MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  grpolcan Structured version   Visualization version   GIF version

Theorem grpolcan 30562
Description: Left cancellation law for groups. (Contributed by NM, 27-Oct-2006.) (New usage is discouraged.)
Hypothesis
Ref Expression
grplcan.1 𝑋 = ran 𝐺
Assertion
Ref Expression
grpolcan ((𝐺 ∈ GrpOp ∧ (𝐴𝑋𝐵𝑋𝐶𝑋)) → ((𝐶𝐺𝐴) = (𝐶𝐺𝐵) ↔ 𝐴 = 𝐵))

Proof of Theorem grpolcan
StepHypRef Expression
1 oveq2 7456 . . . . . 6 ((𝐶𝐺𝐴) = (𝐶𝐺𝐵) → (((inv‘𝐺)‘𝐶)𝐺(𝐶𝐺𝐴)) = (((inv‘𝐺)‘𝐶)𝐺(𝐶𝐺𝐵)))
21adantl 481 . . . . 5 ((((𝐺 ∈ GrpOp ∧ 𝐴𝑋) ∧ (𝐵𝑋𝐶𝑋)) ∧ (𝐶𝐺𝐴) = (𝐶𝐺𝐵)) → (((inv‘𝐺)‘𝐶)𝐺(𝐶𝐺𝐴)) = (((inv‘𝐺)‘𝐶)𝐺(𝐶𝐺𝐵)))
3 grplcan.1 . . . . . . . . . . 11 𝑋 = ran 𝐺
4 eqid 2740 . . . . . . . . . . 11 (GId‘𝐺) = (GId‘𝐺)
5 eqid 2740 . . . . . . . . . . 11 (inv‘𝐺) = (inv‘𝐺)
63, 4, 5grpolinv 30558 . . . . . . . . . 10 ((𝐺 ∈ GrpOp ∧ 𝐶𝑋) → (((inv‘𝐺)‘𝐶)𝐺𝐶) = (GId‘𝐺))
76adantlr 714 . . . . . . . . 9 (((𝐺 ∈ GrpOp ∧ 𝐴𝑋) ∧ 𝐶𝑋) → (((inv‘𝐺)‘𝐶)𝐺𝐶) = (GId‘𝐺))
87oveq1d 7463 . . . . . . . 8 (((𝐺 ∈ GrpOp ∧ 𝐴𝑋) ∧ 𝐶𝑋) → ((((inv‘𝐺)‘𝐶)𝐺𝐶)𝐺𝐴) = ((GId‘𝐺)𝐺𝐴))
93, 5grpoinvcl 30556 . . . . . . . . . . . 12 ((𝐺 ∈ GrpOp ∧ 𝐶𝑋) → ((inv‘𝐺)‘𝐶) ∈ 𝑋)
109adantrl 715 . . . . . . . . . . 11 ((𝐺 ∈ GrpOp ∧ (𝐴𝑋𝐶𝑋)) → ((inv‘𝐺)‘𝐶) ∈ 𝑋)
11 simprr 772 . . . . . . . . . . 11 ((𝐺 ∈ GrpOp ∧ (𝐴𝑋𝐶𝑋)) → 𝐶𝑋)
12 simprl 770 . . . . . . . . . . 11 ((𝐺 ∈ GrpOp ∧ (𝐴𝑋𝐶𝑋)) → 𝐴𝑋)
1310, 11, 123jca 1128 . . . . . . . . . 10 ((𝐺 ∈ GrpOp ∧ (𝐴𝑋𝐶𝑋)) → (((inv‘𝐺)‘𝐶) ∈ 𝑋𝐶𝑋𝐴𝑋))
143grpoass 30535 . . . . . . . . . 10 ((𝐺 ∈ GrpOp ∧ (((inv‘𝐺)‘𝐶) ∈ 𝑋𝐶𝑋𝐴𝑋)) → ((((inv‘𝐺)‘𝐶)𝐺𝐶)𝐺𝐴) = (((inv‘𝐺)‘𝐶)𝐺(𝐶𝐺𝐴)))
1513, 14syldan 590 . . . . . . . . 9 ((𝐺 ∈ GrpOp ∧ (𝐴𝑋𝐶𝑋)) → ((((inv‘𝐺)‘𝐶)𝐺𝐶)𝐺𝐴) = (((inv‘𝐺)‘𝐶)𝐺(𝐶𝐺𝐴)))
1615anassrs 467 . . . . . . . 8 (((𝐺 ∈ GrpOp ∧ 𝐴𝑋) ∧ 𝐶𝑋) → ((((inv‘𝐺)‘𝐶)𝐺𝐶)𝐺𝐴) = (((inv‘𝐺)‘𝐶)𝐺(𝐶𝐺𝐴)))
173, 4grpolid 30548 . . . . . . . . 9 ((𝐺 ∈ GrpOp ∧ 𝐴𝑋) → ((GId‘𝐺)𝐺𝐴) = 𝐴)
1817adantr 480 . . . . . . . 8 (((𝐺 ∈ GrpOp ∧ 𝐴𝑋) ∧ 𝐶𝑋) → ((GId‘𝐺)𝐺𝐴) = 𝐴)
198, 16, 183eqtr3d 2788 . . . . . . 7 (((𝐺 ∈ GrpOp ∧ 𝐴𝑋) ∧ 𝐶𝑋) → (((inv‘𝐺)‘𝐶)𝐺(𝐶𝐺𝐴)) = 𝐴)
2019adantrl 715 . . . . . 6 (((𝐺 ∈ GrpOp ∧ 𝐴𝑋) ∧ (𝐵𝑋𝐶𝑋)) → (((inv‘𝐺)‘𝐶)𝐺(𝐶𝐺𝐴)) = 𝐴)
2120adantr 480 . . . . 5 ((((𝐺 ∈ GrpOp ∧ 𝐴𝑋) ∧ (𝐵𝑋𝐶𝑋)) ∧ (𝐶𝐺𝐴) = (𝐶𝐺𝐵)) → (((inv‘𝐺)‘𝐶)𝐺(𝐶𝐺𝐴)) = 𝐴)
226adantrl 715 . . . . . . . . 9 ((𝐺 ∈ GrpOp ∧ (𝐵𝑋𝐶𝑋)) → (((inv‘𝐺)‘𝐶)𝐺𝐶) = (GId‘𝐺))
2322oveq1d 7463 . . . . . . . 8 ((𝐺 ∈ GrpOp ∧ (𝐵𝑋𝐶𝑋)) → ((((inv‘𝐺)‘𝐶)𝐺𝐶)𝐺𝐵) = ((GId‘𝐺)𝐺𝐵))
249adantrl 715 . . . . . . . . . 10 ((𝐺 ∈ GrpOp ∧ (𝐵𝑋𝐶𝑋)) → ((inv‘𝐺)‘𝐶) ∈ 𝑋)
25 simprr 772 . . . . . . . . . 10 ((𝐺 ∈ GrpOp ∧ (𝐵𝑋𝐶𝑋)) → 𝐶𝑋)
26 simprl 770 . . . . . . . . . 10 ((𝐺 ∈ GrpOp ∧ (𝐵𝑋𝐶𝑋)) → 𝐵𝑋)
2724, 25, 263jca 1128 . . . . . . . . 9 ((𝐺 ∈ GrpOp ∧ (𝐵𝑋𝐶𝑋)) → (((inv‘𝐺)‘𝐶) ∈ 𝑋𝐶𝑋𝐵𝑋))
283grpoass 30535 . . . . . . . . 9 ((𝐺 ∈ GrpOp ∧ (((inv‘𝐺)‘𝐶) ∈ 𝑋𝐶𝑋𝐵𝑋)) → ((((inv‘𝐺)‘𝐶)𝐺𝐶)𝐺𝐵) = (((inv‘𝐺)‘𝐶)𝐺(𝐶𝐺𝐵)))
2927, 28syldan 590 . . . . . . . 8 ((𝐺 ∈ GrpOp ∧ (𝐵𝑋𝐶𝑋)) → ((((inv‘𝐺)‘𝐶)𝐺𝐶)𝐺𝐵) = (((inv‘𝐺)‘𝐶)𝐺(𝐶𝐺𝐵)))
303, 4grpolid 30548 . . . . . . . . 9 ((𝐺 ∈ GrpOp ∧ 𝐵𝑋) → ((GId‘𝐺)𝐺𝐵) = 𝐵)
3130adantrr 716 . . . . . . . 8 ((𝐺 ∈ GrpOp ∧ (𝐵𝑋𝐶𝑋)) → ((GId‘𝐺)𝐺𝐵) = 𝐵)
3223, 29, 313eqtr3d 2788 . . . . . . 7 ((𝐺 ∈ GrpOp ∧ (𝐵𝑋𝐶𝑋)) → (((inv‘𝐺)‘𝐶)𝐺(𝐶𝐺𝐵)) = 𝐵)
3332adantlr 714 . . . . . 6 (((𝐺 ∈ GrpOp ∧ 𝐴𝑋) ∧ (𝐵𝑋𝐶𝑋)) → (((inv‘𝐺)‘𝐶)𝐺(𝐶𝐺𝐵)) = 𝐵)
3433adantr 480 . . . . 5 ((((𝐺 ∈ GrpOp ∧ 𝐴𝑋) ∧ (𝐵𝑋𝐶𝑋)) ∧ (𝐶𝐺𝐴) = (𝐶𝐺𝐵)) → (((inv‘𝐺)‘𝐶)𝐺(𝐶𝐺𝐵)) = 𝐵)
352, 21, 343eqtr3d 2788 . . . 4 ((((𝐺 ∈ GrpOp ∧ 𝐴𝑋) ∧ (𝐵𝑋𝐶𝑋)) ∧ (𝐶𝐺𝐴) = (𝐶𝐺𝐵)) → 𝐴 = 𝐵)
3635exp53 447 . . 3 (𝐺 ∈ GrpOp → (𝐴𝑋 → (𝐵𝑋 → (𝐶𝑋 → ((𝐶𝐺𝐴) = (𝐶𝐺𝐵) → 𝐴 = 𝐵)))))
37363imp2 1349 . 2 ((𝐺 ∈ GrpOp ∧ (𝐴𝑋𝐵𝑋𝐶𝑋)) → ((𝐶𝐺𝐴) = (𝐶𝐺𝐵) → 𝐴 = 𝐵))
38 oveq2 7456 . 2 (𝐴 = 𝐵 → (𝐶𝐺𝐴) = (𝐶𝐺𝐵))
3937, 38impbid1 225 1 ((𝐺 ∈ GrpOp ∧ (𝐴𝑋𝐵𝑋𝐶𝑋)) → ((𝐶𝐺𝐴) = (𝐶𝐺𝐵) ↔ 𝐴 = 𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1087   = wceq 1537  wcel 2108  ran crn 5701  cfv 6573  (class class class)co 7448  GrpOpcgr 30521  GIdcgi 30522  invcgn 30523
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-rep 5303  ax-sep 5317  ax-nul 5324  ax-pr 5447  ax-un 7770
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-ral 3068  df-rex 3077  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-nul 4353  df-if 4549  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-iun 5017  df-br 5167  df-opab 5229  df-mpt 5250  df-id 5593  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-riota 7404  df-ov 7451  df-grpo 30525  df-gid 30526  df-ginv 30527
This theorem is referenced by:  grpo2inv  30563  vclcan  30603  rngolcan  37878  rngolz  37882
  Copyright terms: Public domain W3C validator