MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  swrdnd2 Structured version   Visualization version   GIF version

Theorem swrdnd2 13756
Description: Value of the subword extractor outside its intended domain. (Contributed by Alexander van der Vekens, 24-May-2018.)
Assertion
Ref Expression
swrdnd2 ((𝑊 ∈ Word 𝑉𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → ((𝐵𝐴 ∨ (♯‘𝑊) ≤ 𝐴𝐵 ≤ 0) → (𝑊 substr ⟨𝐴, 𝐵⟩) = ∅))

Proof of Theorem swrdnd2
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 3orass 1074 . . 3 ((𝐵𝐴 ∨ (♯‘𝑊) ≤ 𝐴𝐵 ≤ 0) ↔ (𝐵𝐴 ∨ ((♯‘𝑊) ≤ 𝐴𝐵 ≤ 0)))
2 pm2.24 122 . . . . 5 (𝐵𝐴 → (¬ 𝐵𝐴 → ((𝑊 ∈ Word 𝑉𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → (𝑊 substr ⟨𝐴, 𝐵⟩) = ∅)))
3 swrdval 13739 . . . . . . . . . 10 ((𝑊 ∈ Word 𝑉𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → (𝑊 substr ⟨𝐴, 𝐵⟩) = if((𝐴..^𝐵) ⊆ dom 𝑊, (𝑥 ∈ (0..^(𝐵𝐴)) ↦ (𝑊‘(𝑥 + 𝐴))), ∅))
43ad2antrr 716 . . . . . . . . 9 ((((𝑊 ∈ Word 𝑉𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ ((♯‘𝑊) ≤ 𝐴𝐵 ≤ 0)) ∧ ¬ 𝐵𝐴) → (𝑊 substr ⟨𝐴, 𝐵⟩) = if((𝐴..^𝐵) ⊆ dom 𝑊, (𝑥 ∈ (0..^(𝐵𝐴)) ↦ (𝑊‘(𝑥 + 𝐴))), ∅))
5 wrddm 13612 . . . . . . . . . . . . 13 (𝑊 ∈ Word 𝑉 → dom 𝑊 = (0..^(♯‘𝑊)))
6 lencl 13627 . . . . . . . . . . . . 13 (𝑊 ∈ Word 𝑉 → (♯‘𝑊) ∈ ℕ0)
7 3anass 1079 . . . . . . . . . . . . . . . . 17 (((♯‘𝑊) ∈ ℕ0𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ↔ ((♯‘𝑊) ∈ ℕ0 ∧ (𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ)))
8 ssfzoulel 12886 . . . . . . . . . . . . . . . . . 18 (((♯‘𝑊) ∈ ℕ0𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → (((♯‘𝑊) ≤ 𝐴𝐵 ≤ 0) → ((𝐴..^𝐵) ⊆ (0..^(♯‘𝑊)) → 𝐵𝐴)))
98imp 397 . . . . . . . . . . . . . . . . 17 ((((♯‘𝑊) ∈ ℕ0𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ ((♯‘𝑊) ≤ 𝐴𝐵 ≤ 0)) → ((𝐴..^𝐵) ⊆ (0..^(♯‘𝑊)) → 𝐵𝐴))
107, 9sylanbr 577 . . . . . . . . . . . . . . . 16 ((((♯‘𝑊) ∈ ℕ0 ∧ (𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ)) ∧ ((♯‘𝑊) ≤ 𝐴𝐵 ≤ 0)) → ((𝐴..^𝐵) ⊆ (0..^(♯‘𝑊)) → 𝐵𝐴))
1110con3dimp 399 . . . . . . . . . . . . . . 15 (((((♯‘𝑊) ∈ ℕ0 ∧ (𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ)) ∧ ((♯‘𝑊) ≤ 𝐴𝐵 ≤ 0)) ∧ ¬ 𝐵𝐴) → ¬ (𝐴..^𝐵) ⊆ (0..^(♯‘𝑊)))
12 sseq2 3846 . . . . . . . . . . . . . . . 16 (dom 𝑊 = (0..^(♯‘𝑊)) → ((𝐴..^𝐵) ⊆ dom 𝑊 ↔ (𝐴..^𝐵) ⊆ (0..^(♯‘𝑊))))
1312notbid 310 . . . . . . . . . . . . . . 15 (dom 𝑊 = (0..^(♯‘𝑊)) → (¬ (𝐴..^𝐵) ⊆ dom 𝑊 ↔ ¬ (𝐴..^𝐵) ⊆ (0..^(♯‘𝑊))))
1411, 13syl5ibr 238 . . . . . . . . . . . . . 14 (dom 𝑊 = (0..^(♯‘𝑊)) → (((((♯‘𝑊) ∈ ℕ0 ∧ (𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ)) ∧ ((♯‘𝑊) ≤ 𝐴𝐵 ≤ 0)) ∧ ¬ 𝐵𝐴) → ¬ (𝐴..^𝐵) ⊆ dom 𝑊))
1514exp5j 438 . . . . . . . . . . . . 13 (dom 𝑊 = (0..^(♯‘𝑊)) → ((♯‘𝑊) ∈ ℕ0 → ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → (((♯‘𝑊) ≤ 𝐴𝐵 ≤ 0) → (¬ 𝐵𝐴 → ¬ (𝐴..^𝐵) ⊆ dom 𝑊)))))
165, 6, 15sylc 65 . . . . . . . . . . . 12 (𝑊 ∈ Word 𝑉 → ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → (((♯‘𝑊) ≤ 𝐴𝐵 ≤ 0) → (¬ 𝐵𝐴 → ¬ (𝐴..^𝐵) ⊆ dom 𝑊))))
17163impib 1105 . . . . . . . . . . 11 ((𝑊 ∈ Word 𝑉𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → (((♯‘𝑊) ≤ 𝐴𝐵 ≤ 0) → (¬ 𝐵𝐴 → ¬ (𝐴..^𝐵) ⊆ dom 𝑊)))
1817imp31 410 . . . . . . . . . 10 ((((𝑊 ∈ Word 𝑉𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ ((♯‘𝑊) ≤ 𝐴𝐵 ≤ 0)) ∧ ¬ 𝐵𝐴) → ¬ (𝐴..^𝐵) ⊆ dom 𝑊)
1918iffalsed 4318 . . . . . . . . 9 ((((𝑊 ∈ Word 𝑉𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ ((♯‘𝑊) ≤ 𝐴𝐵 ≤ 0)) ∧ ¬ 𝐵𝐴) → if((𝐴..^𝐵) ⊆ dom 𝑊, (𝑥 ∈ (0..^(𝐵𝐴)) ↦ (𝑊‘(𝑥 + 𝐴))), ∅) = ∅)
204, 19eqtrd 2814 . . . . . . . 8 ((((𝑊 ∈ Word 𝑉𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ ((♯‘𝑊) ≤ 𝐴𝐵 ≤ 0)) ∧ ¬ 𝐵𝐴) → (𝑊 substr ⟨𝐴, 𝐵⟩) = ∅)
2120ex 403 . . . . . . 7 (((𝑊 ∈ Word 𝑉𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ ((♯‘𝑊) ≤ 𝐴𝐵 ≤ 0)) → (¬ 𝐵𝐴 → (𝑊 substr ⟨𝐴, 𝐵⟩) = ∅))
2221expcom 404 . . . . . 6 (((♯‘𝑊) ≤ 𝐴𝐵 ≤ 0) → ((𝑊 ∈ Word 𝑉𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → (¬ 𝐵𝐴 → (𝑊 substr ⟨𝐴, 𝐵⟩) = ∅)))
2322com23 86 . . . . 5 (((♯‘𝑊) ≤ 𝐴𝐵 ≤ 0) → (¬ 𝐵𝐴 → ((𝑊 ∈ Word 𝑉𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → (𝑊 substr ⟨𝐴, 𝐵⟩) = ∅)))
242, 23jaoi 846 . . . 4 ((𝐵𝐴 ∨ ((♯‘𝑊) ≤ 𝐴𝐵 ≤ 0)) → (¬ 𝐵𝐴 → ((𝑊 ∈ Word 𝑉𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → (𝑊 substr ⟨𝐴, 𝐵⟩) = ∅)))
25 swrdlend 13754 . . . . 5 ((𝑊 ∈ Word 𝑉𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → (𝐵𝐴 → (𝑊 substr ⟨𝐴, 𝐵⟩) = ∅))
2625com12 32 . . . 4 (𝐵𝐴 → ((𝑊 ∈ Word 𝑉𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → (𝑊 substr ⟨𝐴, 𝐵⟩) = ∅))
2724, 26pm2.61d2 174 . . 3 ((𝐵𝐴 ∨ ((♯‘𝑊) ≤ 𝐴𝐵 ≤ 0)) → ((𝑊 ∈ Word 𝑉𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → (𝑊 substr ⟨𝐴, 𝐵⟩) = ∅))
281, 27sylbi 209 . 2 ((𝐵𝐴 ∨ (♯‘𝑊) ≤ 𝐴𝐵 ≤ 0) → ((𝑊 ∈ Word 𝑉𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → (𝑊 substr ⟨𝐴, 𝐵⟩) = ∅))
2928com12 32 1 ((𝑊 ∈ Word 𝑉𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → ((𝐵𝐴 ∨ (♯‘𝑊) ≤ 𝐴𝐵 ≤ 0) → (𝑊 substr ⟨𝐴, 𝐵⟩) = ∅))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 386  wo 836  w3o 1070  w3a 1071   = wceq 1601  wcel 2107  wss 3792  c0 4141  ifcif 4307  cop 4404   class class class wbr 4888  cmpt 4967  dom cdm 5357  cfv 6137  (class class class)co 6924  0cc0 10274   + caddc 10277  cle 10414  cmin 10608  0cn0 11647  cz 11733  ..^cfzo 12789  chash 13441  Word cword 13605   substr csubstr 13736
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1839  ax-4 1853  ax-5 1953  ax-6 2021  ax-7 2055  ax-8 2109  ax-9 2116  ax-10 2135  ax-11 2150  ax-12 2163  ax-13 2334  ax-ext 2754  ax-rep 5008  ax-sep 5019  ax-nul 5027  ax-pow 5079  ax-pr 5140  ax-un 7228  ax-cnex 10330  ax-resscn 10331  ax-1cn 10332  ax-icn 10333  ax-addcl 10334  ax-addrcl 10335  ax-mulcl 10336  ax-mulrcl 10337  ax-mulcom 10338  ax-addass 10339  ax-mulass 10340  ax-distr 10341  ax-i2m1 10342  ax-1ne0 10343  ax-1rid 10344  ax-rnegex 10345  ax-rrecex 10346  ax-cnre 10347  ax-pre-lttri 10348  ax-pre-lttrn 10349  ax-pre-ltadd 10350  ax-pre-mulgt0 10351
This theorem depends on definitions:  df-bi 199  df-an 387  df-or 837  df-3or 1072  df-3an 1073  df-tru 1605  df-ex 1824  df-nf 1828  df-sb 2012  df-mo 2551  df-eu 2587  df-clab 2764  df-cleq 2770  df-clel 2774  df-nfc 2921  df-ne 2970  df-nel 3076  df-ral 3095  df-rex 3096  df-reu 3097  df-rab 3099  df-v 3400  df-sbc 3653  df-csb 3752  df-dif 3795  df-un 3797  df-in 3799  df-ss 3806  df-pss 3808  df-nul 4142  df-if 4308  df-pw 4381  df-sn 4399  df-pr 4401  df-tp 4403  df-op 4405  df-uni 4674  df-int 4713  df-iun 4757  df-br 4889  df-opab 4951  df-mpt 4968  df-tr 4990  df-id 5263  df-eprel 5268  df-po 5276  df-so 5277  df-fr 5316  df-we 5318  df-xp 5363  df-rel 5364  df-cnv 5365  df-co 5366  df-dm 5367  df-rn 5368  df-res 5369  df-ima 5370  df-pred 5935  df-ord 5981  df-on 5982  df-lim 5983  df-suc 5984  df-iota 6101  df-fun 6139  df-fn 6140  df-f 6141  df-f1 6142  df-fo 6143  df-f1o 6144  df-fv 6145  df-riota 6885  df-ov 6927  df-oprab 6928  df-mpt2 6929  df-om 7346  df-1st 7447  df-2nd 7448  df-wrecs 7691  df-recs 7753  df-rdg 7791  df-1o 7845  df-oadd 7849  df-er 8028  df-en 8244  df-dom 8245  df-sdom 8246  df-fin 8247  df-card 9100  df-pnf 10415  df-mnf 10416  df-xr 10417  df-ltxr 10418  df-le 10419  df-sub 10610  df-neg 10611  df-nn 11380  df-n0 11648  df-z 11734  df-uz 11998  df-fz 12649  df-fzo 12790  df-hash 13442  df-word 13606  df-substr 13737
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator