![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > exp4c | Structured version Visualization version GIF version |
Description: An exportation inference. (Contributed by NM, 26-Apr-1994.) |
Ref | Expression |
---|---|
exp4c.1 | ⊢ (𝜑 → (((𝜓 ∧ 𝜒) ∧ 𝜃) → 𝜏)) |
Ref | Expression |
---|---|
exp4c | ⊢ (𝜑 → (𝜓 → (𝜒 → (𝜃 → 𝜏)))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | exp4c.1 | . . 3 ⊢ (𝜑 → (((𝜓 ∧ 𝜒) ∧ 𝜃) → 𝜏)) | |
2 | 1 | expd 415 | . 2 ⊢ (𝜑 → ((𝜓 ∧ 𝜒) → (𝜃 → 𝜏))) |
3 | 2 | expd 415 | 1 ⊢ (𝜑 → (𝜓 → (𝜒 → (𝜃 → 𝜏)))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 207 df-an 396 |
This theorem is referenced by: exp5j 445 oawordri 8606 oaordex 8614 odi 8635 pssnn 9234 alephval3 10179 dfac2b 10200 axdc4lem 10524 leexp1a 14225 wrdsymb0 14597 coprmproddvds 16710 lmodvsmmulgdi 20917 assamulgscm 21944 2ndcctbss 23484 2pthnloop 29767 wwlksnext 29926 frgrregord013 30427 atcvatlem 32417 umgr2cycllem 35108 exp5g 36269 cdleme48gfv1 40493 cdlemg6e 40579 dihord5apre 41219 dihglblem5apreN 41248 iccpartgt 47301 lmodvsmdi 48107 nn0sumshdiglemB 48354 |
Copyright terms: Public domain | W3C validator |