MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  grplcan Structured version   Visualization version   GIF version

Theorem grplcan 18618
Description: Left cancellation law for groups. (Contributed by NM, 25-Aug-2011.)
Hypotheses
Ref Expression
grplcan.b 𝐵 = (Base‘𝐺)
grplcan.p + = (+g𝐺)
Assertion
Ref Expression
grplcan ((𝐺 ∈ Grp ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) → ((𝑍 + 𝑋) = (𝑍 + 𝑌) ↔ 𝑋 = 𝑌))

Proof of Theorem grplcan
StepHypRef Expression
1 oveq2 7276 . . . . . 6 ((𝑍 + 𝑋) = (𝑍 + 𝑌) → (((invg𝐺)‘𝑍) + (𝑍 + 𝑋)) = (((invg𝐺)‘𝑍) + (𝑍 + 𝑌)))
21adantl 481 . . . . 5 ((((𝐺 ∈ Grp ∧ 𝑋𝐵) ∧ (𝑌𝐵𝑍𝐵)) ∧ (𝑍 + 𝑋) = (𝑍 + 𝑌)) → (((invg𝐺)‘𝑍) + (𝑍 + 𝑋)) = (((invg𝐺)‘𝑍) + (𝑍 + 𝑌)))
3 grplcan.b . . . . . . . . . . 11 𝐵 = (Base‘𝐺)
4 grplcan.p . . . . . . . . . . 11 + = (+g𝐺)
5 eqid 2739 . . . . . . . . . . 11 (0g𝐺) = (0g𝐺)
6 eqid 2739 . . . . . . . . . . 11 (invg𝐺) = (invg𝐺)
73, 4, 5, 6grplinv 18609 . . . . . . . . . 10 ((𝐺 ∈ Grp ∧ 𝑍𝐵) → (((invg𝐺)‘𝑍) + 𝑍) = (0g𝐺))
87adantlr 711 . . . . . . . . 9 (((𝐺 ∈ Grp ∧ 𝑋𝐵) ∧ 𝑍𝐵) → (((invg𝐺)‘𝑍) + 𝑍) = (0g𝐺))
98oveq1d 7283 . . . . . . . 8 (((𝐺 ∈ Grp ∧ 𝑋𝐵) ∧ 𝑍𝐵) → ((((invg𝐺)‘𝑍) + 𝑍) + 𝑋) = ((0g𝐺) + 𝑋))
103, 6grpinvcl 18608 . . . . . . . . . . . 12 ((𝐺 ∈ Grp ∧ 𝑍𝐵) → ((invg𝐺)‘𝑍) ∈ 𝐵)
1110adantrl 712 . . . . . . . . . . 11 ((𝐺 ∈ Grp ∧ (𝑋𝐵𝑍𝐵)) → ((invg𝐺)‘𝑍) ∈ 𝐵)
12 simprr 769 . . . . . . . . . . 11 ((𝐺 ∈ Grp ∧ (𝑋𝐵𝑍𝐵)) → 𝑍𝐵)
13 simprl 767 . . . . . . . . . . 11 ((𝐺 ∈ Grp ∧ (𝑋𝐵𝑍𝐵)) → 𝑋𝐵)
1411, 12, 133jca 1126 . . . . . . . . . 10 ((𝐺 ∈ Grp ∧ (𝑋𝐵𝑍𝐵)) → (((invg𝐺)‘𝑍) ∈ 𝐵𝑍𝐵𝑋𝐵))
153, 4grpass 18567 . . . . . . . . . 10 ((𝐺 ∈ Grp ∧ (((invg𝐺)‘𝑍) ∈ 𝐵𝑍𝐵𝑋𝐵)) → ((((invg𝐺)‘𝑍) + 𝑍) + 𝑋) = (((invg𝐺)‘𝑍) + (𝑍 + 𝑋)))
1614, 15syldan 590 . . . . . . . . 9 ((𝐺 ∈ Grp ∧ (𝑋𝐵𝑍𝐵)) → ((((invg𝐺)‘𝑍) + 𝑍) + 𝑋) = (((invg𝐺)‘𝑍) + (𝑍 + 𝑋)))
1716anassrs 467 . . . . . . . 8 (((𝐺 ∈ Grp ∧ 𝑋𝐵) ∧ 𝑍𝐵) → ((((invg𝐺)‘𝑍) + 𝑍) + 𝑋) = (((invg𝐺)‘𝑍) + (𝑍 + 𝑋)))
183, 4, 5grplid 18590 . . . . . . . . 9 ((𝐺 ∈ Grp ∧ 𝑋𝐵) → ((0g𝐺) + 𝑋) = 𝑋)
1918adantr 480 . . . . . . . 8 (((𝐺 ∈ Grp ∧ 𝑋𝐵) ∧ 𝑍𝐵) → ((0g𝐺) + 𝑋) = 𝑋)
209, 17, 193eqtr3d 2787 . . . . . . 7 (((𝐺 ∈ Grp ∧ 𝑋𝐵) ∧ 𝑍𝐵) → (((invg𝐺)‘𝑍) + (𝑍 + 𝑋)) = 𝑋)
2120adantrl 712 . . . . . 6 (((𝐺 ∈ Grp ∧ 𝑋𝐵) ∧ (𝑌𝐵𝑍𝐵)) → (((invg𝐺)‘𝑍) + (𝑍 + 𝑋)) = 𝑋)
2221adantr 480 . . . . 5 ((((𝐺 ∈ Grp ∧ 𝑋𝐵) ∧ (𝑌𝐵𝑍𝐵)) ∧ (𝑍 + 𝑋) = (𝑍 + 𝑌)) → (((invg𝐺)‘𝑍) + (𝑍 + 𝑋)) = 𝑋)
237adantrl 712 . . . . . . . . 9 ((𝐺 ∈ Grp ∧ (𝑌𝐵𝑍𝐵)) → (((invg𝐺)‘𝑍) + 𝑍) = (0g𝐺))
2423oveq1d 7283 . . . . . . . 8 ((𝐺 ∈ Grp ∧ (𝑌𝐵𝑍𝐵)) → ((((invg𝐺)‘𝑍) + 𝑍) + 𝑌) = ((0g𝐺) + 𝑌))
2510adantrl 712 . . . . . . . . . 10 ((𝐺 ∈ Grp ∧ (𝑌𝐵𝑍𝐵)) → ((invg𝐺)‘𝑍) ∈ 𝐵)
26 simprr 769 . . . . . . . . . 10 ((𝐺 ∈ Grp ∧ (𝑌𝐵𝑍𝐵)) → 𝑍𝐵)
27 simprl 767 . . . . . . . . . 10 ((𝐺 ∈ Grp ∧ (𝑌𝐵𝑍𝐵)) → 𝑌𝐵)
2825, 26, 273jca 1126 . . . . . . . . 9 ((𝐺 ∈ Grp ∧ (𝑌𝐵𝑍𝐵)) → (((invg𝐺)‘𝑍) ∈ 𝐵𝑍𝐵𝑌𝐵))
293, 4grpass 18567 . . . . . . . . 9 ((𝐺 ∈ Grp ∧ (((invg𝐺)‘𝑍) ∈ 𝐵𝑍𝐵𝑌𝐵)) → ((((invg𝐺)‘𝑍) + 𝑍) + 𝑌) = (((invg𝐺)‘𝑍) + (𝑍 + 𝑌)))
3028, 29syldan 590 . . . . . . . 8 ((𝐺 ∈ Grp ∧ (𝑌𝐵𝑍𝐵)) → ((((invg𝐺)‘𝑍) + 𝑍) + 𝑌) = (((invg𝐺)‘𝑍) + (𝑍 + 𝑌)))
313, 4, 5grplid 18590 . . . . . . . . 9 ((𝐺 ∈ Grp ∧ 𝑌𝐵) → ((0g𝐺) + 𝑌) = 𝑌)
3231adantrr 713 . . . . . . . 8 ((𝐺 ∈ Grp ∧ (𝑌𝐵𝑍𝐵)) → ((0g𝐺) + 𝑌) = 𝑌)
3324, 30, 323eqtr3d 2787 . . . . . . 7 ((𝐺 ∈ Grp ∧ (𝑌𝐵𝑍𝐵)) → (((invg𝐺)‘𝑍) + (𝑍 + 𝑌)) = 𝑌)
3433adantlr 711 . . . . . 6 (((𝐺 ∈ Grp ∧ 𝑋𝐵) ∧ (𝑌𝐵𝑍𝐵)) → (((invg𝐺)‘𝑍) + (𝑍 + 𝑌)) = 𝑌)
3534adantr 480 . . . . 5 ((((𝐺 ∈ Grp ∧ 𝑋𝐵) ∧ (𝑌𝐵𝑍𝐵)) ∧ (𝑍 + 𝑋) = (𝑍 + 𝑌)) → (((invg𝐺)‘𝑍) + (𝑍 + 𝑌)) = 𝑌)
362, 22, 353eqtr3d 2787 . . . 4 ((((𝐺 ∈ Grp ∧ 𝑋𝐵) ∧ (𝑌𝐵𝑍𝐵)) ∧ (𝑍 + 𝑋) = (𝑍 + 𝑌)) → 𝑋 = 𝑌)
3736exp53 447 . . 3 (𝐺 ∈ Grp → (𝑋𝐵 → (𝑌𝐵 → (𝑍𝐵 → ((𝑍 + 𝑋) = (𝑍 + 𝑌) → 𝑋 = 𝑌)))))
38373imp2 1347 . 2 ((𝐺 ∈ Grp ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) → ((𝑍 + 𝑋) = (𝑍 + 𝑌) → 𝑋 = 𝑌))
39 oveq2 7276 . 2 (𝑋 = 𝑌 → (𝑍 + 𝑋) = (𝑍 + 𝑌))
4038, 39impbid1 224 1 ((𝐺 ∈ Grp ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) → ((𝑍 + 𝑋) = (𝑍 + 𝑌) ↔ 𝑋 = 𝑌))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 395  w3a 1085   = wceq 1541  wcel 2109  cfv 6430  (class class class)co 7268  Basecbs 16893  +gcplusg 16943  0gc0g 17131  Grpcgrp 18558  invgcminusg 18559
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1801  ax-4 1815  ax-5 1916  ax-6 1974  ax-7 2014  ax-8 2111  ax-9 2119  ax-10 2140  ax-11 2157  ax-12 2174  ax-ext 2710  ax-sep 5226  ax-nul 5233  ax-pow 5291  ax-pr 5355  ax-un 7579
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3an 1087  df-tru 1544  df-fal 1554  df-ex 1786  df-nf 1790  df-sb 2071  df-mo 2541  df-eu 2570  df-clab 2717  df-cleq 2731  df-clel 2817  df-nfc 2890  df-ne 2945  df-ral 3070  df-rex 3071  df-reu 3072  df-rmo 3073  df-rab 3074  df-v 3432  df-sbc 3720  df-dif 3894  df-un 3896  df-in 3898  df-ss 3908  df-nul 4262  df-if 4465  df-pw 4540  df-sn 4567  df-pr 4569  df-op 4573  df-uni 4845  df-br 5079  df-opab 5141  df-mpt 5162  df-id 5488  df-xp 5594  df-rel 5595  df-cnv 5596  df-co 5597  df-dm 5598  df-rn 5599  df-res 5600  df-ima 5601  df-iota 6388  df-fun 6432  df-fn 6433  df-f 6434  df-fv 6438  df-riota 7225  df-ov 7271  df-0g 17133  df-mgm 18307  df-sgrp 18356  df-mnd 18367  df-grp 18561  df-minusg 18562
This theorem is referenced by:  grpidrcan  18621  grpinvinv  18623  grplmulf1o  18630  grplactcnv  18659  conjghm  18846  conjnmzb  18850  sylow3lem2  19214  gex2abl  19433  ringcom  19799  ringlz  19807  lmodlcan  20120  lmodfopne  20142  isnumbasgrplem2  40909  rnglz  45394  grptcmon  46329
  Copyright terms: Public domain W3C validator