MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  swrdnd2 Structured version   Visualization version   GIF version

Theorem swrdnd2 14008
Description: Value of the subword extractor outside its intended domain. (Contributed by Alexander van der Vekens, 24-May-2018.)
Assertion
Ref Expression
swrdnd2 ((𝑊 ∈ Word 𝑉𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → ((𝐵𝐴 ∨ (♯‘𝑊) ≤ 𝐴𝐵 ≤ 0) → (𝑊 substr ⟨𝐴, 𝐵⟩) = ∅))

Proof of Theorem swrdnd2
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 3orass 1087 . . 3 ((𝐵𝐴 ∨ (♯‘𝑊) ≤ 𝐴𝐵 ≤ 0) ↔ (𝐵𝐴 ∨ ((♯‘𝑊) ≤ 𝐴𝐵 ≤ 0)))
2 pm2.24 124 . . . . 5 (𝐵𝐴 → (¬ 𝐵𝐴 → ((𝑊 ∈ Word 𝑉𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → (𝑊 substr ⟨𝐴, 𝐵⟩) = ∅)))
3 swrdval 13996 . . . . . . . . . 10 ((𝑊 ∈ Word 𝑉𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → (𝑊 substr ⟨𝐴, 𝐵⟩) = if((𝐴..^𝐵) ⊆ dom 𝑊, (𝑥 ∈ (0..^(𝐵𝐴)) ↦ (𝑊‘(𝑥 + 𝐴))), ∅))
43ad2antrr 725 . . . . . . . . 9 ((((𝑊 ∈ Word 𝑉𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ ((♯‘𝑊) ≤ 𝐴𝐵 ≤ 0)) ∧ ¬ 𝐵𝐴) → (𝑊 substr ⟨𝐴, 𝐵⟩) = if((𝐴..^𝐵) ⊆ dom 𝑊, (𝑥 ∈ (0..^(𝐵𝐴)) ↦ (𝑊‘(𝑥 + 𝐴))), ∅))
5 wrddm 13864 . . . . . . . . . . . . 13 (𝑊 ∈ Word 𝑉 → dom 𝑊 = (0..^(♯‘𝑊)))
6 lencl 13876 . . . . . . . . . . . . 13 (𝑊 ∈ Word 𝑉 → (♯‘𝑊) ∈ ℕ0)
7 3anass 1092 . . . . . . . . . . . . . . . . 17 (((♯‘𝑊) ∈ ℕ0𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ↔ ((♯‘𝑊) ∈ ℕ0 ∧ (𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ)))
8 ssfzoulel 13126 . . . . . . . . . . . . . . . . . 18 (((♯‘𝑊) ∈ ℕ0𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → (((♯‘𝑊) ≤ 𝐴𝐵 ≤ 0) → ((𝐴..^𝐵) ⊆ (0..^(♯‘𝑊)) → 𝐵𝐴)))
98imp 410 . . . . . . . . . . . . . . . . 17 ((((♯‘𝑊) ∈ ℕ0𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ ((♯‘𝑊) ≤ 𝐴𝐵 ≤ 0)) → ((𝐴..^𝐵) ⊆ (0..^(♯‘𝑊)) → 𝐵𝐴))
107, 9sylanbr 585 . . . . . . . . . . . . . . . 16 ((((♯‘𝑊) ∈ ℕ0 ∧ (𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ)) ∧ ((♯‘𝑊) ≤ 𝐴𝐵 ≤ 0)) → ((𝐴..^𝐵) ⊆ (0..^(♯‘𝑊)) → 𝐵𝐴))
1110con3dimp 412 . . . . . . . . . . . . . . 15 (((((♯‘𝑊) ∈ ℕ0 ∧ (𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ)) ∧ ((♯‘𝑊) ≤ 𝐴𝐵 ≤ 0)) ∧ ¬ 𝐵𝐴) → ¬ (𝐴..^𝐵) ⊆ (0..^(♯‘𝑊)))
12 sseq2 3941 . . . . . . . . . . . . . . . 16 (dom 𝑊 = (0..^(♯‘𝑊)) → ((𝐴..^𝐵) ⊆ dom 𝑊 ↔ (𝐴..^𝐵) ⊆ (0..^(♯‘𝑊))))
1312notbid 321 . . . . . . . . . . . . . . 15 (dom 𝑊 = (0..^(♯‘𝑊)) → (¬ (𝐴..^𝐵) ⊆ dom 𝑊 ↔ ¬ (𝐴..^𝐵) ⊆ (0..^(♯‘𝑊))))
1411, 13syl5ibr 249 . . . . . . . . . . . . . 14 (dom 𝑊 = (0..^(♯‘𝑊)) → (((((♯‘𝑊) ∈ ℕ0 ∧ (𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ)) ∧ ((♯‘𝑊) ≤ 𝐴𝐵 ≤ 0)) ∧ ¬ 𝐵𝐴) → ¬ (𝐴..^𝐵) ⊆ dom 𝑊))
1514exp5j 449 . . . . . . . . . . . . 13 (dom 𝑊 = (0..^(♯‘𝑊)) → ((♯‘𝑊) ∈ ℕ0 → ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → (((♯‘𝑊) ≤ 𝐴𝐵 ≤ 0) → (¬ 𝐵𝐴 → ¬ (𝐴..^𝐵) ⊆ dom 𝑊)))))
165, 6, 15sylc 65 . . . . . . . . . . . 12 (𝑊 ∈ Word 𝑉 → ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → (((♯‘𝑊) ≤ 𝐴𝐵 ≤ 0) → (¬ 𝐵𝐴 → ¬ (𝐴..^𝐵) ⊆ dom 𝑊))))
17163impib 1113 . . . . . . . . . . 11 ((𝑊 ∈ Word 𝑉𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → (((♯‘𝑊) ≤ 𝐴𝐵 ≤ 0) → (¬ 𝐵𝐴 → ¬ (𝐴..^𝐵) ⊆ dom 𝑊)))
1817imp31 421 . . . . . . . . . 10 ((((𝑊 ∈ Word 𝑉𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ ((♯‘𝑊) ≤ 𝐴𝐵 ≤ 0)) ∧ ¬ 𝐵𝐴) → ¬ (𝐴..^𝐵) ⊆ dom 𝑊)
1918iffalsed 4436 . . . . . . . . 9 ((((𝑊 ∈ Word 𝑉𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ ((♯‘𝑊) ≤ 𝐴𝐵 ≤ 0)) ∧ ¬ 𝐵𝐴) → if((𝐴..^𝐵) ⊆ dom 𝑊, (𝑥 ∈ (0..^(𝐵𝐴)) ↦ (𝑊‘(𝑥 + 𝐴))), ∅) = ∅)
204, 19eqtrd 2833 . . . . . . . 8 ((((𝑊 ∈ Word 𝑉𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ ((♯‘𝑊) ≤ 𝐴𝐵 ≤ 0)) ∧ ¬ 𝐵𝐴) → (𝑊 substr ⟨𝐴, 𝐵⟩) = ∅)
2120ex 416 . . . . . . 7 (((𝑊 ∈ Word 𝑉𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ ((♯‘𝑊) ≤ 𝐴𝐵 ≤ 0)) → (¬ 𝐵𝐴 → (𝑊 substr ⟨𝐴, 𝐵⟩) = ∅))
2221expcom 417 . . . . . 6 (((♯‘𝑊) ≤ 𝐴𝐵 ≤ 0) → ((𝑊 ∈ Word 𝑉𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → (¬ 𝐵𝐴 → (𝑊 substr ⟨𝐴, 𝐵⟩) = ∅)))
2322com23 86 . . . . 5 (((♯‘𝑊) ≤ 𝐴𝐵 ≤ 0) → (¬ 𝐵𝐴 → ((𝑊 ∈ Word 𝑉𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → (𝑊 substr ⟨𝐴, 𝐵⟩) = ∅)))
242, 23jaoi 854 . . . 4 ((𝐵𝐴 ∨ ((♯‘𝑊) ≤ 𝐴𝐵 ≤ 0)) → (¬ 𝐵𝐴 → ((𝑊 ∈ Word 𝑉𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → (𝑊 substr ⟨𝐴, 𝐵⟩) = ∅)))
25 swrdlend 14006 . . . . 5 ((𝑊 ∈ Word 𝑉𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → (𝐵𝐴 → (𝑊 substr ⟨𝐴, 𝐵⟩) = ∅))
2625com12 32 . . . 4 (𝐵𝐴 → ((𝑊 ∈ Word 𝑉𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → (𝑊 substr ⟨𝐴, 𝐵⟩) = ∅))
2724, 26pm2.61d2 184 . . 3 ((𝐵𝐴 ∨ ((♯‘𝑊) ≤ 𝐴𝐵 ≤ 0)) → ((𝑊 ∈ Word 𝑉𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → (𝑊 substr ⟨𝐴, 𝐵⟩) = ∅))
281, 27sylbi 220 . 2 ((𝐵𝐴 ∨ (♯‘𝑊) ≤ 𝐴𝐵 ≤ 0) → ((𝑊 ∈ Word 𝑉𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → (𝑊 substr ⟨𝐴, 𝐵⟩) = ∅))
2928com12 32 1 ((𝑊 ∈ Word 𝑉𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → ((𝐵𝐴 ∨ (♯‘𝑊) ≤ 𝐴𝐵 ≤ 0) → (𝑊 substr ⟨𝐴, 𝐵⟩) = ∅))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 399  wo 844  w3o 1083  w3a 1084   = wceq 1538  wcel 2111  wss 3881  c0 4243  ifcif 4425  cop 4531   class class class wbr 5030  cmpt 5110  dom cdm 5519  cfv 6324  (class class class)co 7135  0cc0 10526   + caddc 10529  cle 10665  cmin 10859  0cn0 11885  cz 11969  ..^cfzo 13028  chash 13686  Word cword 13857   substr csubstr 13993
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2770  ax-rep 5154  ax-sep 5167  ax-nul 5174  ax-pow 5231  ax-pr 5295  ax-un 7441  ax-cnex 10582  ax-resscn 10583  ax-1cn 10584  ax-icn 10585  ax-addcl 10586  ax-addrcl 10587  ax-mulcl 10588  ax-mulrcl 10589  ax-mulcom 10590  ax-addass 10591  ax-mulass 10592  ax-distr 10593  ax-i2m1 10594  ax-1ne0 10595  ax-1rid 10596  ax-rnegex 10597  ax-rrecex 10598  ax-cnre 10599  ax-pre-lttri 10600  ax-pre-lttrn 10601  ax-pre-ltadd 10602  ax-pre-mulgt0 10603
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2598  df-eu 2629  df-clab 2777  df-cleq 2791  df-clel 2870  df-nfc 2938  df-ne 2988  df-nel 3092  df-ral 3111  df-rex 3112  df-reu 3113  df-rab 3115  df-v 3443  df-sbc 3721  df-csb 3829  df-dif 3884  df-un 3886  df-in 3888  df-ss 3898  df-pss 3900  df-nul 4244  df-if 4426  df-pw 4499  df-sn 4526  df-pr 4528  df-tp 4530  df-op 4532  df-uni 4801  df-int 4839  df-iun 4883  df-br 5031  df-opab 5093  df-mpt 5111  df-tr 5137  df-id 5425  df-eprel 5430  df-po 5438  df-so 5439  df-fr 5478  df-we 5480  df-xp 5525  df-rel 5526  df-cnv 5527  df-co 5528  df-dm 5529  df-rn 5530  df-res 5531  df-ima 5532  df-pred 6116  df-ord 6162  df-on 6163  df-lim 6164  df-suc 6165  df-iota 6283  df-fun 6326  df-fn 6327  df-f 6328  df-f1 6329  df-fo 6330  df-f1o 6331  df-fv 6332  df-riota 7093  df-ov 7138  df-oprab 7139  df-mpo 7140  df-om 7561  df-1st 7671  df-2nd 7672  df-wrecs 7930  df-recs 7991  df-rdg 8029  df-1o 8085  df-oadd 8089  df-er 8272  df-en 8493  df-dom 8494  df-sdom 8495  df-fin 8496  df-card 9352  df-pnf 10666  df-mnf 10667  df-xr 10668  df-ltxr 10669  df-le 10670  df-sub 10861  df-neg 10862  df-nn 11626  df-n0 11886  df-z 11970  df-uz 12232  df-fz 12886  df-fzo 13029  df-hash 13687  df-word 13858  df-substr 13994
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator