| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > exp4c | Structured version Visualization version GIF version | ||
| Description: An exportation inference. (Contributed by NM, 26-Apr-1994.) |
| Ref | Expression |
|---|---|
| exp4c.1 | ⊢ (𝜑 → (((𝜓 ∧ 𝜒) ∧ 𝜃) → 𝜏)) |
| Ref | Expression |
|---|---|
| exp4c | ⊢ (𝜑 → (𝜓 → (𝜒 → (𝜃 → 𝜏)))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | exp4c.1 | . . 3 ⊢ (𝜑 → (((𝜓 ∧ 𝜒) ∧ 𝜃) → 𝜏)) | |
| 2 | 1 | expd 415 | . 2 ⊢ (𝜑 → ((𝜓 ∧ 𝜒) → (𝜃 → 𝜏))) |
| 3 | 2 | expd 415 | 1 ⊢ (𝜑 → (𝜓 → (𝜒 → (𝜃 → 𝜏)))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 |
| This theorem is referenced by: exp5j 445 oawordri 8517 oaordex 8525 odi 8546 pssnn 9138 alephval3 10070 dfac2b 10091 axdc4lem 10415 leexp1a 14147 wrdsymb0 14521 coprmproddvds 16640 lmodvsmmulgdi 20810 assamulgscm 21817 2ndcctbss 23349 2pthnloop 29668 wwlksnext 29830 frgrregord013 30331 atcvatlem 32321 umgr2cycllem 35134 exp5g 36298 cdleme48gfv1 40537 cdlemg6e 40623 dihord5apre 41263 dihglblem5apreN 41292 iccpartgt 47432 lmodvsmdi 48371 nn0sumshdiglemB 48613 |
| Copyright terms: Public domain | W3C validator |