Proof of Theorem grplcan
| Step | Hyp | Ref
| Expression |
| 1 | | oveq2 7439 |
. . . . . 6
⊢ ((𝑍 + 𝑋) = (𝑍 + 𝑌) → (((invg‘𝐺)‘𝑍) + (𝑍 + 𝑋)) = (((invg‘𝐺)‘𝑍) + (𝑍 + 𝑌))) |
| 2 | 1 | adantl 481 |
. . . . 5
⊢ ((((𝐺 ∈ Grp ∧ 𝑋 ∈ 𝐵) ∧ (𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵)) ∧ (𝑍 + 𝑋) = (𝑍 + 𝑌)) → (((invg‘𝐺)‘𝑍) + (𝑍 + 𝑋)) = (((invg‘𝐺)‘𝑍) + (𝑍 + 𝑌))) |
| 3 | | grplcan.b |
. . . . . . . . . . 11
⊢ 𝐵 = (Base‘𝐺) |
| 4 | | grplcan.p |
. . . . . . . . . . 11
⊢ + =
(+g‘𝐺) |
| 5 | | eqid 2737 |
. . . . . . . . . . 11
⊢
(0g‘𝐺) = (0g‘𝐺) |
| 6 | | eqid 2737 |
. . . . . . . . . . 11
⊢
(invg‘𝐺) = (invg‘𝐺) |
| 7 | 3, 4, 5, 6 | grplinv 19007 |
. . . . . . . . . 10
⊢ ((𝐺 ∈ Grp ∧ 𝑍 ∈ 𝐵) → (((invg‘𝐺)‘𝑍) + 𝑍) = (0g‘𝐺)) |
| 8 | 7 | adantlr 715 |
. . . . . . . . 9
⊢ (((𝐺 ∈ Grp ∧ 𝑋 ∈ 𝐵) ∧ 𝑍 ∈ 𝐵) → (((invg‘𝐺)‘𝑍) + 𝑍) = (0g‘𝐺)) |
| 9 | 8 | oveq1d 7446 |
. . . . . . . 8
⊢ (((𝐺 ∈ Grp ∧ 𝑋 ∈ 𝐵) ∧ 𝑍 ∈ 𝐵) → ((((invg‘𝐺)‘𝑍) + 𝑍) + 𝑋) = ((0g‘𝐺) + 𝑋)) |
| 10 | 3, 6 | grpinvcl 19005 |
. . . . . . . . . . . 12
⊢ ((𝐺 ∈ Grp ∧ 𝑍 ∈ 𝐵) → ((invg‘𝐺)‘𝑍) ∈ 𝐵) |
| 11 | 10 | adantrl 716 |
. . . . . . . . . . 11
⊢ ((𝐺 ∈ Grp ∧ (𝑋 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵)) → ((invg‘𝐺)‘𝑍) ∈ 𝐵) |
| 12 | | simprr 773 |
. . . . . . . . . . 11
⊢ ((𝐺 ∈ Grp ∧ (𝑋 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵)) → 𝑍 ∈ 𝐵) |
| 13 | | simprl 771 |
. . . . . . . . . . 11
⊢ ((𝐺 ∈ Grp ∧ (𝑋 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵)) → 𝑋 ∈ 𝐵) |
| 14 | 11, 12, 13 | 3jca 1129 |
. . . . . . . . . 10
⊢ ((𝐺 ∈ Grp ∧ (𝑋 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵)) → (((invg‘𝐺)‘𝑍) ∈ 𝐵 ∧ 𝑍 ∈ 𝐵 ∧ 𝑋 ∈ 𝐵)) |
| 15 | 3, 4 | grpass 18960 |
. . . . . . . . . 10
⊢ ((𝐺 ∈ Grp ∧
(((invg‘𝐺)‘𝑍) ∈ 𝐵 ∧ 𝑍 ∈ 𝐵 ∧ 𝑋 ∈ 𝐵)) → ((((invg‘𝐺)‘𝑍) + 𝑍) + 𝑋) = (((invg‘𝐺)‘𝑍) + (𝑍 + 𝑋))) |
| 16 | 14, 15 | syldan 591 |
. . . . . . . . 9
⊢ ((𝐺 ∈ Grp ∧ (𝑋 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵)) → ((((invg‘𝐺)‘𝑍) + 𝑍) + 𝑋) = (((invg‘𝐺)‘𝑍) + (𝑍 + 𝑋))) |
| 17 | 16 | anassrs 467 |
. . . . . . . 8
⊢ (((𝐺 ∈ Grp ∧ 𝑋 ∈ 𝐵) ∧ 𝑍 ∈ 𝐵) → ((((invg‘𝐺)‘𝑍) + 𝑍) + 𝑋) = (((invg‘𝐺)‘𝑍) + (𝑍 + 𝑋))) |
| 18 | 3, 4, 5 | grplid 18985 |
. . . . . . . . 9
⊢ ((𝐺 ∈ Grp ∧ 𝑋 ∈ 𝐵) → ((0g‘𝐺) + 𝑋) = 𝑋) |
| 19 | 18 | adantr 480 |
. . . . . . . 8
⊢ (((𝐺 ∈ Grp ∧ 𝑋 ∈ 𝐵) ∧ 𝑍 ∈ 𝐵) → ((0g‘𝐺) + 𝑋) = 𝑋) |
| 20 | 9, 17, 19 | 3eqtr3d 2785 |
. . . . . . 7
⊢ (((𝐺 ∈ Grp ∧ 𝑋 ∈ 𝐵) ∧ 𝑍 ∈ 𝐵) → (((invg‘𝐺)‘𝑍) + (𝑍 + 𝑋)) = 𝑋) |
| 21 | 20 | adantrl 716 |
. . . . . 6
⊢ (((𝐺 ∈ Grp ∧ 𝑋 ∈ 𝐵) ∧ (𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵)) → (((invg‘𝐺)‘𝑍) + (𝑍 + 𝑋)) = 𝑋) |
| 22 | 21 | adantr 480 |
. . . . 5
⊢ ((((𝐺 ∈ Grp ∧ 𝑋 ∈ 𝐵) ∧ (𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵)) ∧ (𝑍 + 𝑋) = (𝑍 + 𝑌)) → (((invg‘𝐺)‘𝑍) + (𝑍 + 𝑋)) = 𝑋) |
| 23 | 7 | adantrl 716 |
. . . . . . . . 9
⊢ ((𝐺 ∈ Grp ∧ (𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵)) → (((invg‘𝐺)‘𝑍) + 𝑍) = (0g‘𝐺)) |
| 24 | 23 | oveq1d 7446 |
. . . . . . . 8
⊢ ((𝐺 ∈ Grp ∧ (𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵)) → ((((invg‘𝐺)‘𝑍) + 𝑍) + 𝑌) = ((0g‘𝐺) + 𝑌)) |
| 25 | 10 | adantrl 716 |
. . . . . . . . . 10
⊢ ((𝐺 ∈ Grp ∧ (𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵)) → ((invg‘𝐺)‘𝑍) ∈ 𝐵) |
| 26 | | simprr 773 |
. . . . . . . . . 10
⊢ ((𝐺 ∈ Grp ∧ (𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵)) → 𝑍 ∈ 𝐵) |
| 27 | | simprl 771 |
. . . . . . . . . 10
⊢ ((𝐺 ∈ Grp ∧ (𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵)) → 𝑌 ∈ 𝐵) |
| 28 | 25, 26, 27 | 3jca 1129 |
. . . . . . . . 9
⊢ ((𝐺 ∈ Grp ∧ (𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵)) → (((invg‘𝐺)‘𝑍) ∈ 𝐵 ∧ 𝑍 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵)) |
| 29 | 3, 4 | grpass 18960 |
. . . . . . . . 9
⊢ ((𝐺 ∈ Grp ∧
(((invg‘𝐺)‘𝑍) ∈ 𝐵 ∧ 𝑍 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵)) → ((((invg‘𝐺)‘𝑍) + 𝑍) + 𝑌) = (((invg‘𝐺)‘𝑍) + (𝑍 + 𝑌))) |
| 30 | 28, 29 | syldan 591 |
. . . . . . . 8
⊢ ((𝐺 ∈ Grp ∧ (𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵)) → ((((invg‘𝐺)‘𝑍) + 𝑍) + 𝑌) = (((invg‘𝐺)‘𝑍) + (𝑍 + 𝑌))) |
| 31 | 3, 4, 5 | grplid 18985 |
. . . . . . . . 9
⊢ ((𝐺 ∈ Grp ∧ 𝑌 ∈ 𝐵) → ((0g‘𝐺) + 𝑌) = 𝑌) |
| 32 | 31 | adantrr 717 |
. . . . . . . 8
⊢ ((𝐺 ∈ Grp ∧ (𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵)) → ((0g‘𝐺) + 𝑌) = 𝑌) |
| 33 | 24, 30, 32 | 3eqtr3d 2785 |
. . . . . . 7
⊢ ((𝐺 ∈ Grp ∧ (𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵)) → (((invg‘𝐺)‘𝑍) + (𝑍 + 𝑌)) = 𝑌) |
| 34 | 33 | adantlr 715 |
. . . . . 6
⊢ (((𝐺 ∈ Grp ∧ 𝑋 ∈ 𝐵) ∧ (𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵)) → (((invg‘𝐺)‘𝑍) + (𝑍 + 𝑌)) = 𝑌) |
| 35 | 34 | adantr 480 |
. . . . 5
⊢ ((((𝐺 ∈ Grp ∧ 𝑋 ∈ 𝐵) ∧ (𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵)) ∧ (𝑍 + 𝑋) = (𝑍 + 𝑌)) → (((invg‘𝐺)‘𝑍) + (𝑍 + 𝑌)) = 𝑌) |
| 36 | 2, 22, 35 | 3eqtr3d 2785 |
. . . 4
⊢ ((((𝐺 ∈ Grp ∧ 𝑋 ∈ 𝐵) ∧ (𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵)) ∧ (𝑍 + 𝑋) = (𝑍 + 𝑌)) → 𝑋 = 𝑌) |
| 37 | 36 | exp53 447 |
. . 3
⊢ (𝐺 ∈ Grp → (𝑋 ∈ 𝐵 → (𝑌 ∈ 𝐵 → (𝑍 ∈ 𝐵 → ((𝑍 + 𝑋) = (𝑍 + 𝑌) → 𝑋 = 𝑌))))) |
| 38 | 37 | 3imp2 1350 |
. 2
⊢ ((𝐺 ∈ Grp ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵)) → ((𝑍 + 𝑋) = (𝑍 + 𝑌) → 𝑋 = 𝑌)) |
| 39 | | oveq2 7439 |
. 2
⊢ (𝑋 = 𝑌 → (𝑍 + 𝑋) = (𝑍 + 𝑌)) |
| 40 | 38, 39 | impbid1 225 |
1
⊢ ((𝐺 ∈ Grp ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵)) → ((𝑍 + 𝑋) = (𝑍 + 𝑌) ↔ 𝑋 = 𝑌)) |