Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  grplcan Structured version   Visualization version   GIF version

Theorem grplcan 18153
 Description: Left cancellation law for groups. (Contributed by NM, 25-Aug-2011.)
Hypotheses
Ref Expression
grplcan.b 𝐵 = (Base‘𝐺)
grplcan.p + = (+g𝐺)
Assertion
Ref Expression
grplcan ((𝐺 ∈ Grp ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) → ((𝑍 + 𝑋) = (𝑍 + 𝑌) ↔ 𝑋 = 𝑌))

Proof of Theorem grplcan
StepHypRef Expression
1 oveq2 7156 . . . . . 6 ((𝑍 + 𝑋) = (𝑍 + 𝑌) → (((invg𝐺)‘𝑍) + (𝑍 + 𝑋)) = (((invg𝐺)‘𝑍) + (𝑍 + 𝑌)))
21adantl 484 . . . . 5 ((((𝐺 ∈ Grp ∧ 𝑋𝐵) ∧ (𝑌𝐵𝑍𝐵)) ∧ (𝑍 + 𝑋) = (𝑍 + 𝑌)) → (((invg𝐺)‘𝑍) + (𝑍 + 𝑋)) = (((invg𝐺)‘𝑍) + (𝑍 + 𝑌)))
3 grplcan.b . . . . . . . . . . 11 𝐵 = (Base‘𝐺)
4 grplcan.p . . . . . . . . . . 11 + = (+g𝐺)
5 eqid 2819 . . . . . . . . . . 11 (0g𝐺) = (0g𝐺)
6 eqid 2819 . . . . . . . . . . 11 (invg𝐺) = (invg𝐺)
73, 4, 5, 6grplinv 18144 . . . . . . . . . 10 ((𝐺 ∈ Grp ∧ 𝑍𝐵) → (((invg𝐺)‘𝑍) + 𝑍) = (0g𝐺))
87adantlr 713 . . . . . . . . 9 (((𝐺 ∈ Grp ∧ 𝑋𝐵) ∧ 𝑍𝐵) → (((invg𝐺)‘𝑍) + 𝑍) = (0g𝐺))
98oveq1d 7163 . . . . . . . 8 (((𝐺 ∈ Grp ∧ 𝑋𝐵) ∧ 𝑍𝐵) → ((((invg𝐺)‘𝑍) + 𝑍) + 𝑋) = ((0g𝐺) + 𝑋))
103, 6grpinvcl 18143 . . . . . . . . . . . 12 ((𝐺 ∈ Grp ∧ 𝑍𝐵) → ((invg𝐺)‘𝑍) ∈ 𝐵)
1110adantrl 714 . . . . . . . . . . 11 ((𝐺 ∈ Grp ∧ (𝑋𝐵𝑍𝐵)) → ((invg𝐺)‘𝑍) ∈ 𝐵)
12 simprr 771 . . . . . . . . . . 11 ((𝐺 ∈ Grp ∧ (𝑋𝐵𝑍𝐵)) → 𝑍𝐵)
13 simprl 769 . . . . . . . . . . 11 ((𝐺 ∈ Grp ∧ (𝑋𝐵𝑍𝐵)) → 𝑋𝐵)
1411, 12, 133jca 1123 . . . . . . . . . 10 ((𝐺 ∈ Grp ∧ (𝑋𝐵𝑍𝐵)) → (((invg𝐺)‘𝑍) ∈ 𝐵𝑍𝐵𝑋𝐵))
153, 4grpass 18104 . . . . . . . . . 10 ((𝐺 ∈ Grp ∧ (((invg𝐺)‘𝑍) ∈ 𝐵𝑍𝐵𝑋𝐵)) → ((((invg𝐺)‘𝑍) + 𝑍) + 𝑋) = (((invg𝐺)‘𝑍) + (𝑍 + 𝑋)))
1614, 15syldan 593 . . . . . . . . 9 ((𝐺 ∈ Grp ∧ (𝑋𝐵𝑍𝐵)) → ((((invg𝐺)‘𝑍) + 𝑍) + 𝑋) = (((invg𝐺)‘𝑍) + (𝑍 + 𝑋)))
1716anassrs 470 . . . . . . . 8 (((𝐺 ∈ Grp ∧ 𝑋𝐵) ∧ 𝑍𝐵) → ((((invg𝐺)‘𝑍) + 𝑍) + 𝑋) = (((invg𝐺)‘𝑍) + (𝑍 + 𝑋)))
183, 4, 5grplid 18125 . . . . . . . . 9 ((𝐺 ∈ Grp ∧ 𝑋𝐵) → ((0g𝐺) + 𝑋) = 𝑋)
1918adantr 483 . . . . . . . 8 (((𝐺 ∈ Grp ∧ 𝑋𝐵) ∧ 𝑍𝐵) → ((0g𝐺) + 𝑋) = 𝑋)
209, 17, 193eqtr3d 2862 . . . . . . 7 (((𝐺 ∈ Grp ∧ 𝑋𝐵) ∧ 𝑍𝐵) → (((invg𝐺)‘𝑍) + (𝑍 + 𝑋)) = 𝑋)
2120adantrl 714 . . . . . 6 (((𝐺 ∈ Grp ∧ 𝑋𝐵) ∧ (𝑌𝐵𝑍𝐵)) → (((invg𝐺)‘𝑍) + (𝑍 + 𝑋)) = 𝑋)
2221adantr 483 . . . . 5 ((((𝐺 ∈ Grp ∧ 𝑋𝐵) ∧ (𝑌𝐵𝑍𝐵)) ∧ (𝑍 + 𝑋) = (𝑍 + 𝑌)) → (((invg𝐺)‘𝑍) + (𝑍 + 𝑋)) = 𝑋)
237adantrl 714 . . . . . . . . 9 ((𝐺 ∈ Grp ∧ (𝑌𝐵𝑍𝐵)) → (((invg𝐺)‘𝑍) + 𝑍) = (0g𝐺))
2423oveq1d 7163 . . . . . . . 8 ((𝐺 ∈ Grp ∧ (𝑌𝐵𝑍𝐵)) → ((((invg𝐺)‘𝑍) + 𝑍) + 𝑌) = ((0g𝐺) + 𝑌))
2510adantrl 714 . . . . . . . . . 10 ((𝐺 ∈ Grp ∧ (𝑌𝐵𝑍𝐵)) → ((invg𝐺)‘𝑍) ∈ 𝐵)
26 simprr 771 . . . . . . . . . 10 ((𝐺 ∈ Grp ∧ (𝑌𝐵𝑍𝐵)) → 𝑍𝐵)
27 simprl 769 . . . . . . . . . 10 ((𝐺 ∈ Grp ∧ (𝑌𝐵𝑍𝐵)) → 𝑌𝐵)
2825, 26, 273jca 1123 . . . . . . . . 9 ((𝐺 ∈ Grp ∧ (𝑌𝐵𝑍𝐵)) → (((invg𝐺)‘𝑍) ∈ 𝐵𝑍𝐵𝑌𝐵))
293, 4grpass 18104 . . . . . . . . 9 ((𝐺 ∈ Grp ∧ (((invg𝐺)‘𝑍) ∈ 𝐵𝑍𝐵𝑌𝐵)) → ((((invg𝐺)‘𝑍) + 𝑍) + 𝑌) = (((invg𝐺)‘𝑍) + (𝑍 + 𝑌)))
3028, 29syldan 593 . . . . . . . 8 ((𝐺 ∈ Grp ∧ (𝑌𝐵𝑍𝐵)) → ((((invg𝐺)‘𝑍) + 𝑍) + 𝑌) = (((invg𝐺)‘𝑍) + (𝑍 + 𝑌)))
313, 4, 5grplid 18125 . . . . . . . . 9 ((𝐺 ∈ Grp ∧ 𝑌𝐵) → ((0g𝐺) + 𝑌) = 𝑌)
3231adantrr 715 . . . . . . . 8 ((𝐺 ∈ Grp ∧ (𝑌𝐵𝑍𝐵)) → ((0g𝐺) + 𝑌) = 𝑌)
3324, 30, 323eqtr3d 2862 . . . . . . 7 ((𝐺 ∈ Grp ∧ (𝑌𝐵𝑍𝐵)) → (((invg𝐺)‘𝑍) + (𝑍 + 𝑌)) = 𝑌)
3433adantlr 713 . . . . . 6 (((𝐺 ∈ Grp ∧ 𝑋𝐵) ∧ (𝑌𝐵𝑍𝐵)) → (((invg𝐺)‘𝑍) + (𝑍 + 𝑌)) = 𝑌)
3534adantr 483 . . . . 5 ((((𝐺 ∈ Grp ∧ 𝑋𝐵) ∧ (𝑌𝐵𝑍𝐵)) ∧ (𝑍 + 𝑋) = (𝑍 + 𝑌)) → (((invg𝐺)‘𝑍) + (𝑍 + 𝑌)) = 𝑌)
362, 22, 353eqtr3d 2862 . . . 4 ((((𝐺 ∈ Grp ∧ 𝑋𝐵) ∧ (𝑌𝐵𝑍𝐵)) ∧ (𝑍 + 𝑋) = (𝑍 + 𝑌)) → 𝑋 = 𝑌)
3736exp53 450 . . 3 (𝐺 ∈ Grp → (𝑋𝐵 → (𝑌𝐵 → (𝑍𝐵 → ((𝑍 + 𝑋) = (𝑍 + 𝑌) → 𝑋 = 𝑌)))))
38373imp2 1344 . 2 ((𝐺 ∈ Grp ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) → ((𝑍 + 𝑋) = (𝑍 + 𝑌) → 𝑋 = 𝑌))
39 oveq2 7156 . 2 (𝑋 = 𝑌 → (𝑍 + 𝑋) = (𝑍 + 𝑌))
4038, 39impbid1 227 1 ((𝐺 ∈ Grp ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) → ((𝑍 + 𝑋) = (𝑍 + 𝑌) ↔ 𝑋 = 𝑌))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ↔ wb 208   ∧ wa 398   ∧ w3a 1082   = wceq 1531   ∈ wcel 2108  ‘cfv 6348  (class class class)co 7148  Basecbs 16475  +gcplusg 16557  0gc0g 16705  Grpcgrp 18095  invgcminusg 18096 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1905  ax-6 1964  ax-7 2009  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2154  ax-12 2170  ax-ext 2791  ax-sep 5194  ax-nul 5201  ax-pow 5257  ax-pr 5320  ax-un 7453 This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3an 1084  df-tru 1534  df-ex 1775  df-nf 1779  df-sb 2064  df-mo 2616  df-eu 2648  df-clab 2798  df-cleq 2812  df-clel 2891  df-nfc 2961  df-ne 3015  df-ral 3141  df-rex 3142  df-reu 3143  df-rmo 3144  df-rab 3145  df-v 3495  df-sbc 3771  df-dif 3937  df-un 3939  df-in 3941  df-ss 3950  df-nul 4290  df-if 4466  df-pw 4539  df-sn 4560  df-pr 4562  df-op 4566  df-uni 4831  df-br 5058  df-opab 5120  df-mpt 5138  df-id 5453  df-xp 5554  df-rel 5555  df-cnv 5556  df-co 5557  df-dm 5558  df-rn 5559  df-res 5560  df-ima 5561  df-iota 6307  df-fun 6350  df-fn 6351  df-f 6352  df-fv 6356  df-riota 7106  df-ov 7151  df-0g 16707  df-mgm 17844  df-sgrp 17893  df-mnd 17904  df-grp 18098  df-minusg 18099 This theorem is referenced by:  grpidrcan  18156  grpinvinv  18158  grplmulf1o  18165  grplactcnv  18194  conjghm  18381  conjnmzb  18385  sylow3lem2  18745  gex2abl  18963  ringcom  19321  ringlz  19329  lmodlcan  19642  lmodfopne  19664  isnumbasgrplem2  39694  rnglz  44145
 Copyright terms: Public domain W3C validator