MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  grplcan Structured version   Visualization version   GIF version

Theorem grplcan 19031
Description: Left cancellation law for groups. (Contributed by NM, 25-Aug-2011.)
Hypotheses
Ref Expression
grplcan.b 𝐵 = (Base‘𝐺)
grplcan.p + = (+g𝐺)
Assertion
Ref Expression
grplcan ((𝐺 ∈ Grp ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) → ((𝑍 + 𝑋) = (𝑍 + 𝑌) ↔ 𝑋 = 𝑌))

Proof of Theorem grplcan
StepHypRef Expression
1 oveq2 7439 . . . . . 6 ((𝑍 + 𝑋) = (𝑍 + 𝑌) → (((invg𝐺)‘𝑍) + (𝑍 + 𝑋)) = (((invg𝐺)‘𝑍) + (𝑍 + 𝑌)))
21adantl 481 . . . . 5 ((((𝐺 ∈ Grp ∧ 𝑋𝐵) ∧ (𝑌𝐵𝑍𝐵)) ∧ (𝑍 + 𝑋) = (𝑍 + 𝑌)) → (((invg𝐺)‘𝑍) + (𝑍 + 𝑋)) = (((invg𝐺)‘𝑍) + (𝑍 + 𝑌)))
3 grplcan.b . . . . . . . . . . 11 𝐵 = (Base‘𝐺)
4 grplcan.p . . . . . . . . . . 11 + = (+g𝐺)
5 eqid 2735 . . . . . . . . . . 11 (0g𝐺) = (0g𝐺)
6 eqid 2735 . . . . . . . . . . 11 (invg𝐺) = (invg𝐺)
73, 4, 5, 6grplinv 19020 . . . . . . . . . 10 ((𝐺 ∈ Grp ∧ 𝑍𝐵) → (((invg𝐺)‘𝑍) + 𝑍) = (0g𝐺))
87adantlr 715 . . . . . . . . 9 (((𝐺 ∈ Grp ∧ 𝑋𝐵) ∧ 𝑍𝐵) → (((invg𝐺)‘𝑍) + 𝑍) = (0g𝐺))
98oveq1d 7446 . . . . . . . 8 (((𝐺 ∈ Grp ∧ 𝑋𝐵) ∧ 𝑍𝐵) → ((((invg𝐺)‘𝑍) + 𝑍) + 𝑋) = ((0g𝐺) + 𝑋))
103, 6grpinvcl 19018 . . . . . . . . . . . 12 ((𝐺 ∈ Grp ∧ 𝑍𝐵) → ((invg𝐺)‘𝑍) ∈ 𝐵)
1110adantrl 716 . . . . . . . . . . 11 ((𝐺 ∈ Grp ∧ (𝑋𝐵𝑍𝐵)) → ((invg𝐺)‘𝑍) ∈ 𝐵)
12 simprr 773 . . . . . . . . . . 11 ((𝐺 ∈ Grp ∧ (𝑋𝐵𝑍𝐵)) → 𝑍𝐵)
13 simprl 771 . . . . . . . . . . 11 ((𝐺 ∈ Grp ∧ (𝑋𝐵𝑍𝐵)) → 𝑋𝐵)
1411, 12, 133jca 1127 . . . . . . . . . 10 ((𝐺 ∈ Grp ∧ (𝑋𝐵𝑍𝐵)) → (((invg𝐺)‘𝑍) ∈ 𝐵𝑍𝐵𝑋𝐵))
153, 4grpass 18973 . . . . . . . . . 10 ((𝐺 ∈ Grp ∧ (((invg𝐺)‘𝑍) ∈ 𝐵𝑍𝐵𝑋𝐵)) → ((((invg𝐺)‘𝑍) + 𝑍) + 𝑋) = (((invg𝐺)‘𝑍) + (𝑍 + 𝑋)))
1614, 15syldan 591 . . . . . . . . 9 ((𝐺 ∈ Grp ∧ (𝑋𝐵𝑍𝐵)) → ((((invg𝐺)‘𝑍) + 𝑍) + 𝑋) = (((invg𝐺)‘𝑍) + (𝑍 + 𝑋)))
1716anassrs 467 . . . . . . . 8 (((𝐺 ∈ Grp ∧ 𝑋𝐵) ∧ 𝑍𝐵) → ((((invg𝐺)‘𝑍) + 𝑍) + 𝑋) = (((invg𝐺)‘𝑍) + (𝑍 + 𝑋)))
183, 4, 5grplid 18998 . . . . . . . . 9 ((𝐺 ∈ Grp ∧ 𝑋𝐵) → ((0g𝐺) + 𝑋) = 𝑋)
1918adantr 480 . . . . . . . 8 (((𝐺 ∈ Grp ∧ 𝑋𝐵) ∧ 𝑍𝐵) → ((0g𝐺) + 𝑋) = 𝑋)
209, 17, 193eqtr3d 2783 . . . . . . 7 (((𝐺 ∈ Grp ∧ 𝑋𝐵) ∧ 𝑍𝐵) → (((invg𝐺)‘𝑍) + (𝑍 + 𝑋)) = 𝑋)
2120adantrl 716 . . . . . 6 (((𝐺 ∈ Grp ∧ 𝑋𝐵) ∧ (𝑌𝐵𝑍𝐵)) → (((invg𝐺)‘𝑍) + (𝑍 + 𝑋)) = 𝑋)
2221adantr 480 . . . . 5 ((((𝐺 ∈ Grp ∧ 𝑋𝐵) ∧ (𝑌𝐵𝑍𝐵)) ∧ (𝑍 + 𝑋) = (𝑍 + 𝑌)) → (((invg𝐺)‘𝑍) + (𝑍 + 𝑋)) = 𝑋)
237adantrl 716 . . . . . . . . 9 ((𝐺 ∈ Grp ∧ (𝑌𝐵𝑍𝐵)) → (((invg𝐺)‘𝑍) + 𝑍) = (0g𝐺))
2423oveq1d 7446 . . . . . . . 8 ((𝐺 ∈ Grp ∧ (𝑌𝐵𝑍𝐵)) → ((((invg𝐺)‘𝑍) + 𝑍) + 𝑌) = ((0g𝐺) + 𝑌))
2510adantrl 716 . . . . . . . . . 10 ((𝐺 ∈ Grp ∧ (𝑌𝐵𝑍𝐵)) → ((invg𝐺)‘𝑍) ∈ 𝐵)
26 simprr 773 . . . . . . . . . 10 ((𝐺 ∈ Grp ∧ (𝑌𝐵𝑍𝐵)) → 𝑍𝐵)
27 simprl 771 . . . . . . . . . 10 ((𝐺 ∈ Grp ∧ (𝑌𝐵𝑍𝐵)) → 𝑌𝐵)
2825, 26, 273jca 1127 . . . . . . . . 9 ((𝐺 ∈ Grp ∧ (𝑌𝐵𝑍𝐵)) → (((invg𝐺)‘𝑍) ∈ 𝐵𝑍𝐵𝑌𝐵))
293, 4grpass 18973 . . . . . . . . 9 ((𝐺 ∈ Grp ∧ (((invg𝐺)‘𝑍) ∈ 𝐵𝑍𝐵𝑌𝐵)) → ((((invg𝐺)‘𝑍) + 𝑍) + 𝑌) = (((invg𝐺)‘𝑍) + (𝑍 + 𝑌)))
3028, 29syldan 591 . . . . . . . 8 ((𝐺 ∈ Grp ∧ (𝑌𝐵𝑍𝐵)) → ((((invg𝐺)‘𝑍) + 𝑍) + 𝑌) = (((invg𝐺)‘𝑍) + (𝑍 + 𝑌)))
313, 4, 5grplid 18998 . . . . . . . . 9 ((𝐺 ∈ Grp ∧ 𝑌𝐵) → ((0g𝐺) + 𝑌) = 𝑌)
3231adantrr 717 . . . . . . . 8 ((𝐺 ∈ Grp ∧ (𝑌𝐵𝑍𝐵)) → ((0g𝐺) + 𝑌) = 𝑌)
3324, 30, 323eqtr3d 2783 . . . . . . 7 ((𝐺 ∈ Grp ∧ (𝑌𝐵𝑍𝐵)) → (((invg𝐺)‘𝑍) + (𝑍 + 𝑌)) = 𝑌)
3433adantlr 715 . . . . . 6 (((𝐺 ∈ Grp ∧ 𝑋𝐵) ∧ (𝑌𝐵𝑍𝐵)) → (((invg𝐺)‘𝑍) + (𝑍 + 𝑌)) = 𝑌)
3534adantr 480 . . . . 5 ((((𝐺 ∈ Grp ∧ 𝑋𝐵) ∧ (𝑌𝐵𝑍𝐵)) ∧ (𝑍 + 𝑋) = (𝑍 + 𝑌)) → (((invg𝐺)‘𝑍) + (𝑍 + 𝑌)) = 𝑌)
362, 22, 353eqtr3d 2783 . . . 4 ((((𝐺 ∈ Grp ∧ 𝑋𝐵) ∧ (𝑌𝐵𝑍𝐵)) ∧ (𝑍 + 𝑋) = (𝑍 + 𝑌)) → 𝑋 = 𝑌)
3736exp53 447 . . 3 (𝐺 ∈ Grp → (𝑋𝐵 → (𝑌𝐵 → (𝑍𝐵 → ((𝑍 + 𝑋) = (𝑍 + 𝑌) → 𝑋 = 𝑌)))))
38373imp2 1348 . 2 ((𝐺 ∈ Grp ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) → ((𝑍 + 𝑋) = (𝑍 + 𝑌) → 𝑋 = 𝑌))
39 oveq2 7439 . 2 (𝑋 = 𝑌 → (𝑍 + 𝑋) = (𝑍 + 𝑌))
4038, 39impbid1 225 1 ((𝐺 ∈ Grp ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) → ((𝑍 + 𝑋) = (𝑍 + 𝑌) ↔ 𝑋 = 𝑌))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1537  wcel 2106  cfv 6563  (class class class)co 7431  Basecbs 17245  +gcplusg 17298  0gc0g 17486  Grpcgrp 18964  invgcminusg 18965
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-10 2139  ax-11 2155  ax-12 2175  ax-ext 2706  ax-sep 5302  ax-nul 5312  ax-pow 5371  ax-pr 5438  ax-un 7754
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-nf 1781  df-sb 2063  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2727  df-clel 2814  df-nfc 2890  df-ne 2939  df-ral 3060  df-rex 3069  df-rmo 3378  df-reu 3379  df-rab 3434  df-v 3480  df-sbc 3792  df-dif 3966  df-un 3968  df-in 3970  df-ss 3980  df-nul 4340  df-if 4532  df-pw 4607  df-sn 4632  df-pr 4634  df-op 4638  df-uni 4913  df-br 5149  df-opab 5211  df-mpt 5232  df-id 5583  df-xp 5695  df-rel 5696  df-cnv 5697  df-co 5698  df-dm 5699  df-rn 5700  df-res 5701  df-ima 5702  df-iota 6516  df-fun 6565  df-fn 6566  df-f 6567  df-fv 6571  df-riota 7388  df-ov 7434  df-0g 17488  df-mgm 18666  df-sgrp 18745  df-mnd 18761  df-grp 18967  df-minusg 18968
This theorem is referenced by:  grpidrcan  19034  grpinvinv  19036  grplmulf1o  19044  grplactcnv  19074  conjghm  19280  conjnmzb  19284  sylow3lem2  19661  gex2abl  19884  rnglz  20183  ringcom  20294  lmodlcan  20892  lmodfopne  20915  r1peuqusdeg1  35628  isnumbasgrplem2  43093  grptcmon  48902
  Copyright terms: Public domain W3C validator