MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  swrdnd2 Structured version   Visualization version   GIF version

Theorem swrdnd2 14550
Description: Value of the subword extractor outside its intended domain. (Contributed by Alexander van der Vekens, 24-May-2018.)
Assertion
Ref Expression
swrdnd2 ((𝑊 ∈ Word 𝑉𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → ((𝐵𝐴 ∨ (♯‘𝑊) ≤ 𝐴𝐵 ≤ 0) → (𝑊 substr ⟨𝐴, 𝐵⟩) = ∅))

Proof of Theorem swrdnd2
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 3orass 1091 . . 3 ((𝐵𝐴 ∨ (♯‘𝑊) ≤ 𝐴𝐵 ≤ 0) ↔ (𝐵𝐴 ∨ ((♯‘𝑊) ≤ 𝐴𝐵 ≤ 0)))
2 pm2.24 124 . . . . 5 (𝐵𝐴 → (¬ 𝐵𝐴 → ((𝑊 ∈ Word 𝑉𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → (𝑊 substr ⟨𝐴, 𝐵⟩) = ∅)))
3 swrdval 14538 . . . . . . . . . 10 ((𝑊 ∈ Word 𝑉𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → (𝑊 substr ⟨𝐴, 𝐵⟩) = if((𝐴..^𝐵) ⊆ dom 𝑊, (𝑥 ∈ (0..^(𝐵𝐴)) ↦ (𝑊‘(𝑥 + 𝐴))), ∅))
43ad2antrr 725 . . . . . . . . 9 ((((𝑊 ∈ Word 𝑉𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ ((♯‘𝑊) ≤ 𝐴𝐵 ≤ 0)) ∧ ¬ 𝐵𝐴) → (𝑊 substr ⟨𝐴, 𝐵⟩) = if((𝐴..^𝐵) ⊆ dom 𝑊, (𝑥 ∈ (0..^(𝐵𝐴)) ↦ (𝑊‘(𝑥 + 𝐴))), ∅))
5 wrddm 14416 . . . . . . . . . . . . 13 (𝑊 ∈ Word 𝑉 → dom 𝑊 = (0..^(♯‘𝑊)))
6 lencl 14428 . . . . . . . . . . . . 13 (𝑊 ∈ Word 𝑉 → (♯‘𝑊) ∈ ℕ0)
7 3anass 1096 . . . . . . . . . . . . . . . . 17 (((♯‘𝑊) ∈ ℕ0𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ↔ ((♯‘𝑊) ∈ ℕ0 ∧ (𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ)))
8 ssfzoulel 13673 . . . . . . . . . . . . . . . . . 18 (((♯‘𝑊) ∈ ℕ0𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → (((♯‘𝑊) ≤ 𝐴𝐵 ≤ 0) → ((𝐴..^𝐵) ⊆ (0..^(♯‘𝑊)) → 𝐵𝐴)))
98imp 408 . . . . . . . . . . . . . . . . 17 ((((♯‘𝑊) ∈ ℕ0𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ ((♯‘𝑊) ≤ 𝐴𝐵 ≤ 0)) → ((𝐴..^𝐵) ⊆ (0..^(♯‘𝑊)) → 𝐵𝐴))
107, 9sylanbr 583 . . . . . . . . . . . . . . . 16 ((((♯‘𝑊) ∈ ℕ0 ∧ (𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ)) ∧ ((♯‘𝑊) ≤ 𝐴𝐵 ≤ 0)) → ((𝐴..^𝐵) ⊆ (0..^(♯‘𝑊)) → 𝐵𝐴))
1110con3dimp 410 . . . . . . . . . . . . . . 15 (((((♯‘𝑊) ∈ ℕ0 ∧ (𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ)) ∧ ((♯‘𝑊) ≤ 𝐴𝐵 ≤ 0)) ∧ ¬ 𝐵𝐴) → ¬ (𝐴..^𝐵) ⊆ (0..^(♯‘𝑊)))
12 sseq2 3975 . . . . . . . . . . . . . . . 16 (dom 𝑊 = (0..^(♯‘𝑊)) → ((𝐴..^𝐵) ⊆ dom 𝑊 ↔ (𝐴..^𝐵) ⊆ (0..^(♯‘𝑊))))
1312notbid 318 . . . . . . . . . . . . . . 15 (dom 𝑊 = (0..^(♯‘𝑊)) → (¬ (𝐴..^𝐵) ⊆ dom 𝑊 ↔ ¬ (𝐴..^𝐵) ⊆ (0..^(♯‘𝑊))))
1411, 13syl5ibr 246 . . . . . . . . . . . . . 14 (dom 𝑊 = (0..^(♯‘𝑊)) → (((((♯‘𝑊) ∈ ℕ0 ∧ (𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ)) ∧ ((♯‘𝑊) ≤ 𝐴𝐵 ≤ 0)) ∧ ¬ 𝐵𝐴) → ¬ (𝐴..^𝐵) ⊆ dom 𝑊))
1514exp5j 447 . . . . . . . . . . . . 13 (dom 𝑊 = (0..^(♯‘𝑊)) → ((♯‘𝑊) ∈ ℕ0 → ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → (((♯‘𝑊) ≤ 𝐴𝐵 ≤ 0) → (¬ 𝐵𝐴 → ¬ (𝐴..^𝐵) ⊆ dom 𝑊)))))
165, 6, 15sylc 65 . . . . . . . . . . . 12 (𝑊 ∈ Word 𝑉 → ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → (((♯‘𝑊) ≤ 𝐴𝐵 ≤ 0) → (¬ 𝐵𝐴 → ¬ (𝐴..^𝐵) ⊆ dom 𝑊))))
17163impib 1117 . . . . . . . . . . 11 ((𝑊 ∈ Word 𝑉𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → (((♯‘𝑊) ≤ 𝐴𝐵 ≤ 0) → (¬ 𝐵𝐴 → ¬ (𝐴..^𝐵) ⊆ dom 𝑊)))
1817imp31 419 . . . . . . . . . 10 ((((𝑊 ∈ Word 𝑉𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ ((♯‘𝑊) ≤ 𝐴𝐵 ≤ 0)) ∧ ¬ 𝐵𝐴) → ¬ (𝐴..^𝐵) ⊆ dom 𝑊)
1918iffalsed 4502 . . . . . . . . 9 ((((𝑊 ∈ Word 𝑉𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ ((♯‘𝑊) ≤ 𝐴𝐵 ≤ 0)) ∧ ¬ 𝐵𝐴) → if((𝐴..^𝐵) ⊆ dom 𝑊, (𝑥 ∈ (0..^(𝐵𝐴)) ↦ (𝑊‘(𝑥 + 𝐴))), ∅) = ∅)
204, 19eqtrd 2777 . . . . . . . 8 ((((𝑊 ∈ Word 𝑉𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ ((♯‘𝑊) ≤ 𝐴𝐵 ≤ 0)) ∧ ¬ 𝐵𝐴) → (𝑊 substr ⟨𝐴, 𝐵⟩) = ∅)
2120ex 414 . . . . . . 7 (((𝑊 ∈ Word 𝑉𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ ((♯‘𝑊) ≤ 𝐴𝐵 ≤ 0)) → (¬ 𝐵𝐴 → (𝑊 substr ⟨𝐴, 𝐵⟩) = ∅))
2221expcom 415 . . . . . 6 (((♯‘𝑊) ≤ 𝐴𝐵 ≤ 0) → ((𝑊 ∈ Word 𝑉𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → (¬ 𝐵𝐴 → (𝑊 substr ⟨𝐴, 𝐵⟩) = ∅)))
2322com23 86 . . . . 5 (((♯‘𝑊) ≤ 𝐴𝐵 ≤ 0) → (¬ 𝐵𝐴 → ((𝑊 ∈ Word 𝑉𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → (𝑊 substr ⟨𝐴, 𝐵⟩) = ∅)))
242, 23jaoi 856 . . . 4 ((𝐵𝐴 ∨ ((♯‘𝑊) ≤ 𝐴𝐵 ≤ 0)) → (¬ 𝐵𝐴 → ((𝑊 ∈ Word 𝑉𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → (𝑊 substr ⟨𝐴, 𝐵⟩) = ∅)))
25 swrdlend 14548 . . . . 5 ((𝑊 ∈ Word 𝑉𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → (𝐵𝐴 → (𝑊 substr ⟨𝐴, 𝐵⟩) = ∅))
2625com12 32 . . . 4 (𝐵𝐴 → ((𝑊 ∈ Word 𝑉𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → (𝑊 substr ⟨𝐴, 𝐵⟩) = ∅))
2724, 26pm2.61d2 181 . . 3 ((𝐵𝐴 ∨ ((♯‘𝑊) ≤ 𝐴𝐵 ≤ 0)) → ((𝑊 ∈ Word 𝑉𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → (𝑊 substr ⟨𝐴, 𝐵⟩) = ∅))
281, 27sylbi 216 . 2 ((𝐵𝐴 ∨ (♯‘𝑊) ≤ 𝐴𝐵 ≤ 0) → ((𝑊 ∈ Word 𝑉𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → (𝑊 substr ⟨𝐴, 𝐵⟩) = ∅))
2928com12 32 1 ((𝑊 ∈ Word 𝑉𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → ((𝐵𝐴 ∨ (♯‘𝑊) ≤ 𝐴𝐵 ≤ 0) → (𝑊 substr ⟨𝐴, 𝐵⟩) = ∅))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 397  wo 846  w3o 1087  w3a 1088   = wceq 1542  wcel 2107  wss 3915  c0 4287  ifcif 4491  cop 4597   class class class wbr 5110  cmpt 5193  dom cdm 5638  cfv 6501  (class class class)co 7362  0cc0 11058   + caddc 11061  cle 11197  cmin 11392  0cn0 12420  cz 12506  ..^cfzo 13574  chash 14237  Word cword 14409   substr csubstr 14535
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2155  ax-12 2172  ax-ext 2708  ax-rep 5247  ax-sep 5261  ax-nul 5268  ax-pow 5325  ax-pr 5389  ax-un 7677  ax-cnex 11114  ax-resscn 11115  ax-1cn 11116  ax-icn 11117  ax-addcl 11118  ax-addrcl 11119  ax-mulcl 11120  ax-mulrcl 11121  ax-mulcom 11122  ax-addass 11123  ax-mulass 11124  ax-distr 11125  ax-i2m1 11126  ax-1ne0 11127  ax-1rid 11128  ax-rnegex 11129  ax-rrecex 11130  ax-cnre 11131  ax-pre-lttri 11132  ax-pre-lttrn 11133  ax-pre-ltadd 11134  ax-pre-mulgt0 11135
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3or 1089  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-nf 1787  df-sb 2069  df-mo 2539  df-eu 2568  df-clab 2715  df-cleq 2729  df-clel 2815  df-nfc 2890  df-ne 2945  df-nel 3051  df-ral 3066  df-rex 3075  df-reu 3357  df-rab 3411  df-v 3450  df-sbc 3745  df-csb 3861  df-dif 3918  df-un 3920  df-in 3922  df-ss 3932  df-pss 3934  df-nul 4288  df-if 4492  df-pw 4567  df-sn 4592  df-pr 4594  df-op 4598  df-uni 4871  df-int 4913  df-iun 4961  df-br 5111  df-opab 5173  df-mpt 5194  df-tr 5228  df-id 5536  df-eprel 5542  df-po 5550  df-so 5551  df-fr 5593  df-we 5595  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-pred 6258  df-ord 6325  df-on 6326  df-lim 6327  df-suc 6328  df-iota 6453  df-fun 6503  df-fn 6504  df-f 6505  df-f1 6506  df-fo 6507  df-f1o 6508  df-fv 6509  df-riota 7318  df-ov 7365  df-oprab 7366  df-mpo 7367  df-om 7808  df-1st 7926  df-2nd 7927  df-frecs 8217  df-wrecs 8248  df-recs 8322  df-rdg 8361  df-1o 8417  df-er 8655  df-en 8891  df-dom 8892  df-sdom 8893  df-fin 8894  df-card 9882  df-pnf 11198  df-mnf 11199  df-xr 11200  df-ltxr 11201  df-le 11202  df-sub 11394  df-neg 11395  df-nn 12161  df-n0 12421  df-z 12507  df-uz 12771  df-fz 13432  df-fzo 13575  df-hash 14238  df-word 14410  df-substr 14536
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator