| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > exp4c | Structured version Visualization version GIF version | ||
| Description: An exportation inference. (Contributed by NM, 26-Apr-1994.) |
| Ref | Expression |
|---|---|
| exp4c.1 | ⊢ (𝜑 → (((𝜓 ∧ 𝜒) ∧ 𝜃) → 𝜏)) |
| Ref | Expression |
|---|---|
| exp4c | ⊢ (𝜑 → (𝜓 → (𝜒 → (𝜃 → 𝜏)))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | exp4c.1 | . . 3 ⊢ (𝜑 → (((𝜓 ∧ 𝜒) ∧ 𝜃) → 𝜏)) | |
| 2 | 1 | expd 415 | . 2 ⊢ (𝜑 → ((𝜓 ∧ 𝜒) → (𝜃 → 𝜏))) |
| 3 | 2 | expd 415 | 1 ⊢ (𝜑 → (𝜓 → (𝜒 → (𝜃 → 𝜏)))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 |
| This theorem is referenced by: exp5j 445 oawordri 8465 oaordex 8473 odi 8494 pssnn 9078 alephval3 9998 dfac2b 10019 axdc4lem 10343 leexp1a 14079 wrdsymb0 14453 coprmproddvds 16571 lmodvsmmulgdi 20828 assamulgscm 21836 2ndcctbss 23368 2pthnloop 29707 wwlksnext 29869 frgrregord013 30370 atcvatlem 32360 umgr2cycllem 35172 exp5g 36336 cdleme48gfv1 40574 cdlemg6e 40660 dihord5apre 41300 dihglblem5apreN 41329 iccpartgt 47457 lmodvsmdi 48409 nn0sumshdiglemB 48651 |
| Copyright terms: Public domain | W3C validator |