| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > exp4c | Structured version Visualization version GIF version | ||
| Description: An exportation inference. (Contributed by NM, 26-Apr-1994.) |
| Ref | Expression |
|---|---|
| exp4c.1 | ⊢ (𝜑 → (((𝜓 ∧ 𝜒) ∧ 𝜃) → 𝜏)) |
| Ref | Expression |
|---|---|
| exp4c | ⊢ (𝜑 → (𝜓 → (𝜒 → (𝜃 → 𝜏)))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | exp4c.1 | . . 3 ⊢ (𝜑 → (((𝜓 ∧ 𝜒) ∧ 𝜃) → 𝜏)) | |
| 2 | 1 | expd 415 | . 2 ⊢ (𝜑 → ((𝜓 ∧ 𝜒) → (𝜃 → 𝜏))) |
| 3 | 2 | expd 415 | 1 ⊢ (𝜑 → (𝜓 → (𝜒 → (𝜃 → 𝜏)))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 |
| This theorem is referenced by: exp5j 445 oawordri 8475 oaordex 8483 odi 8504 pssnn 9092 alephval3 10023 dfac2b 10044 axdc4lem 10368 leexp1a 14100 wrdsymb0 14474 coprmproddvds 16592 lmodvsmmulgdi 20818 assamulgscm 21826 2ndcctbss 23358 2pthnloop 29694 wwlksnext 29856 frgrregord013 30357 atcvatlem 32347 umgr2cycllem 35112 exp5g 36276 cdleme48gfv1 40515 cdlemg6e 40601 dihord5apre 41241 dihglblem5apreN 41270 iccpartgt 47412 lmodvsmdi 48364 nn0sumshdiglemB 48606 |
| Copyright terms: Public domain | W3C validator |