| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > exp4c | Structured version Visualization version GIF version | ||
| Description: An exportation inference. (Contributed by NM, 26-Apr-1994.) |
| Ref | Expression |
|---|---|
| exp4c.1 | ⊢ (𝜑 → (((𝜓 ∧ 𝜒) ∧ 𝜃) → 𝜏)) |
| Ref | Expression |
|---|---|
| exp4c | ⊢ (𝜑 → (𝜓 → (𝜒 → (𝜃 → 𝜏)))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | exp4c.1 | . . 3 ⊢ (𝜑 → (((𝜓 ∧ 𝜒) ∧ 𝜃) → 𝜏)) | |
| 2 | 1 | expd 415 | . 2 ⊢ (𝜑 → ((𝜓 ∧ 𝜒) → (𝜃 → 𝜏))) |
| 3 | 2 | expd 415 | 1 ⊢ (𝜑 → (𝜓 → (𝜒 → (𝜃 → 𝜏)))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 |
| This theorem is referenced by: exp5j 445 oawordri 8471 oaordex 8479 odi 8500 pssnn 9085 alephval3 10008 dfac2b 10029 axdc4lem 10353 leexp1a 14084 wrdsymb0 14458 coprmproddvds 16576 lmodvsmmulgdi 20832 assamulgscm 21840 2ndcctbss 23371 2pthnloop 29711 wwlksnext 29873 frgrregord013 30377 atcvatlem 32367 umgr2cycllem 35205 exp5g 36368 cdleme48gfv1 40655 cdlemg6e 40741 dihord5apre 41381 dihglblem5apreN 41410 iccpartgt 47551 lmodvsmdi 48503 nn0sumshdiglemB 48745 |
| Copyright terms: Public domain | W3C validator |