| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > exp4c | Structured version Visualization version GIF version | ||
| Description: An exportation inference. (Contributed by NM, 26-Apr-1994.) |
| Ref | Expression |
|---|---|
| exp4c.1 | ⊢ (𝜑 → (((𝜓 ∧ 𝜒) ∧ 𝜃) → 𝜏)) |
| Ref | Expression |
|---|---|
| exp4c | ⊢ (𝜑 → (𝜓 → (𝜒 → (𝜃 → 𝜏)))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | exp4c.1 | . . 3 ⊢ (𝜑 → (((𝜓 ∧ 𝜒) ∧ 𝜃) → 𝜏)) | |
| 2 | 1 | expd 415 | . 2 ⊢ (𝜑 → ((𝜓 ∧ 𝜒) → (𝜃 → 𝜏))) |
| 3 | 2 | expd 415 | 1 ⊢ (𝜑 → (𝜓 → (𝜒 → (𝜃 → 𝜏)))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 |
| This theorem is referenced by: exp5j 445 oawordri 8562 oaordex 8570 odi 8591 pssnn 9182 alephval3 10124 dfac2b 10145 axdc4lem 10469 leexp1a 14193 wrdsymb0 14567 coprmproddvds 16682 lmodvsmmulgdi 20854 assamulgscm 21861 2ndcctbss 23393 2pthnloop 29713 wwlksnext 29875 frgrregord013 30376 atcvatlem 32366 umgr2cycllem 35162 exp5g 36321 cdleme48gfv1 40555 cdlemg6e 40641 dihord5apre 41281 dihglblem5apreN 41310 iccpartgt 47441 lmodvsmdi 48354 nn0sumshdiglemB 48600 |
| Copyright terms: Public domain | W3C validator |