Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > exp4c | Structured version Visualization version GIF version |
Description: An exportation inference. (Contributed by NM, 26-Apr-1994.) |
Ref | Expression |
---|---|
exp4c.1 | ⊢ (𝜑 → (((𝜓 ∧ 𝜒) ∧ 𝜃) → 𝜏)) |
Ref | Expression |
---|---|
exp4c | ⊢ (𝜑 → (𝜓 → (𝜒 → (𝜃 → 𝜏)))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | exp4c.1 | . . 3 ⊢ (𝜑 → (((𝜓 ∧ 𝜒) ∧ 𝜃) → 𝜏)) | |
2 | 1 | expd 416 | . 2 ⊢ (𝜑 → ((𝜓 ∧ 𝜒) → (𝜃 → 𝜏))) |
3 | 2 | expd 416 | 1 ⊢ (𝜑 → (𝜓 → (𝜒 → (𝜃 → 𝜏)))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 df-an 397 |
This theorem is referenced by: exp5j 446 oawordri 8381 oaordex 8389 odi 8410 pssnn 8951 pssnnOLD 9040 alephval3 9866 dfac2b 9886 axdc4lem 10211 leexp1a 13893 wrdsymb0 14252 coprmproddvds 16368 lmodvsmmulgdi 20158 assamulgscm 21105 2ndcctbss 22606 2pthnloop 28099 wwlksnext 28258 frgrregord013 28759 atcvatlem 30747 umgr2cycllem 33102 exp5g 34492 cdleme48gfv1 38550 cdlemg6e 38636 dihord5apre 39276 dihglblem5apreN 39305 iccpartgt 44879 lmodvsmdi 45718 nn0sumshdiglemB 45966 |
Copyright terms: Public domain | W3C validator |