MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  grplcan Structured version   Visualization version   GIF version

Theorem grplcan 17831
Description: Left cancellation law for groups. (Contributed by NM, 25-Aug-2011.)
Hypotheses
Ref Expression
grplcan.b 𝐵 = (Base‘𝐺)
grplcan.p + = (+g𝐺)
Assertion
Ref Expression
grplcan ((𝐺 ∈ Grp ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) → ((𝑍 + 𝑋) = (𝑍 + 𝑌) ↔ 𝑋 = 𝑌))

Proof of Theorem grplcan
StepHypRef Expression
1 oveq2 6913 . . . . . 6 ((𝑍 + 𝑋) = (𝑍 + 𝑌) → (((invg𝐺)‘𝑍) + (𝑍 + 𝑋)) = (((invg𝐺)‘𝑍) + (𝑍 + 𝑌)))
21adantl 475 . . . . 5 ((((𝐺 ∈ Grp ∧ 𝑋𝐵) ∧ (𝑌𝐵𝑍𝐵)) ∧ (𝑍 + 𝑋) = (𝑍 + 𝑌)) → (((invg𝐺)‘𝑍) + (𝑍 + 𝑋)) = (((invg𝐺)‘𝑍) + (𝑍 + 𝑌)))
3 grplcan.b . . . . . . . . . . 11 𝐵 = (Base‘𝐺)
4 grplcan.p . . . . . . . . . . 11 + = (+g𝐺)
5 eqid 2825 . . . . . . . . . . 11 (0g𝐺) = (0g𝐺)
6 eqid 2825 . . . . . . . . . . 11 (invg𝐺) = (invg𝐺)
73, 4, 5, 6grplinv 17822 . . . . . . . . . 10 ((𝐺 ∈ Grp ∧ 𝑍𝐵) → (((invg𝐺)‘𝑍) + 𝑍) = (0g𝐺))
87adantlr 706 . . . . . . . . 9 (((𝐺 ∈ Grp ∧ 𝑋𝐵) ∧ 𝑍𝐵) → (((invg𝐺)‘𝑍) + 𝑍) = (0g𝐺))
98oveq1d 6920 . . . . . . . 8 (((𝐺 ∈ Grp ∧ 𝑋𝐵) ∧ 𝑍𝐵) → ((((invg𝐺)‘𝑍) + 𝑍) + 𝑋) = ((0g𝐺) + 𝑋))
103, 6grpinvcl 17821 . . . . . . . . . . . 12 ((𝐺 ∈ Grp ∧ 𝑍𝐵) → ((invg𝐺)‘𝑍) ∈ 𝐵)
1110adantrl 707 . . . . . . . . . . 11 ((𝐺 ∈ Grp ∧ (𝑋𝐵𝑍𝐵)) → ((invg𝐺)‘𝑍) ∈ 𝐵)
12 simprr 789 . . . . . . . . . . 11 ((𝐺 ∈ Grp ∧ (𝑋𝐵𝑍𝐵)) → 𝑍𝐵)
13 simprl 787 . . . . . . . . . . 11 ((𝐺 ∈ Grp ∧ (𝑋𝐵𝑍𝐵)) → 𝑋𝐵)
1411, 12, 133jca 1162 . . . . . . . . . 10 ((𝐺 ∈ Grp ∧ (𝑋𝐵𝑍𝐵)) → (((invg𝐺)‘𝑍) ∈ 𝐵𝑍𝐵𝑋𝐵))
153, 4grpass 17785 . . . . . . . . . 10 ((𝐺 ∈ Grp ∧ (((invg𝐺)‘𝑍) ∈ 𝐵𝑍𝐵𝑋𝐵)) → ((((invg𝐺)‘𝑍) + 𝑍) + 𝑋) = (((invg𝐺)‘𝑍) + (𝑍 + 𝑋)))
1614, 15syldan 585 . . . . . . . . 9 ((𝐺 ∈ Grp ∧ (𝑋𝐵𝑍𝐵)) → ((((invg𝐺)‘𝑍) + 𝑍) + 𝑋) = (((invg𝐺)‘𝑍) + (𝑍 + 𝑋)))
1716anassrs 461 . . . . . . . 8 (((𝐺 ∈ Grp ∧ 𝑋𝐵) ∧ 𝑍𝐵) → ((((invg𝐺)‘𝑍) + 𝑍) + 𝑋) = (((invg𝐺)‘𝑍) + (𝑍 + 𝑋)))
183, 4, 5grplid 17806 . . . . . . . . 9 ((𝐺 ∈ Grp ∧ 𝑋𝐵) → ((0g𝐺) + 𝑋) = 𝑋)
1918adantr 474 . . . . . . . 8 (((𝐺 ∈ Grp ∧ 𝑋𝐵) ∧ 𝑍𝐵) → ((0g𝐺) + 𝑋) = 𝑋)
209, 17, 193eqtr3d 2869 . . . . . . 7 (((𝐺 ∈ Grp ∧ 𝑋𝐵) ∧ 𝑍𝐵) → (((invg𝐺)‘𝑍) + (𝑍 + 𝑋)) = 𝑋)
2120adantrl 707 . . . . . 6 (((𝐺 ∈ Grp ∧ 𝑋𝐵) ∧ (𝑌𝐵𝑍𝐵)) → (((invg𝐺)‘𝑍) + (𝑍 + 𝑋)) = 𝑋)
2221adantr 474 . . . . 5 ((((𝐺 ∈ Grp ∧ 𝑋𝐵) ∧ (𝑌𝐵𝑍𝐵)) ∧ (𝑍 + 𝑋) = (𝑍 + 𝑌)) → (((invg𝐺)‘𝑍) + (𝑍 + 𝑋)) = 𝑋)
237adantrl 707 . . . . . . . . 9 ((𝐺 ∈ Grp ∧ (𝑌𝐵𝑍𝐵)) → (((invg𝐺)‘𝑍) + 𝑍) = (0g𝐺))
2423oveq1d 6920 . . . . . . . 8 ((𝐺 ∈ Grp ∧ (𝑌𝐵𝑍𝐵)) → ((((invg𝐺)‘𝑍) + 𝑍) + 𝑌) = ((0g𝐺) + 𝑌))
2510adantrl 707 . . . . . . . . . 10 ((𝐺 ∈ Grp ∧ (𝑌𝐵𝑍𝐵)) → ((invg𝐺)‘𝑍) ∈ 𝐵)
26 simprr 789 . . . . . . . . . 10 ((𝐺 ∈ Grp ∧ (𝑌𝐵𝑍𝐵)) → 𝑍𝐵)
27 simprl 787 . . . . . . . . . 10 ((𝐺 ∈ Grp ∧ (𝑌𝐵𝑍𝐵)) → 𝑌𝐵)
2825, 26, 273jca 1162 . . . . . . . . 9 ((𝐺 ∈ Grp ∧ (𝑌𝐵𝑍𝐵)) → (((invg𝐺)‘𝑍) ∈ 𝐵𝑍𝐵𝑌𝐵))
293, 4grpass 17785 . . . . . . . . 9 ((𝐺 ∈ Grp ∧ (((invg𝐺)‘𝑍) ∈ 𝐵𝑍𝐵𝑌𝐵)) → ((((invg𝐺)‘𝑍) + 𝑍) + 𝑌) = (((invg𝐺)‘𝑍) + (𝑍 + 𝑌)))
3028, 29syldan 585 . . . . . . . 8 ((𝐺 ∈ Grp ∧ (𝑌𝐵𝑍𝐵)) → ((((invg𝐺)‘𝑍) + 𝑍) + 𝑌) = (((invg𝐺)‘𝑍) + (𝑍 + 𝑌)))
313, 4, 5grplid 17806 . . . . . . . . 9 ((𝐺 ∈ Grp ∧ 𝑌𝐵) → ((0g𝐺) + 𝑌) = 𝑌)
3231adantrr 708 . . . . . . . 8 ((𝐺 ∈ Grp ∧ (𝑌𝐵𝑍𝐵)) → ((0g𝐺) + 𝑌) = 𝑌)
3324, 30, 323eqtr3d 2869 . . . . . . 7 ((𝐺 ∈ Grp ∧ (𝑌𝐵𝑍𝐵)) → (((invg𝐺)‘𝑍) + (𝑍 + 𝑌)) = 𝑌)
3433adantlr 706 . . . . . 6 (((𝐺 ∈ Grp ∧ 𝑋𝐵) ∧ (𝑌𝐵𝑍𝐵)) → (((invg𝐺)‘𝑍) + (𝑍 + 𝑌)) = 𝑌)
3534adantr 474 . . . . 5 ((((𝐺 ∈ Grp ∧ 𝑋𝐵) ∧ (𝑌𝐵𝑍𝐵)) ∧ (𝑍 + 𝑋) = (𝑍 + 𝑌)) → (((invg𝐺)‘𝑍) + (𝑍 + 𝑌)) = 𝑌)
362, 22, 353eqtr3d 2869 . . . 4 ((((𝐺 ∈ Grp ∧ 𝑋𝐵) ∧ (𝑌𝐵𝑍𝐵)) ∧ (𝑍 + 𝑋) = (𝑍 + 𝑌)) → 𝑋 = 𝑌)
3736exp53 440 . . 3 (𝐺 ∈ Grp → (𝑋𝐵 → (𝑌𝐵 → (𝑍𝐵 → ((𝑍 + 𝑋) = (𝑍 + 𝑌) → 𝑋 = 𝑌)))))
38373imp2 1462 . 2 ((𝐺 ∈ Grp ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) → ((𝑍 + 𝑋) = (𝑍 + 𝑌) → 𝑋 = 𝑌))
39 oveq2 6913 . 2 (𝑋 = 𝑌 → (𝑍 + 𝑋) = (𝑍 + 𝑌))
4038, 39impbid1 217 1 ((𝐺 ∈ Grp ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) → ((𝑍 + 𝑋) = (𝑍 + 𝑌) ↔ 𝑋 = 𝑌))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 198  wa 386  w3a 1111   = wceq 1656  wcel 2164  cfv 6123  (class class class)co 6905  Basecbs 16222  +gcplusg 16305  0gc0g 16453  Grpcgrp 17776  invgcminusg 17777
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1894  ax-4 1908  ax-5 2009  ax-6 2075  ax-7 2112  ax-8 2166  ax-9 2173  ax-10 2192  ax-11 2207  ax-12 2220  ax-13 2389  ax-ext 2803  ax-rep 4994  ax-sep 5005  ax-nul 5013  ax-pow 5065  ax-pr 5127
This theorem depends on definitions:  df-bi 199  df-an 387  df-or 879  df-3an 1113  df-tru 1660  df-ex 1879  df-nf 1883  df-sb 2068  df-mo 2605  df-eu 2640  df-clab 2812  df-cleq 2818  df-clel 2821  df-nfc 2958  df-ne 3000  df-ral 3122  df-rex 3123  df-reu 3124  df-rmo 3125  df-rab 3126  df-v 3416  df-sbc 3663  df-csb 3758  df-dif 3801  df-un 3803  df-in 3805  df-ss 3812  df-nul 4145  df-if 4307  df-sn 4398  df-pr 4400  df-op 4404  df-uni 4659  df-iun 4742  df-br 4874  df-opab 4936  df-mpt 4953  df-id 5250  df-xp 5348  df-rel 5349  df-cnv 5350  df-co 5351  df-dm 5352  df-rn 5353  df-res 5354  df-ima 5355  df-iota 6086  df-fun 6125  df-fn 6126  df-f 6127  df-f1 6128  df-fo 6129  df-f1o 6130  df-fv 6131  df-riota 6866  df-ov 6908  df-0g 16455  df-mgm 17595  df-sgrp 17637  df-mnd 17648  df-grp 17779  df-minusg 17780
This theorem is referenced by:  grpidrcan  17834  grpinvinv  17836  grplmulf1o  17843  grplactcnv  17872  conjghm  18042  conjnmzb  18046  sylow3lem2  18394  gex2abl  18607  ringcom  18933  ringlz  18941  lmodlcan  19235  lmodfopne  19257  isnumbasgrplem2  38510  rnglz  42724
  Copyright terms: Public domain W3C validator