| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > exp4c | Structured version Visualization version GIF version | ||
| Description: An exportation inference. (Contributed by NM, 26-Apr-1994.) |
| Ref | Expression |
|---|---|
| exp4c.1 | ⊢ (𝜑 → (((𝜓 ∧ 𝜒) ∧ 𝜃) → 𝜏)) |
| Ref | Expression |
|---|---|
| exp4c | ⊢ (𝜑 → (𝜓 → (𝜒 → (𝜃 → 𝜏)))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | exp4c.1 | . . 3 ⊢ (𝜑 → (((𝜓 ∧ 𝜒) ∧ 𝜃) → 𝜏)) | |
| 2 | 1 | expd 415 | . 2 ⊢ (𝜑 → ((𝜓 ∧ 𝜒) → (𝜃 → 𝜏))) |
| 3 | 2 | expd 415 | 1 ⊢ (𝜑 → (𝜓 → (𝜒 → (𝜃 → 𝜏)))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 |
| This theorem is referenced by: exp5j 445 oawordri 8514 oaordex 8522 odi 8543 pssnn 9132 alephval3 10063 dfac2b 10084 axdc4lem 10408 leexp1a 14140 wrdsymb0 14514 coprmproddvds 16633 lmodvsmmulgdi 20803 assamulgscm 21810 2ndcctbss 23342 2pthnloop 29661 wwlksnext 29823 frgrregord013 30324 atcvatlem 32314 umgr2cycllem 35127 exp5g 36291 cdleme48gfv1 40530 cdlemg6e 40616 dihord5apre 41256 dihglblem5apreN 41285 iccpartgt 47428 lmodvsmdi 48367 nn0sumshdiglemB 48609 |
| Copyright terms: Public domain | W3C validator |