MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  swrdnd2 Structured version   Visualization version   GIF version

Theorem swrdnd2 14560
Description: Value of the subword extractor outside its intended domain. (Contributed by Alexander van der Vekens, 24-May-2018.)
Assertion
Ref Expression
swrdnd2 ((𝑊 ∈ Word 𝑉𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → ((𝐵𝐴 ∨ (♯‘𝑊) ≤ 𝐴𝐵 ≤ 0) → (𝑊 substr ⟨𝐴, 𝐵⟩) = ∅))

Proof of Theorem swrdnd2
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 3orass 1089 . . 3 ((𝐵𝐴 ∨ (♯‘𝑊) ≤ 𝐴𝐵 ≤ 0) ↔ (𝐵𝐴 ∨ ((♯‘𝑊) ≤ 𝐴𝐵 ≤ 0)))
2 pm2.24 124 . . . . 5 (𝐵𝐴 → (¬ 𝐵𝐴 → ((𝑊 ∈ Word 𝑉𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → (𝑊 substr ⟨𝐴, 𝐵⟩) = ∅)))
3 swrdval 14548 . . . . . . . . . 10 ((𝑊 ∈ Word 𝑉𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → (𝑊 substr ⟨𝐴, 𝐵⟩) = if((𝐴..^𝐵) ⊆ dom 𝑊, (𝑥 ∈ (0..^(𝐵𝐴)) ↦ (𝑊‘(𝑥 + 𝐴))), ∅))
43ad2antrr 726 . . . . . . . . 9 ((((𝑊 ∈ Word 𝑉𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ ((♯‘𝑊) ≤ 𝐴𝐵 ≤ 0)) ∧ ¬ 𝐵𝐴) → (𝑊 substr ⟨𝐴, 𝐵⟩) = if((𝐴..^𝐵) ⊆ dom 𝑊, (𝑥 ∈ (0..^(𝐵𝐴)) ↦ (𝑊‘(𝑥 + 𝐴))), ∅))
5 wrddm 14425 . . . . . . . . . . . . 13 (𝑊 ∈ Word 𝑉 → dom 𝑊 = (0..^(♯‘𝑊)))
6 lencl 14437 . . . . . . . . . . . . 13 (𝑊 ∈ Word 𝑉 → (♯‘𝑊) ∈ ℕ0)
7 3anass 1094 . . . . . . . . . . . . . . . . 17 (((♯‘𝑊) ∈ ℕ0𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ↔ ((♯‘𝑊) ∈ ℕ0 ∧ (𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ)))
8 ssfzoulel 13657 . . . . . . . . . . . . . . . . . 18 (((♯‘𝑊) ∈ ℕ0𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → (((♯‘𝑊) ≤ 𝐴𝐵 ≤ 0) → ((𝐴..^𝐵) ⊆ (0..^(♯‘𝑊)) → 𝐵𝐴)))
98imp 406 . . . . . . . . . . . . . . . . 17 ((((♯‘𝑊) ∈ ℕ0𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ ((♯‘𝑊) ≤ 𝐴𝐵 ≤ 0)) → ((𝐴..^𝐵) ⊆ (0..^(♯‘𝑊)) → 𝐵𝐴))
107, 9sylanbr 582 . . . . . . . . . . . . . . . 16 ((((♯‘𝑊) ∈ ℕ0 ∧ (𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ)) ∧ ((♯‘𝑊) ≤ 𝐴𝐵 ≤ 0)) → ((𝐴..^𝐵) ⊆ (0..^(♯‘𝑊)) → 𝐵𝐴))
1110con3dimp 408 . . . . . . . . . . . . . . 15 (((((♯‘𝑊) ∈ ℕ0 ∧ (𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ)) ∧ ((♯‘𝑊) ≤ 𝐴𝐵 ≤ 0)) ∧ ¬ 𝐵𝐴) → ¬ (𝐴..^𝐵) ⊆ (0..^(♯‘𝑊)))
12 sseq2 3961 . . . . . . . . . . . . . . . 16 (dom 𝑊 = (0..^(♯‘𝑊)) → ((𝐴..^𝐵) ⊆ dom 𝑊 ↔ (𝐴..^𝐵) ⊆ (0..^(♯‘𝑊))))
1312notbid 318 . . . . . . . . . . . . . . 15 (dom 𝑊 = (0..^(♯‘𝑊)) → (¬ (𝐴..^𝐵) ⊆ dom 𝑊 ↔ ¬ (𝐴..^𝐵) ⊆ (0..^(♯‘𝑊))))
1411, 13imbitrrid 246 . . . . . . . . . . . . . 14 (dom 𝑊 = (0..^(♯‘𝑊)) → (((((♯‘𝑊) ∈ ℕ0 ∧ (𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ)) ∧ ((♯‘𝑊) ≤ 𝐴𝐵 ≤ 0)) ∧ ¬ 𝐵𝐴) → ¬ (𝐴..^𝐵) ⊆ dom 𝑊))
1514exp5j 445 . . . . . . . . . . . . 13 (dom 𝑊 = (0..^(♯‘𝑊)) → ((♯‘𝑊) ∈ ℕ0 → ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → (((♯‘𝑊) ≤ 𝐴𝐵 ≤ 0) → (¬ 𝐵𝐴 → ¬ (𝐴..^𝐵) ⊆ dom 𝑊)))))
165, 6, 15sylc 65 . . . . . . . . . . . 12 (𝑊 ∈ Word 𝑉 → ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → (((♯‘𝑊) ≤ 𝐴𝐵 ≤ 0) → (¬ 𝐵𝐴 → ¬ (𝐴..^𝐵) ⊆ dom 𝑊))))
17163impib 1116 . . . . . . . . . . 11 ((𝑊 ∈ Word 𝑉𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → (((♯‘𝑊) ≤ 𝐴𝐵 ≤ 0) → (¬ 𝐵𝐴 → ¬ (𝐴..^𝐵) ⊆ dom 𝑊)))
1817imp31 417 . . . . . . . . . 10 ((((𝑊 ∈ Word 𝑉𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ ((♯‘𝑊) ≤ 𝐴𝐵 ≤ 0)) ∧ ¬ 𝐵𝐴) → ¬ (𝐴..^𝐵) ⊆ dom 𝑊)
1918iffalsed 4486 . . . . . . . . 9 ((((𝑊 ∈ Word 𝑉𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ ((♯‘𝑊) ≤ 𝐴𝐵 ≤ 0)) ∧ ¬ 𝐵𝐴) → if((𝐴..^𝐵) ⊆ dom 𝑊, (𝑥 ∈ (0..^(𝐵𝐴)) ↦ (𝑊‘(𝑥 + 𝐴))), ∅) = ∅)
204, 19eqtrd 2766 . . . . . . . 8 ((((𝑊 ∈ Word 𝑉𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ ((♯‘𝑊) ≤ 𝐴𝐵 ≤ 0)) ∧ ¬ 𝐵𝐴) → (𝑊 substr ⟨𝐴, 𝐵⟩) = ∅)
2120ex 412 . . . . . . 7 (((𝑊 ∈ Word 𝑉𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ ((♯‘𝑊) ≤ 𝐴𝐵 ≤ 0)) → (¬ 𝐵𝐴 → (𝑊 substr ⟨𝐴, 𝐵⟩) = ∅))
2221expcom 413 . . . . . 6 (((♯‘𝑊) ≤ 𝐴𝐵 ≤ 0) → ((𝑊 ∈ Word 𝑉𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → (¬ 𝐵𝐴 → (𝑊 substr ⟨𝐴, 𝐵⟩) = ∅)))
2322com23 86 . . . . 5 (((♯‘𝑊) ≤ 𝐴𝐵 ≤ 0) → (¬ 𝐵𝐴 → ((𝑊 ∈ Word 𝑉𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → (𝑊 substr ⟨𝐴, 𝐵⟩) = ∅)))
242, 23jaoi 857 . . . 4 ((𝐵𝐴 ∨ ((♯‘𝑊) ≤ 𝐴𝐵 ≤ 0)) → (¬ 𝐵𝐴 → ((𝑊 ∈ Word 𝑉𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → (𝑊 substr ⟨𝐴, 𝐵⟩) = ∅)))
25 swrdlend 14558 . . . . 5 ((𝑊 ∈ Word 𝑉𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → (𝐵𝐴 → (𝑊 substr ⟨𝐴, 𝐵⟩) = ∅))
2625com12 32 . . . 4 (𝐵𝐴 → ((𝑊 ∈ Word 𝑉𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → (𝑊 substr ⟨𝐴, 𝐵⟩) = ∅))
2724, 26pm2.61d2 181 . . 3 ((𝐵𝐴 ∨ ((♯‘𝑊) ≤ 𝐴𝐵 ≤ 0)) → ((𝑊 ∈ Word 𝑉𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → (𝑊 substr ⟨𝐴, 𝐵⟩) = ∅))
281, 27sylbi 217 . 2 ((𝐵𝐴 ∨ (♯‘𝑊) ≤ 𝐴𝐵 ≤ 0) → ((𝑊 ∈ Word 𝑉𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → (𝑊 substr ⟨𝐴, 𝐵⟩) = ∅))
2928com12 32 1 ((𝑊 ∈ Word 𝑉𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → ((𝐵𝐴 ∨ (♯‘𝑊) ≤ 𝐴𝐵 ≤ 0) → (𝑊 substr ⟨𝐴, 𝐵⟩) = ∅))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395  wo 847  w3o 1085  w3a 1086   = wceq 1541  wcel 2111  wss 3902  c0 4283  ifcif 4475  cop 4582   class class class wbr 5091  cmpt 5172  dom cdm 5616  cfv 6481  (class class class)co 7346  0cc0 11003   + caddc 11006  cle 11144  cmin 11341  0cn0 12378  cz 12465  ..^cfzo 13551  chash 14234  Word cword 14417   substr csubstr 14545
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-rep 5217  ax-sep 5234  ax-nul 5244  ax-pow 5303  ax-pr 5370  ax-un 7668  ax-cnex 11059  ax-resscn 11060  ax-1cn 11061  ax-icn 11062  ax-addcl 11063  ax-addrcl 11064  ax-mulcl 11065  ax-mulrcl 11066  ax-mulcom 11067  ax-addass 11068  ax-mulass 11069  ax-distr 11070  ax-i2m1 11071  ax-1ne0 11072  ax-1rid 11073  ax-rnegex 11074  ax-rrecex 11075  ax-cnre 11076  ax-pre-lttri 11077  ax-pre-lttrn 11078  ax-pre-ltadd 11079  ax-pre-mulgt0 11080
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-nel 3033  df-ral 3048  df-rex 3057  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3742  df-csb 3851  df-dif 3905  df-un 3907  df-in 3909  df-ss 3919  df-pss 3922  df-nul 4284  df-if 4476  df-pw 4552  df-sn 4577  df-pr 4579  df-op 4583  df-uni 4860  df-int 4898  df-iun 4943  df-br 5092  df-opab 5154  df-mpt 5173  df-tr 5199  df-id 5511  df-eprel 5516  df-po 5524  df-so 5525  df-fr 5569  df-we 5571  df-xp 5622  df-rel 5623  df-cnv 5624  df-co 5625  df-dm 5626  df-rn 5627  df-res 5628  df-ima 5629  df-pred 6248  df-ord 6309  df-on 6310  df-lim 6311  df-suc 6312  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-riota 7303  df-ov 7349  df-oprab 7350  df-mpo 7351  df-om 7797  df-1st 7921  df-2nd 7922  df-frecs 8211  df-wrecs 8242  df-recs 8291  df-rdg 8329  df-1o 8385  df-er 8622  df-en 8870  df-dom 8871  df-sdom 8872  df-fin 8873  df-card 9829  df-pnf 11145  df-mnf 11146  df-xr 11147  df-ltxr 11148  df-le 11149  df-sub 11343  df-neg 11344  df-nn 12123  df-n0 12379  df-z 12466  df-uz 12730  df-fz 13405  df-fzo 13552  df-hash 14235  df-word 14418  df-substr 14546
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator