 ∈ 𝑋 ∧ 𝐢 ∈ 𝑋)) β†’ ((invβ€˜πΊ)β€˜πΆ) ∈ 𝑋)
11 simprr 771 . . . . . . . . . . 11 ((𝐺 ∈ GrpOp ∧ (𝐴 ∈ 𝑋 ∧ 𝐢 ∈ 𝑋)) β†’ 𝐢 ∈ 𝑋)
12 simprl 769 . . . . . . . . . . 11 ((𝐺 ∈ GrpOp ∧ (𝐴 ∈ 𝑋 ∧ 𝐢 ∈ 𝑋)) β†’ 𝐴 ∈ 𝑋)
1310, 11, 123jca 1125 . . . . . . . . . 10 ((𝐺 ∈ GrpOp ∧ (𝐴 ∈ 𝑋 ∧ 𝐢 ∈ 𝑋)) β†’ (((invβ€˜πΊ)β€˜πΆ) ∈ 𝑋 ∧ 𝐢 ∈ 𝑋 ∧ 𝐴 ∈ 𝑋))
143grpoass 30341 . . . . . . . . . 10 ((𝐺 ∈ GrpOp ∧ (((invβ€˜πΊ)β€˜πΆ) ∈ 𝑋 ∧ 𝐢 ∈ 𝑋 ∧ 𝐴 ∈ 𝑋)) β†’ ((((invβ€˜πΊ)β€˜πΆ)𝐺𝐢)𝐺𝐴) = (((invβ€˜πΊ)β€˜πΆ)𝐺(𝐢𝐺𝐴)))
1513, 14syldan 589 . . . . . . . . 9 ((𝐺 ∈ GrpOp ∧ (𝐴 ∈ 𝑋 ∧ 𝐢 ∈ 𝑋)) β†’ ((((invβ€˜πΊ)β€˜πΆ)𝐺𝐢)𝐺𝐴) = (((invβ€˜πΊ)β€˜πΆ)𝐺(𝐢𝐺𝐴)))
1615anassrs 466 . . . . . . . 8 (((𝐺 ∈ GrpOp ∧ 𝐴 ∈ 𝑋) ∧ 𝐢 ∈ 𝑋) β†’ ((((invβ€˜πΊ)β€˜πΆ)𝐺𝐢)𝐺𝐴) = (((invβ€˜πΊ)β€˜πΆ)𝐺(𝐢𝐺𝐴)))
173, 4grpolid 30354 . . . . . . . . 9 ((𝐺 ∈ GrpOp ∧ 𝐴 ∈ 𝑋) β†’ ((GIdβ€˜πΊ)𝐺𝐴) = 𝐴)
1817adantr 479 . . . . . . . 8 (((𝐺 ∈ GrpOp ∧ 𝐴 ∈ 𝑋) ∧ 𝐢 ∈ 𝑋) β†’ ((GIdβ€˜πΊ)𝐺𝐴) = 𝐴)
198, 16, 183eqtr3d 2776 . . . . . . 7 (((𝐺 ∈ GrpOp ∧ 𝐴 ∈ 𝑋) ∧ 𝐢 ∈ 𝑋) β†’ (((invβ€˜πΊ)β€˜πΆ)𝐺(𝐢𝐺𝐴)) = 𝐴)
2019adantrl 714 . . . . . 6 (((𝐺 ∈ GrpOp ∧ 𝐴 ∈ 𝑋) ∧ (𝐡 ∈ 𝑋 ∧ 𝐢 ∈ 𝑋)) β†’ (((invβ€˜πΊ)β€˜πΆ)𝐺(𝐢𝐺𝐴)) = 𝐴)
2120adantr 479 . . . . 5 ((((𝐺 ∈ GrpOp ∧ 𝐴 ∈ 𝑋) ∧ (𝐡 ∈ 𝑋 ∧ 𝐢 ∈ 𝑋)) ∧ (𝐢𝐺𝐴) = (𝐢𝐺𝐡)) β†’ (((invβ€˜πΊ)β€˜πΆ)𝐺(𝐢𝐺𝐴)) = 𝐴)
226adantrl 714 . . . . . . . . 9 ((𝐺 ∈ GrpOp ∧ (𝐡 ∈ 𝑋 ∧ 𝐢 ∈ 𝑋)) β†’ (((invβ€˜πΊ)β€˜πΆ)𝐺𝐢) = (GIdβ€˜πΊ))
2322oveq1d 7441 . . . . . . . 8 ((𝐺 ∈ GrpOp ∧ (𝐡 ∈ 𝑋 ∧ 𝐢 ∈ 𝑋)) β†’ ((((invβ€˜πΊ)β€˜πΆ)𝐺𝐢)𝐺𝐡) = ((GIdβ€˜πΊ)𝐺𝐡))
249adantrl 714 . . . . . . . . . 10 ((𝐺 ∈ GrpOp ∧ (𝐡 ∈ 𝑋 ∧ 𝐢 ∈ 𝑋)) β†’ ((invβ€˜πΊ)β€˜πΆ) ∈ 𝑋)
25 simprr 771 . . . . . . . . . 10 ((𝐺 ∈ GrpOp ∧ (𝐡 ∈ 𝑋 ∧ 𝐢 ∈ 𝑋)) β†’ 𝐢 ∈ 𝑋)
26 simprl 769 . . . . . . . . . 10 ((𝐺 ∈ GrpOp ∧ (𝐡 ∈ 𝑋 ∧ 𝐢 ∈ 𝑋)) β†’ 𝐡 ∈ 𝑋)
2724, 25, 263jca 1125 . . . . . . . . 9 ((𝐺 ∈ GrpOp ∧ (𝐡 ∈ 𝑋 ∧ 𝐢 ∈ 𝑋)) β†’ (((invβ€˜πΊ)β€˜πΆ) ∈ 𝑋 ∧ 𝐢 ∈ 𝑋 ∧ 𝐡 ∈ 𝑋))
283grpoass 30341 . . . . . . . . 9 ((𝐺 ∈ GrpOp ∧ (((invβ€˜πΊ)β€˜πΆ) ∈ 𝑋 ∧ 𝐢 ∈ 𝑋 ∧ 𝐡 ∈ 𝑋)) β†’ ((((invβ€˜πΊ)β€˜πΆ)𝐺𝐢)𝐺𝐡) = (((invβ€˜πΊ)β€˜πΆ)𝐺(𝐢𝐺𝐡)))
2927, 28syldan 589 . . . . . . . 8 ((𝐺 ∈ GrpOp ∧ (𝐡 ∈ 𝑋 ∧ 𝐢 ∈ 𝑋)) β†’ ((((invβ€˜πΊ)β€˜πΆ)𝐺𝐢)𝐺𝐡) = (((invβ€˜πΊ)β€˜πΆ)𝐺(𝐢𝐺𝐡)))
303, 4grpolid 30354 . . . . . . . . 9 ((𝐺 ∈ GrpOp ∧ 𝐡 ∈ 𝑋) β†’ ((GIdβ€˜πΊ)𝐺𝐡) = 𝐡)
3130adantrr 715 . . . . . . . 8 ((𝐺 ∈ GrpOp ∧ (𝐡 ∈ 𝑋 ∧ 𝐢 ∈ 𝑋)) β†’ ((GIdβ€˜πΊ)𝐺𝐡) = 𝐡)
3223, 29, 313eqtr3d 2776 . . . . . . 7 ((𝐺 ∈ GrpOp ∧ (𝐡 ∈ 𝑋 ∧ 𝐢 ∈ 𝑋)) β†’ (((invβ€˜πΊ)β€˜πΆ)𝐺(𝐢𝐺𝐡)) = 𝐡)
3332adantlr 713 . . . . . 6 (((𝐺 ∈ GrpOp ∧ 𝐴 ∈ 𝑋) ∧ (𝐡 ∈ 𝑋 ∧ 𝐢 ∈ 𝑋)) β†’ (((invβ€˜πΊ)β€˜πΆ)𝐺(𝐢𝐺𝐡)) = 𝐡)
3433adantr 479 . . . . 5 ((((𝐺 ∈ GrpOp ∧ 𝐴 ∈ 𝑋) ∧ (𝐡 ∈ 𝑋 ∧ 𝐢 ∈ 𝑋)) ∧ (𝐢𝐺𝐴) = (𝐢𝐺𝐡)) β†’ (((invβ€˜πΊ)β€˜πΆ)𝐺(𝐢𝐺𝐡)) = 𝐡)
352, 21, 343eqtr3d 2776 . . . 4 ((((𝐺 ∈ GrpOp ∧ 𝐴 ∈ 𝑋) ∧ (𝐡 ∈ 𝑋 ∧ 𝐢 ∈ 𝑋)) ∧ (𝐢𝐺𝐴) = (𝐢𝐺𝐡)) β†’ 𝐴 = 𝐡)
3635exp53 446 . . 3 (𝐺 ∈ GrpOp β†’ (𝐴 ∈ 𝑋 β†’ (𝐡 ∈ 𝑋 β†’ (𝐢 ∈ 𝑋 β†’ ((𝐢𝐺𝐴) = (𝐢𝐺𝐡) β†’ 𝐴 = 𝐡)))))
37363imp2 1346 . 2 ((𝐺 ∈ GrpOp ∧ (𝐴 ∈ 𝑋 ∧ 𝐡 ∈ 𝑋 ∧ 𝐢 ∈ 𝑋)) β†’ ((𝐢𝐺𝐴) = (𝐢𝐺𝐡) β†’ 𝐴 = 𝐡))
38 oveq2 7434 . 2 (𝐴 = 𝐡 β†’ (𝐢𝐺𝐴) = (𝐢𝐺𝐡))
3937, 38impbid1 224 1 ((𝐺 ∈ GrpOp ∧ (𝐴 ∈ 𝑋 ∧ 𝐡 ∈ 𝑋 ∧ 𝐢 ∈ 𝑋)) β†’ ((𝐢𝐺𝐴) = (𝐢𝐺𝐡) ↔ 𝐴 = 𝐡))
Colors of variables: wff setvar class
Syntax hints:   β†’ wi 4   ↔ wb 205   ∧ wa 394   ∧ w3a 1084   = wceq 1533   ∈ wcel 2098  ran crn 5683  β€˜cfv 6553  (class class class)co 7426  GrpOpcgr 30327  GIdcgi 30328  invcgn 30329
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2166  ax-ext 2699  ax-rep 5289  ax-sep 5303  ax-nul 5310  ax-pr 5433  ax-un 7748
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2529  df-eu 2558  df-clab 2706  df-cleq 2720  df-clel 2806  df-nfc 2881  df-ne 2938  df-ral 3059  df-rex 3068  df-reu 3375  df-rab 3431  df-v 3475  df-sbc 3779  df-csb 3895  df-dif 3952  df-un 3954  df-in 3956  df-ss 3966  df-nul 4327  df-if 4533  df-sn 4633  df-pr 4635  df-op 4639  df-uni 4913  df-iun 5002  df-br 5153  df-opab 5215  df-mpt 5236  df-id 5580  df-xp 5688  df-rel 5689  df-cnv 5690  df-co 5691  df-dm 5692  df-rn 5693  df-res 5694  df-ima 5695  df-iota 6505  df-fun 6555  df-fn 6556  df-f 6557  df-f1 6558  df-fo 6559  df-f1o 6560  df-fv 6561  df-riota 7382  df-ov 7429  df-grpo 30331  df-gid 30332  df-ginv 30333
This theorem is referenced by:  grpo2inv  30369  vclcan  30409  rngolcan  37432  rngolz  37436
  Copyright terms: Public domain W3C validator