MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  exp4c Structured version   Visualization version   GIF version

Theorem exp4c 432
Description: An exportation inference. (Contributed by NM, 26-Apr-1994.)
Hypothesis
Ref Expression
exp4c.1 (𝜑 → (((𝜓𝜒) ∧ 𝜃) → 𝜏))
Assertion
Ref Expression
exp4c (𝜑 → (𝜓 → (𝜒 → (𝜃𝜏))))

Proof of Theorem exp4c
StepHypRef Expression
1 exp4c.1 . . 3 (𝜑 → (((𝜓𝜒) ∧ 𝜃) → 𝜏))
21expd 415 . 2 (𝜑 → ((𝜓𝜒) → (𝜃𝜏)))
32expd 415 1 (𝜑 → (𝜓 → (𝜒 → (𝜃𝜏))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 206  df-an 396
This theorem is referenced by:  exp5j  445  oawordri  8343  oaordex  8351  odi  8372  pssnn  8913  pssnnOLD  8969  alephval3  9797  dfac2b  9817  axdc4lem  10142  leexp1a  13821  wrdsymb0  14180  coprmproddvds  16296  lmodvsmmulgdi  20073  assamulgscm  21015  2ndcctbss  22514  2pthnloop  28000  wwlksnext  28159  frgrregord013  28660  atcvatlem  30648  umgr2cycllem  33002  exp5g  34419  cdleme48gfv1  38477  cdlemg6e  38563  dihord5apre  39203  dihglblem5apreN  39232  iccpartgt  44767  lmodvsmdi  45606  nn0sumshdiglemB  45854
  Copyright terms: Public domain W3C validator