Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > exp4c | Structured version Visualization version GIF version |
Description: An exportation inference. (Contributed by NM, 26-Apr-1994.) |
Ref | Expression |
---|---|
exp4c.1 | ⊢ (𝜑 → (((𝜓 ∧ 𝜒) ∧ 𝜃) → 𝜏)) |
Ref | Expression |
---|---|
exp4c | ⊢ (𝜑 → (𝜓 → (𝜒 → (𝜃 → 𝜏)))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | exp4c.1 | . . 3 ⊢ (𝜑 → (((𝜓 ∧ 𝜒) ∧ 𝜃) → 𝜏)) | |
2 | 1 | expd 415 | . 2 ⊢ (𝜑 → ((𝜓 ∧ 𝜒) → (𝜃 → 𝜏))) |
3 | 2 | expd 415 | 1 ⊢ (𝜑 → (𝜓 → (𝜒 → (𝜃 → 𝜏)))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 df-an 396 |
This theorem is referenced by: exp5j 445 oawordri 8343 oaordex 8351 odi 8372 pssnn 8913 pssnnOLD 8969 alephval3 9797 dfac2b 9817 axdc4lem 10142 leexp1a 13821 wrdsymb0 14180 coprmproddvds 16296 lmodvsmmulgdi 20073 assamulgscm 21015 2ndcctbss 22514 2pthnloop 28000 wwlksnext 28159 frgrregord013 28660 atcvatlem 30648 umgr2cycllem 33002 exp5g 34419 cdleme48gfv1 38477 cdlemg6e 38563 dihord5apre 39203 dihglblem5apreN 39232 iccpartgt 44767 lmodvsmdi 45606 nn0sumshdiglemB 45854 |
Copyright terms: Public domain | W3C validator |