| Step | Hyp | Ref
| Expression |
| 1 | | nfv 1914 |
. . 3
⊢
Ⅎ𝑘(0 ∉
𝑦 ∧ 𝑧 ≠ 0 ∧ 𝑛 ≠ 0) |
| 2 | | nfv 1914 |
. . . 4
⊢
Ⅎ𝑘 𝑛 ∈ ℤ |
| 3 | | nfv 1914 |
. . . . 5
⊢
Ⅎ𝑘(𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin) |
| 4 | | nfra1 3284 |
. . . . . 6
⊢
Ⅎ𝑘∀𝑘 ∈ ℤ (∀𝑚 ∈ 𝑦 𝑚 ∥ 𝑘 → (lcm‘𝑦) ∥ 𝑘) |
| 5 | | nfv 1914 |
. . . . . 6
⊢
Ⅎ𝑘∀𝑛 ∈ ℤ (lcm‘(𝑦 ∪ {𝑛})) = ((lcm‘𝑦) lcm 𝑛) |
| 6 | 4, 5 | nfan 1899 |
. . . . 5
⊢
Ⅎ𝑘(∀𝑘 ∈ ℤ (∀𝑚 ∈ 𝑦 𝑚 ∥ 𝑘 → (lcm‘𝑦) ∥ 𝑘) ∧ ∀𝑛 ∈ ℤ (lcm‘(𝑦 ∪ {𝑛})) = ((lcm‘𝑦) lcm 𝑛)) |
| 7 | 3, 6 | nfan 1899 |
. . . 4
⊢
Ⅎ𝑘((𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin) ∧
(∀𝑘 ∈ ℤ
(∀𝑚 ∈ 𝑦 𝑚 ∥ 𝑘 → (lcm‘𝑦) ∥ 𝑘) ∧ ∀𝑛 ∈ ℤ (lcm‘(𝑦 ∪ {𝑛})) = ((lcm‘𝑦) lcm 𝑛))) |
| 8 | 2, 7 | nfan 1899 |
. . 3
⊢
Ⅎ𝑘(𝑛 ∈ ℤ ∧ ((𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin) ∧
(∀𝑘 ∈ ℤ
(∀𝑚 ∈ 𝑦 𝑚 ∥ 𝑘 → (lcm‘𝑦) ∥ 𝑘) ∧ ∀𝑛 ∈ ℤ (lcm‘(𝑦 ∪ {𝑛})) = ((lcm‘𝑦) lcm 𝑛)))) |
| 9 | 1, 8 | nfan 1899 |
. 2
⊢
Ⅎ𝑘((0 ∉
𝑦 ∧ 𝑧 ≠ 0 ∧ 𝑛 ≠ 0) ∧ (𝑛 ∈ ℤ ∧ ((𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin) ∧ (∀𝑘 ∈ ℤ (∀𝑚 ∈ 𝑦 𝑚 ∥ 𝑘 → (lcm‘𝑦) ∥ 𝑘) ∧ ∀𝑛 ∈ ℤ (lcm‘(𝑦 ∪ {𝑛})) = ((lcm‘𝑦) lcm 𝑛))))) |
| 10 | | simprr 773 |
. . . . . . . . . . . 12
⊢ ((((0
∉ 𝑦 ∧ 𝑧 ≠ 0 ∧ 𝑛 ≠ 0) ∧ (𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin)) ∧ (𝑛 ∈ ℤ ∧ 𝑘 ∈ ℕ)) → 𝑘 ∈ ℕ) |
| 11 | | simp2 1138 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin) → 𝑦 ⊆
ℤ) |
| 12 | | snssi 4808 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑧 ∈ ℤ → {𝑧} ⊆
ℤ) |
| 13 | 12 | 3ad2ant1 1134 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin) → {𝑧} ⊆
ℤ) |
| 14 | 11, 13 | unssd 4192 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin) → (𝑦 ∪ {𝑧}) ⊆ ℤ) |
| 15 | | simp3 1139 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin) → 𝑦 ∈ Fin) |
| 16 | | snfi 9083 |
. . . . . . . . . . . . . . . . . 18
⊢ {𝑧} ∈ Fin |
| 17 | | unfi 9211 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝑦 ∈ Fin ∧ {𝑧} ∈ Fin) → (𝑦 ∪ {𝑧}) ∈ Fin) |
| 18 | 15, 16, 17 | sylancl 586 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin) → (𝑦 ∪ {𝑧}) ∈ Fin) |
| 19 | 14, 18 | jca 511 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin) → ((𝑦 ∪ {𝑧}) ⊆ ℤ ∧ (𝑦 ∪ {𝑧}) ∈ Fin)) |
| 20 | | lcmfcl 16665 |
. . . . . . . . . . . . . . . 16
⊢ (((𝑦 ∪ {𝑧}) ⊆ ℤ ∧ (𝑦 ∪ {𝑧}) ∈ Fin) →
(lcm‘(𝑦 ∪
{𝑧})) ∈
ℕ0) |
| 21 | 19, 20 | syl 17 |
. . . . . . . . . . . . . . 15
⊢ ((𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin) →
(lcm‘(𝑦 ∪
{𝑧})) ∈
ℕ0) |
| 22 | 21 | nn0zd 12639 |
. . . . . . . . . . . . . 14
⊢ ((𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin) →
(lcm‘(𝑦 ∪
{𝑧})) ∈
ℤ) |
| 23 | 22 | adantl 481 |
. . . . . . . . . . . . 13
⊢ (((0
∉ 𝑦 ∧ 𝑧 ≠ 0 ∧ 𝑛 ≠ 0) ∧ (𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin)) → (lcm‘(𝑦 ∪ {𝑧})) ∈ ℤ) |
| 24 | 23 | adantr 480 |
. . . . . . . . . . . 12
⊢ ((((0
∉ 𝑦 ∧ 𝑧 ≠ 0 ∧ 𝑛 ≠ 0) ∧ (𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin)) ∧ (𝑛 ∈ ℤ ∧ 𝑘 ∈ ℕ)) →
(lcm‘(𝑦 ∪
{𝑧})) ∈
ℤ) |
| 25 | | simprl 771 |
. . . . . . . . . . . 12
⊢ ((((0
∉ 𝑦 ∧ 𝑧 ≠ 0 ∧ 𝑛 ≠ 0) ∧ (𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin)) ∧ (𝑛 ∈ ℤ ∧ 𝑘 ∈ ℕ)) → 𝑛 ∈ ℤ) |
| 26 | 10, 24, 25 | 3jca 1129 |
. . . . . . . . . . 11
⊢ ((((0
∉ 𝑦 ∧ 𝑧 ≠ 0 ∧ 𝑛 ≠ 0) ∧ (𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin)) ∧ (𝑛 ∈ ℤ ∧ 𝑘 ∈ ℕ)) → (𝑘 ∈ ℕ ∧
(lcm‘(𝑦 ∪
{𝑧})) ∈ ℤ ∧
𝑛 ∈
ℤ)) |
| 27 | 14 | adantl 481 |
. . . . . . . . . . . . . . . . . 18
⊢ (((0
∉ 𝑦 ∧ 𝑧 ≠ 0 ∧ 𝑛 ≠ 0) ∧ (𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin)) → (𝑦 ∪ {𝑧}) ⊆ ℤ) |
| 28 | 18 | adantl 481 |
. . . . . . . . . . . . . . . . . 18
⊢ (((0
∉ 𝑦 ∧ 𝑧 ≠ 0 ∧ 𝑛 ≠ 0) ∧ (𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin)) → (𝑦 ∪ {𝑧}) ∈ Fin) |
| 29 | | df-nel 3047 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (0
∉ 𝑦 ↔ ¬ 0
∈ 𝑦) |
| 30 | 29 | biimpi 216 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (0
∉ 𝑦 → ¬ 0
∈ 𝑦) |
| 31 | | elsni 4643 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (0 ∈
{𝑧} → 0 = 𝑧) |
| 32 | 31 | eqcomd 2743 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (0 ∈
{𝑧} → 𝑧 = 0) |
| 33 | 32 | necon3ai 2965 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝑧 ≠ 0 → ¬ 0 ∈
{𝑧}) |
| 34 | 30, 33 | anim12i 613 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((0
∉ 𝑦 ∧ 𝑧 ≠ 0) → (¬ 0 ∈
𝑦 ∧ ¬ 0 ∈
{𝑧})) |
| 35 | 34 | 3adant3 1133 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((0
∉ 𝑦 ∧ 𝑧 ≠ 0 ∧ 𝑛 ≠ 0) → (¬ 0 ∈ 𝑦 ∧ ¬ 0 ∈ {𝑧})) |
| 36 | | df-nel 3047 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (0
∉ (𝑦 ∪ {𝑧}) ↔ ¬ 0 ∈ (𝑦 ∪ {𝑧})) |
| 37 | | ioran 986 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (¬ (0
∈ 𝑦 ∨ 0 ∈
{𝑧}) ↔ (¬ 0 ∈
𝑦 ∧ ¬ 0 ∈
{𝑧})) |
| 38 | | elun 4153 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (0 ∈
(𝑦 ∪ {𝑧}) ↔ (0 ∈ 𝑦 ∨ 0 ∈ {𝑧})) |
| 39 | 37, 38 | xchnxbir 333 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (¬ 0
∈ (𝑦 ∪ {𝑧}) ↔ (¬ 0 ∈ 𝑦 ∧ ¬ 0 ∈ {𝑧})) |
| 40 | 36, 39 | bitri 275 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (0
∉ (𝑦 ∪ {𝑧}) ↔ (¬ 0 ∈ 𝑦 ∧ ¬ 0 ∈ {𝑧})) |
| 41 | 35, 40 | sylibr 234 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((0
∉ 𝑦 ∧ 𝑧 ≠ 0 ∧ 𝑛 ≠ 0) → 0 ∉ (𝑦 ∪ {𝑧})) |
| 42 | 41 | adantr 480 |
. . . . . . . . . . . . . . . . . 18
⊢ (((0
∉ 𝑦 ∧ 𝑧 ≠ 0 ∧ 𝑛 ≠ 0) ∧ (𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin)) → 0 ∉ (𝑦 ∪ {𝑧})) |
| 43 | 27, 28, 42 | 3jca 1129 |
. . . . . . . . . . . . . . . . 17
⊢ (((0
∉ 𝑦 ∧ 𝑧 ≠ 0 ∧ 𝑛 ≠ 0) ∧ (𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin)) → ((𝑦 ∪ {𝑧}) ⊆ ℤ ∧ (𝑦 ∪ {𝑧}) ∈ Fin ∧ 0 ∉ (𝑦 ∪ {𝑧}))) |
| 44 | 43 | adantr 480 |
. . . . . . . . . . . . . . . 16
⊢ ((((0
∉ 𝑦 ∧ 𝑧 ≠ 0 ∧ 𝑛 ≠ 0) ∧ (𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin)) ∧ (𝑛 ∈ ℤ ∧ 𝑘 ∈ ℕ)) → ((𝑦 ∪ {𝑧}) ⊆ ℤ ∧ (𝑦 ∪ {𝑧}) ∈ Fin ∧ 0 ∉ (𝑦 ∪ {𝑧}))) |
| 45 | | lcmfn0cl 16663 |
. . . . . . . . . . . . . . . 16
⊢ (((𝑦 ∪ {𝑧}) ⊆ ℤ ∧ (𝑦 ∪ {𝑧}) ∈ Fin ∧ 0 ∉ (𝑦 ∪ {𝑧})) → (lcm‘(𝑦 ∪ {𝑧})) ∈ ℕ) |
| 46 | 44, 45 | syl 17 |
. . . . . . . . . . . . . . 15
⊢ ((((0
∉ 𝑦 ∧ 𝑧 ≠ 0 ∧ 𝑛 ≠ 0) ∧ (𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin)) ∧ (𝑛 ∈ ℤ ∧ 𝑘 ∈ ℕ)) →
(lcm‘(𝑦 ∪
{𝑧})) ∈
ℕ) |
| 47 | 46 | nnne0d 12316 |
. . . . . . . . . . . . . 14
⊢ ((((0
∉ 𝑦 ∧ 𝑧 ≠ 0 ∧ 𝑛 ≠ 0) ∧ (𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin)) ∧ (𝑛 ∈ ℤ ∧ 𝑘 ∈ ℕ)) →
(lcm‘(𝑦 ∪
{𝑧})) ≠
0) |
| 48 | 47 | neneqd 2945 |
. . . . . . . . . . . . 13
⊢ ((((0
∉ 𝑦 ∧ 𝑧 ≠ 0 ∧ 𝑛 ≠ 0) ∧ (𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin)) ∧ (𝑛 ∈ ℤ ∧ 𝑘 ∈ ℕ)) → ¬
(lcm‘(𝑦 ∪
{𝑧})) = 0) |
| 49 | | neneq 2946 |
. . . . . . . . . . . . . . 15
⊢ (𝑛 ≠ 0 → ¬ 𝑛 = 0) |
| 50 | 49 | 3ad2ant3 1136 |
. . . . . . . . . . . . . 14
⊢ ((0
∉ 𝑦 ∧ 𝑧 ≠ 0 ∧ 𝑛 ≠ 0) → ¬ 𝑛 = 0) |
| 51 | 50 | ad2antrr 726 |
. . . . . . . . . . . . 13
⊢ ((((0
∉ 𝑦 ∧ 𝑧 ≠ 0 ∧ 𝑛 ≠ 0) ∧ (𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin)) ∧ (𝑛 ∈ ℤ ∧ 𝑘 ∈ ℕ)) → ¬ 𝑛 = 0) |
| 52 | 48, 51 | jca 511 |
. . . . . . . . . . . 12
⊢ ((((0
∉ 𝑦 ∧ 𝑧 ≠ 0 ∧ 𝑛 ≠ 0) ∧ (𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin)) ∧ (𝑛 ∈ ℤ ∧ 𝑘 ∈ ℕ)) → (¬
(lcm‘(𝑦 ∪
{𝑧})) = 0 ∧ ¬ 𝑛 = 0)) |
| 53 | | ioran 986 |
. . . . . . . . . . . 12
⊢ (¬
((lcm‘(𝑦 ∪
{𝑧})) = 0 ∨ 𝑛 = 0) ↔ (¬
(lcm‘(𝑦 ∪
{𝑧})) = 0 ∧ ¬ 𝑛 = 0)) |
| 54 | 52, 53 | sylibr 234 |
. . . . . . . . . . 11
⊢ ((((0
∉ 𝑦 ∧ 𝑧 ≠ 0 ∧ 𝑛 ≠ 0) ∧ (𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin)) ∧ (𝑛 ∈ ℤ ∧ 𝑘 ∈ ℕ)) → ¬
((lcm‘(𝑦 ∪
{𝑧})) = 0 ∨ 𝑛 = 0)) |
| 55 | 26, 54 | jca 511 |
. . . . . . . . . 10
⊢ ((((0
∉ 𝑦 ∧ 𝑧 ≠ 0 ∧ 𝑛 ≠ 0) ∧ (𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin)) ∧ (𝑛 ∈ ℤ ∧ 𝑘 ∈ ℕ)) → ((𝑘 ∈ ℕ ∧
(lcm‘(𝑦 ∪
{𝑧})) ∈ ℤ ∧
𝑛 ∈ ℤ) ∧
¬ ((lcm‘(𝑦
∪ {𝑧})) = 0 ∨ 𝑛 = 0))) |
| 56 | 55 | exp43 436 |
. . . . . . . . 9
⊢ ((0
∉ 𝑦 ∧ 𝑧 ≠ 0 ∧ 𝑛 ≠ 0) → ((𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin) → (𝑛 ∈ ℤ → (𝑘 ∈ ℕ → ((𝑘 ∈ ℕ ∧
(lcm‘(𝑦 ∪
{𝑧})) ∈ ℤ ∧
𝑛 ∈ ℤ) ∧
¬ ((lcm‘(𝑦
∪ {𝑧})) = 0 ∨ 𝑛 = 0)))))) |
| 57 | 56 | adantrd 491 |
. . . . . . . 8
⊢ ((0
∉ 𝑦 ∧ 𝑧 ≠ 0 ∧ 𝑛 ≠ 0) → (((𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin) ∧ (∀𝑘 ∈ ℤ (∀𝑚 ∈ 𝑦 𝑚 ∥ 𝑘 → (lcm‘𝑦) ∥ 𝑘) ∧ ∀𝑛 ∈ ℤ (lcm‘(𝑦 ∪ {𝑛})) = ((lcm‘𝑦) lcm 𝑛))) → (𝑛 ∈ ℤ → (𝑘 ∈ ℕ → ((𝑘 ∈ ℕ ∧
(lcm‘(𝑦 ∪
{𝑧})) ∈ ℤ ∧
𝑛 ∈ ℤ) ∧
¬ ((lcm‘(𝑦
∪ {𝑧})) = 0 ∨ 𝑛 = 0)))))) |
| 58 | 57 | com23 86 |
. . . . . . 7
⊢ ((0
∉ 𝑦 ∧ 𝑧 ≠ 0 ∧ 𝑛 ≠ 0) → (𝑛 ∈ ℤ → (((𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin) ∧ (∀𝑘 ∈ ℤ (∀𝑚 ∈ 𝑦 𝑚 ∥ 𝑘 → (lcm‘𝑦) ∥ 𝑘) ∧ ∀𝑛 ∈ ℤ (lcm‘(𝑦 ∪ {𝑛})) = ((lcm‘𝑦) lcm 𝑛))) → (𝑘 ∈ ℕ → ((𝑘 ∈ ℕ ∧
(lcm‘(𝑦 ∪
{𝑧})) ∈ ℤ ∧
𝑛 ∈ ℤ) ∧
¬ ((lcm‘(𝑦
∪ {𝑧})) = 0 ∨ 𝑛 = 0)))))) |
| 59 | 58 | imp32 418 |
. . . . . 6
⊢ (((0
∉ 𝑦 ∧ 𝑧 ≠ 0 ∧ 𝑛 ≠ 0) ∧ (𝑛 ∈ ℤ ∧ ((𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin) ∧ (∀𝑘 ∈ ℤ (∀𝑚 ∈ 𝑦 𝑚 ∥ 𝑘 → (lcm‘𝑦) ∥ 𝑘) ∧ ∀𝑛 ∈ ℤ (lcm‘(𝑦 ∪ {𝑛})) = ((lcm‘𝑦) lcm 𝑛))))) → (𝑘 ∈ ℕ → ((𝑘 ∈ ℕ ∧
(lcm‘(𝑦 ∪
{𝑧})) ∈ ℤ ∧
𝑛 ∈ ℤ) ∧
¬ ((lcm‘(𝑦
∪ {𝑧})) = 0 ∨ 𝑛 = 0)))) |
| 60 | 59 | imp 406 |
. . . . 5
⊢ ((((0
∉ 𝑦 ∧ 𝑧 ≠ 0 ∧ 𝑛 ≠ 0) ∧ (𝑛 ∈ ℤ ∧ ((𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin) ∧ (∀𝑘 ∈ ℤ (∀𝑚 ∈ 𝑦 𝑚 ∥ 𝑘 → (lcm‘𝑦) ∥ 𝑘) ∧ ∀𝑛 ∈ ℤ (lcm‘(𝑦 ∪ {𝑛})) = ((lcm‘𝑦) lcm 𝑛))))) ∧ 𝑘 ∈ ℕ) → ((𝑘 ∈ ℕ ∧
(lcm‘(𝑦 ∪
{𝑧})) ∈ ℤ ∧
𝑛 ∈ ℤ) ∧
¬ ((lcm‘(𝑦
∪ {𝑧})) = 0 ∨ 𝑛 = 0))) |
| 61 | 60 | adantr 480 |
. . . 4
⊢ (((((0
∉ 𝑦 ∧ 𝑧 ≠ 0 ∧ 𝑛 ≠ 0) ∧ (𝑛 ∈ ℤ ∧ ((𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin) ∧ (∀𝑘 ∈ ℤ (∀𝑚 ∈ 𝑦 𝑚 ∥ 𝑘 → (lcm‘𝑦) ∥ 𝑘) ∧ ∀𝑛 ∈ ℤ (lcm‘(𝑦 ∪ {𝑛})) = ((lcm‘𝑦) lcm 𝑛))))) ∧ 𝑘 ∈ ℕ) ∧ ∀𝑖 ∈ ((𝑦 ∪ {𝑧}) ∪ {𝑛})𝑖 ∥ 𝑘) → ((𝑘 ∈ ℕ ∧
(lcm‘(𝑦 ∪
{𝑧})) ∈ ℤ ∧
𝑛 ∈ ℤ) ∧
¬ ((lcm‘(𝑦
∪ {𝑧})) = 0 ∨ 𝑛 = 0))) |
| 62 | | sneq 4636 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝑛 = 𝑧 → {𝑛} = {𝑧}) |
| 63 | 62 | uneq2d 4168 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑛 = 𝑧 → (𝑦 ∪ {𝑛}) = (𝑦 ∪ {𝑧})) |
| 64 | 63 | fveq2d 6910 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑛 = 𝑧 → (lcm‘(𝑦 ∪ {𝑛})) = (lcm‘(𝑦 ∪ {𝑧}))) |
| 65 | | oveq2 7439 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑛 = 𝑧 → ((lcm‘𝑦) lcm 𝑛) = ((lcm‘𝑦) lcm 𝑧)) |
| 66 | 64, 65 | eqeq12d 2753 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑛 = 𝑧 → ((lcm‘(𝑦 ∪ {𝑛})) = ((lcm‘𝑦) lcm 𝑛) ↔ (lcm‘(𝑦 ∪ {𝑧})) = ((lcm‘𝑦) lcm 𝑧))) |
| 67 | 66 | rspcv 3618 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑧 ∈ ℤ →
(∀𝑛 ∈ ℤ
(lcm‘(𝑦 ∪
{𝑛})) =
((lcm‘𝑦) lcm
𝑛) →
(lcm‘(𝑦 ∪
{𝑧})) =
((lcm‘𝑦) lcm
𝑧))) |
| 68 | 67 | 3ad2ant1 1134 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin) →
(∀𝑛 ∈ ℤ
(lcm‘(𝑦 ∪
{𝑛})) =
((lcm‘𝑦) lcm
𝑛) →
(lcm‘(𝑦 ∪
{𝑧})) =
((lcm‘𝑦) lcm
𝑧))) |
| 69 | | nnz 12634 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ (𝑘 ∈ ℕ → 𝑘 ∈
ℤ) |
| 70 | 69 | adantl 481 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ ((𝑛 ∈ ℤ ∧ 𝑘 ∈ ℕ) → 𝑘 ∈
ℤ) |
| 71 | 70 | adantl 481 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ ((((𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin) ∧ ∀𝑘 ∈ ℤ (∀𝑚 ∈ 𝑦 𝑚 ∥ 𝑘 → (lcm‘𝑦) ∥ 𝑘)) ∧ (𝑛 ∈ ℤ ∧ 𝑘 ∈ ℕ)) → 𝑘 ∈ ℤ) |
| 72 | | lcmfcl 16665 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ ((𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin) →
(lcm‘𝑦) ∈
ℕ0) |
| 73 | 72 | nn0zd 12639 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ ((𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin) →
(lcm‘𝑦) ∈
ℤ) |
| 74 | 73 | 3adant1 1131 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ ((𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin) →
(lcm‘𝑦) ∈
ℤ) |
| 75 | 74 | ad2antrr 726 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ ((((𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin) ∧ ∀𝑘 ∈ ℤ (∀𝑚 ∈ 𝑦 𝑚 ∥ 𝑘 → (lcm‘𝑦) ∥ 𝑘)) ∧ (𝑛 ∈ ℤ ∧ 𝑘 ∈ ℕ)) →
(lcm‘𝑦) ∈
ℤ) |
| 76 | | simpll1 1213 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ ((((𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin) ∧ ∀𝑘 ∈ ℤ (∀𝑚 ∈ 𝑦 𝑚 ∥ 𝑘 → (lcm‘𝑦) ∥ 𝑘)) ∧ (𝑛 ∈ ℤ ∧ 𝑘 ∈ ℕ)) → 𝑧 ∈ ℤ) |
| 77 | 71, 75, 76 | 3jca 1129 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((((𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin) ∧ ∀𝑘 ∈ ℤ (∀𝑚 ∈ 𝑦 𝑚 ∥ 𝑘 → (lcm‘𝑦) ∥ 𝑘)) ∧ (𝑛 ∈ ℤ ∧ 𝑘 ∈ ℕ)) → (𝑘 ∈ ℤ ∧ (lcm‘𝑦) ∈ ℤ ∧ 𝑧 ∈
ℤ)) |
| 78 | 77 | ad2antrr 726 |
. . . . . . . . . . . . . . . . . . . . 21
⊢
((((((𝑧 ∈
ℤ ∧ 𝑦 ⊆
ℤ ∧ 𝑦 ∈ Fin)
∧ ∀𝑘 ∈
ℤ (∀𝑚 ∈
𝑦 𝑚 ∥ 𝑘 → (lcm‘𝑦) ∥ 𝑘)) ∧ (𝑛 ∈ ℤ ∧ 𝑘 ∈ ℕ)) ∧ (0 ∉ 𝑦 ∧ 𝑧 ≠ 0 ∧ 𝑛 ≠ 0)) ∧ ∀𝑖 ∈ ((𝑦 ∪ {𝑧}) ∪ {𝑛})𝑖 ∥ 𝑘) → (𝑘 ∈ ℤ ∧ (lcm‘𝑦) ∈ ℤ ∧ 𝑧 ∈
ℤ)) |
| 79 | | elun1 4182 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. 35
⊢ (𝑚 ∈ 𝑦 → 𝑚 ∈ (𝑦 ∪ {𝑧})) |
| 80 | 79 | orcd 874 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
34
⊢ (𝑚 ∈ 𝑦 → (𝑚 ∈ (𝑦 ∪ {𝑧}) ∨ 𝑚 ∈ {𝑛})) |
| 81 | | elun 4153 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
34
⊢ (𝑚 ∈ ((𝑦 ∪ {𝑧}) ∪ {𝑛}) ↔ (𝑚 ∈ (𝑦 ∪ {𝑧}) ∨ 𝑚 ∈ {𝑛})) |
| 82 | 80, 81 | sylibr 234 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
33
⊢ (𝑚 ∈ 𝑦 → 𝑚 ∈ ((𝑦 ∪ {𝑧}) ∪ {𝑛})) |
| 83 | | breq1 5146 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
34
⊢ (𝑖 = 𝑚 → (𝑖 ∥ 𝑘 ↔ 𝑚 ∥ 𝑘)) |
| 84 | 83 | rspcv 3618 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
33
⊢ (𝑚 ∈ ((𝑦 ∪ {𝑧}) ∪ {𝑛}) → (∀𝑖 ∈ ((𝑦 ∪ {𝑧}) ∪ {𝑛})𝑖 ∥ 𝑘 → 𝑚 ∥ 𝑘)) |
| 85 | 82, 84 | syl 17 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
32
⊢ (𝑚 ∈ 𝑦 → (∀𝑖 ∈ ((𝑦 ∪ {𝑧}) ∪ {𝑛})𝑖 ∥ 𝑘 → 𝑚 ∥ 𝑘)) |
| 86 | 85 | com12 32 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
31
⊢
(∀𝑖 ∈
((𝑦 ∪ {𝑧}) ∪ {𝑛})𝑖 ∥ 𝑘 → (𝑚 ∈ 𝑦 → 𝑚 ∥ 𝑘)) |
| 87 | 86 | adantl 481 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . .
30
⊢ (((𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin) ∧ ∀𝑖 ∈ ((𝑦 ∪ {𝑧}) ∪ {𝑛})𝑖 ∥ 𝑘) → (𝑚 ∈ 𝑦 → 𝑚 ∥ 𝑘)) |
| 88 | 87 | ralrimiv 3145 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
⊢ (((𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin) ∧ ∀𝑖 ∈ ((𝑦 ∪ {𝑧}) ∪ {𝑛})𝑖 ∥ 𝑘) → ∀𝑚 ∈ 𝑦 𝑚 ∥ 𝑘) |
| 89 | 88 | adantr 480 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢ ((((𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin) ∧ ∀𝑖 ∈ ((𝑦 ∪ {𝑧}) ∪ {𝑛})𝑖 ∥ 𝑘) ∧ ((𝑛 ∈ ℤ ∧ 𝑘 ∈ ℕ) ∧ (0 ∉ 𝑦 ∧ 𝑧 ≠ 0 ∧ 𝑛 ≠ 0))) → ∀𝑚 ∈ 𝑦 𝑚 ∥ 𝑘) |
| 90 | | breq2 5147 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
32
⊢ (𝑘 = 𝑙 → (𝑚 ∥ 𝑘 ↔ 𝑚 ∥ 𝑙)) |
| 91 | 90 | ralbidv 3178 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
31
⊢ (𝑘 = 𝑙 → (∀𝑚 ∈ 𝑦 𝑚 ∥ 𝑘 ↔ ∀𝑚 ∈ 𝑦 𝑚 ∥ 𝑙)) |
| 92 | | breq2 5147 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
31
⊢ (𝑘 = 𝑙 → ((lcm‘𝑦) ∥ 𝑘 ↔ (lcm‘𝑦) ∥ 𝑙)) |
| 93 | 91, 92 | imbi12d 344 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . .
30
⊢ (𝑘 = 𝑙 → ((∀𝑚 ∈ 𝑦 𝑚 ∥ 𝑘 → (lcm‘𝑦) ∥ 𝑘) ↔ (∀𝑚 ∈ 𝑦 𝑚 ∥ 𝑙 → (lcm‘𝑦) ∥ 𝑙))) |
| 94 | 93 | cbvralvw 3237 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
⊢
(∀𝑘 ∈
ℤ (∀𝑚 ∈
𝑦 𝑚 ∥ 𝑘 → (lcm‘𝑦) ∥ 𝑘) ↔ ∀𝑙 ∈ ℤ (∀𝑚 ∈ 𝑦 𝑚 ∥ 𝑙 → (lcm‘𝑦) ∥ 𝑙)) |
| 95 | 70 | adantr 480 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
31
⊢ (((𝑛 ∈ ℤ ∧ 𝑘 ∈ ℕ) ∧ (0
∉ 𝑦 ∧ 𝑧 ≠ 0 ∧ 𝑛 ≠ 0)) → 𝑘 ∈ ℤ) |
| 96 | 95 | adantl 481 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . .
30
⊢ ((((𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin) ∧ ∀𝑖 ∈ ((𝑦 ∪ {𝑧}) ∪ {𝑛})𝑖 ∥ 𝑘) ∧ ((𝑛 ∈ ℤ ∧ 𝑘 ∈ ℕ) ∧ (0 ∉ 𝑦 ∧ 𝑧 ≠ 0 ∧ 𝑛 ≠ 0))) → 𝑘 ∈ ℤ) |
| 97 | | breq2 5147 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
33
⊢ (𝑙 = 𝑘 → (𝑚 ∥ 𝑙 ↔ 𝑚 ∥ 𝑘)) |
| 98 | 97 | ralbidv 3178 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
32
⊢ (𝑙 = 𝑘 → (∀𝑚 ∈ 𝑦 𝑚 ∥ 𝑙 ↔ ∀𝑚 ∈ 𝑦 𝑚 ∥ 𝑘)) |
| 99 | | breq2 5147 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
32
⊢ (𝑙 = 𝑘 → ((lcm‘𝑦) ∥ 𝑙 ↔ (lcm‘𝑦) ∥ 𝑘)) |
| 100 | 98, 99 | imbi12d 344 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
31
⊢ (𝑙 = 𝑘 → ((∀𝑚 ∈ 𝑦 𝑚 ∥ 𝑙 → (lcm‘𝑦) ∥ 𝑙) ↔ (∀𝑚 ∈ 𝑦 𝑚 ∥ 𝑘 → (lcm‘𝑦) ∥ 𝑘))) |
| 101 | 100 | rspcv 3618 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . .
30
⊢ (𝑘 ∈ ℤ →
(∀𝑙 ∈ ℤ
(∀𝑚 ∈ 𝑦 𝑚 ∥ 𝑙 → (lcm‘𝑦) ∥ 𝑙) → (∀𝑚 ∈ 𝑦 𝑚 ∥ 𝑘 → (lcm‘𝑦) ∥ 𝑘))) |
| 102 | 96, 101 | syl 17 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
⊢ ((((𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin) ∧ ∀𝑖 ∈ ((𝑦 ∪ {𝑧}) ∪ {𝑛})𝑖 ∥ 𝑘) ∧ ((𝑛 ∈ ℤ ∧ 𝑘 ∈ ℕ) ∧ (0 ∉ 𝑦 ∧ 𝑧 ≠ 0 ∧ 𝑛 ≠ 0))) → (∀𝑙 ∈ ℤ (∀𝑚 ∈ 𝑦 𝑚 ∥ 𝑙 → (lcm‘𝑦) ∥ 𝑙) → (∀𝑚 ∈ 𝑦 𝑚 ∥ 𝑘 → (lcm‘𝑦) ∥ 𝑘))) |
| 103 | 94, 102 | biimtrid 242 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢ ((((𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin) ∧ ∀𝑖 ∈ ((𝑦 ∪ {𝑧}) ∪ {𝑛})𝑖 ∥ 𝑘) ∧ ((𝑛 ∈ ℤ ∧ 𝑘 ∈ ℕ) ∧ (0 ∉ 𝑦 ∧ 𝑧 ≠ 0 ∧ 𝑛 ≠ 0))) → (∀𝑘 ∈ ℤ (∀𝑚 ∈ 𝑦 𝑚 ∥ 𝑘 → (lcm‘𝑦) ∥ 𝑘) → (∀𝑚 ∈ 𝑦 𝑚 ∥ 𝑘 → (lcm‘𝑦) ∥ 𝑘))) |
| 104 | 89, 103 | mpid 44 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ ((((𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin) ∧ ∀𝑖 ∈ ((𝑦 ∪ {𝑧}) ∪ {𝑛})𝑖 ∥ 𝑘) ∧ ((𝑛 ∈ ℤ ∧ 𝑘 ∈ ℕ) ∧ (0 ∉ 𝑦 ∧ 𝑧 ≠ 0 ∧ 𝑛 ≠ 0))) → (∀𝑘 ∈ ℤ (∀𝑚 ∈ 𝑦 𝑚 ∥ 𝑘 → (lcm‘𝑦) ∥ 𝑘) → (lcm‘𝑦) ∥ 𝑘)) |
| 105 | 104 | exp31 419 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ ((𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin) →
(∀𝑖 ∈ ((𝑦 ∪ {𝑧}) ∪ {𝑛})𝑖 ∥ 𝑘 → (((𝑛 ∈ ℤ ∧ 𝑘 ∈ ℕ) ∧ (0 ∉ 𝑦 ∧ 𝑧 ≠ 0 ∧ 𝑛 ≠ 0)) → (∀𝑘 ∈ ℤ (∀𝑚 ∈ 𝑦 𝑚 ∥ 𝑘 → (lcm‘𝑦) ∥ 𝑘) → (lcm‘𝑦) ∥ 𝑘)))) |
| 106 | 105 | com24 95 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ ((𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin) →
(∀𝑘 ∈ ℤ
(∀𝑚 ∈ 𝑦 𝑚 ∥ 𝑘 → (lcm‘𝑦) ∥ 𝑘) → (((𝑛 ∈ ℤ ∧ 𝑘 ∈ ℕ) ∧ (0 ∉ 𝑦 ∧ 𝑧 ≠ 0 ∧ 𝑛 ≠ 0)) → (∀𝑖 ∈ ((𝑦 ∪ {𝑧}) ∪ {𝑛})𝑖 ∥ 𝑘 → (lcm‘𝑦) ∥ 𝑘)))) |
| 107 | 106 | imp 406 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (((𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin) ∧ ∀𝑘 ∈ ℤ (∀𝑚 ∈ 𝑦 𝑚 ∥ 𝑘 → (lcm‘𝑦) ∥ 𝑘)) → (((𝑛 ∈ ℤ ∧ 𝑘 ∈ ℕ) ∧ (0 ∉ 𝑦 ∧ 𝑧 ≠ 0 ∧ 𝑛 ≠ 0)) → (∀𝑖 ∈ ((𝑦 ∪ {𝑧}) ∪ {𝑛})𝑖 ∥ 𝑘 → (lcm‘𝑦) ∥ 𝑘))) |
| 108 | 107 | impl 455 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢
(((((𝑧 ∈
ℤ ∧ 𝑦 ⊆
ℤ ∧ 𝑦 ∈ Fin)
∧ ∀𝑘 ∈
ℤ (∀𝑚 ∈
𝑦 𝑚 ∥ 𝑘 → (lcm‘𝑦) ∥ 𝑘)) ∧ (𝑛 ∈ ℤ ∧ 𝑘 ∈ ℕ)) ∧ (0 ∉ 𝑦 ∧ 𝑧 ≠ 0 ∧ 𝑛 ≠ 0)) → (∀𝑖 ∈ ((𝑦 ∪ {𝑧}) ∪ {𝑛})𝑖 ∥ 𝑘 → (lcm‘𝑦) ∥ 𝑘)) |
| 109 | 108 | imp 406 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢
((((((𝑧 ∈
ℤ ∧ 𝑦 ⊆
ℤ ∧ 𝑦 ∈ Fin)
∧ ∀𝑘 ∈
ℤ (∀𝑚 ∈
𝑦 𝑚 ∥ 𝑘 → (lcm‘𝑦) ∥ 𝑘)) ∧ (𝑛 ∈ ℤ ∧ 𝑘 ∈ ℕ)) ∧ (0 ∉ 𝑦 ∧ 𝑧 ≠ 0 ∧ 𝑛 ≠ 0)) ∧ ∀𝑖 ∈ ((𝑦 ∪ {𝑧}) ∪ {𝑛})𝑖 ∥ 𝑘) → (lcm‘𝑦) ∥ 𝑘) |
| 110 | | vsnid 4663 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢ 𝑧 ∈ {𝑧} |
| 111 | 110 | olci 867 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ (𝑧 ∈ 𝑦 ∨ 𝑧 ∈ {𝑧}) |
| 112 | | elun 4153 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ (𝑧 ∈ (𝑦 ∪ {𝑧}) ↔ (𝑧 ∈ 𝑦 ∨ 𝑧 ∈ {𝑧})) |
| 113 | 111, 112 | mpbir 231 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ 𝑧 ∈ (𝑦 ∪ {𝑧}) |
| 114 | 113 | orci 866 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ (𝑧 ∈ (𝑦 ∪ {𝑧}) ∨ 𝑧 ∈ {𝑛}) |
| 115 | | elun 4153 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ (𝑧 ∈ ((𝑦 ∪ {𝑧}) ∪ {𝑛}) ↔ (𝑧 ∈ (𝑦 ∪ {𝑧}) ∨ 𝑧 ∈ {𝑛})) |
| 116 | 114, 115 | mpbir 231 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ 𝑧 ∈ ((𝑦 ∪ {𝑧}) ∪ {𝑛}) |
| 117 | | breq1 5146 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ (𝑖 = 𝑧 → (𝑖 ∥ 𝑘 ↔ 𝑧 ∥ 𝑘)) |
| 118 | 117 | rspcv 3618 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (𝑧 ∈ ((𝑦 ∪ {𝑧}) ∪ {𝑛}) → (∀𝑖 ∈ ((𝑦 ∪ {𝑧}) ∪ {𝑛})𝑖 ∥ 𝑘 → 𝑧 ∥ 𝑘)) |
| 119 | 116, 118 | mp1i 13 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢
(((((𝑧 ∈
ℤ ∧ 𝑦 ⊆
ℤ ∧ 𝑦 ∈ Fin)
∧ ∀𝑘 ∈
ℤ (∀𝑚 ∈
𝑦 𝑚 ∥ 𝑘 → (lcm‘𝑦) ∥ 𝑘)) ∧ (𝑛 ∈ ℤ ∧ 𝑘 ∈ ℕ)) ∧ (0 ∉ 𝑦 ∧ 𝑧 ≠ 0 ∧ 𝑛 ≠ 0)) → (∀𝑖 ∈ ((𝑦 ∪ {𝑧}) ∪ {𝑛})𝑖 ∥ 𝑘 → 𝑧 ∥ 𝑘)) |
| 120 | 119 | imp 406 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢
((((((𝑧 ∈
ℤ ∧ 𝑦 ⊆
ℤ ∧ 𝑦 ∈ Fin)
∧ ∀𝑘 ∈
ℤ (∀𝑚 ∈
𝑦 𝑚 ∥ 𝑘 → (lcm‘𝑦) ∥ 𝑘)) ∧ (𝑛 ∈ ℤ ∧ 𝑘 ∈ ℕ)) ∧ (0 ∉ 𝑦 ∧ 𝑧 ≠ 0 ∧ 𝑛 ≠ 0)) ∧ ∀𝑖 ∈ ((𝑦 ∪ {𝑧}) ∪ {𝑛})𝑖 ∥ 𝑘) → 𝑧 ∥ 𝑘) |
| 121 | 109, 120 | jca 511 |
. . . . . . . . . . . . . . . . . . . . 21
⊢
((((((𝑧 ∈
ℤ ∧ 𝑦 ⊆
ℤ ∧ 𝑦 ∈ Fin)
∧ ∀𝑘 ∈
ℤ (∀𝑚 ∈
𝑦 𝑚 ∥ 𝑘 → (lcm‘𝑦) ∥ 𝑘)) ∧ (𝑛 ∈ ℤ ∧ 𝑘 ∈ ℕ)) ∧ (0 ∉ 𝑦 ∧ 𝑧 ≠ 0 ∧ 𝑛 ≠ 0)) ∧ ∀𝑖 ∈ ((𝑦 ∪ {𝑧}) ∪ {𝑛})𝑖 ∥ 𝑘) → ((lcm‘𝑦) ∥ 𝑘 ∧ 𝑧 ∥ 𝑘)) |
| 122 | | lcmdvds 16645 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((𝑘 ∈ ℤ ∧
(lcm‘𝑦) ∈
ℤ ∧ 𝑧 ∈
ℤ) → (((lcm‘𝑦) ∥ 𝑘 ∧ 𝑧 ∥ 𝑘) → ((lcm‘𝑦) lcm 𝑧) ∥ 𝑘)) |
| 123 | 78, 121, 122 | sylc 65 |
. . . . . . . . . . . . . . . . . . . 20
⊢
((((((𝑧 ∈
ℤ ∧ 𝑦 ⊆
ℤ ∧ 𝑦 ∈ Fin)
∧ ∀𝑘 ∈
ℤ (∀𝑚 ∈
𝑦 𝑚 ∥ 𝑘 → (lcm‘𝑦) ∥ 𝑘)) ∧ (𝑛 ∈ ℤ ∧ 𝑘 ∈ ℕ)) ∧ (0 ∉ 𝑦 ∧ 𝑧 ≠ 0 ∧ 𝑛 ≠ 0)) ∧ ∀𝑖 ∈ ((𝑦 ∪ {𝑧}) ∪ {𝑛})𝑖 ∥ 𝑘) → ((lcm‘𝑦) lcm 𝑧) ∥ 𝑘) |
| 124 | | breq1 5146 |
. . . . . . . . . . . . . . . . . . . 20
⊢
((lcm‘(𝑦 ∪ {𝑧})) = ((lcm‘𝑦) lcm 𝑧) → ((lcm‘(𝑦 ∪ {𝑧})) ∥ 𝑘 ↔ ((lcm‘𝑦) lcm 𝑧) ∥ 𝑘)) |
| 125 | 123, 124 | imbitrrid 246 |
. . . . . . . . . . . . . . . . . . 19
⊢
((lcm‘(𝑦 ∪ {𝑧})) = ((lcm‘𝑦) lcm 𝑧) → ((((((𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin) ∧ ∀𝑘 ∈ ℤ (∀𝑚 ∈ 𝑦 𝑚 ∥ 𝑘 → (lcm‘𝑦) ∥ 𝑘)) ∧ (𝑛 ∈ ℤ ∧ 𝑘 ∈ ℕ)) ∧ (0 ∉ 𝑦 ∧ 𝑧 ≠ 0 ∧ 𝑛 ≠ 0)) ∧ ∀𝑖 ∈ ((𝑦 ∪ {𝑧}) ∪ {𝑛})𝑖 ∥ 𝑘) → (lcm‘(𝑦 ∪ {𝑧})) ∥ 𝑘)) |
| 126 | 125 | expd 415 |
. . . . . . . . . . . . . . . . . 18
⊢
((lcm‘(𝑦 ∪ {𝑧})) = ((lcm‘𝑦) lcm 𝑧) → (((((𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin) ∧ ∀𝑘 ∈ ℤ (∀𝑚 ∈ 𝑦 𝑚 ∥ 𝑘 → (lcm‘𝑦) ∥ 𝑘)) ∧ (𝑛 ∈ ℤ ∧ 𝑘 ∈ ℕ)) ∧ (0 ∉ 𝑦 ∧ 𝑧 ≠ 0 ∧ 𝑛 ≠ 0)) → (∀𝑖 ∈ ((𝑦 ∪ {𝑧}) ∪ {𝑛})𝑖 ∥ 𝑘 → (lcm‘(𝑦 ∪ {𝑧})) ∥ 𝑘))) |
| 127 | 126 | exp5j 445 |
. . . . . . . . . . . . . . . . 17
⊢
((lcm‘(𝑦 ∪ {𝑧})) = ((lcm‘𝑦) lcm 𝑧) → ((𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin) → (∀𝑘 ∈ ℤ (∀𝑚 ∈ 𝑦 𝑚 ∥ 𝑘 → (lcm‘𝑦) ∥ 𝑘) → ((𝑛 ∈ ℤ ∧ 𝑘 ∈ ℕ) → ((0 ∉ 𝑦 ∧ 𝑧 ≠ 0 ∧ 𝑛 ≠ 0) → (∀𝑖 ∈ ((𝑦 ∪ {𝑧}) ∪ {𝑛})𝑖 ∥ 𝑘 → (lcm‘(𝑦 ∪ {𝑧})) ∥ 𝑘)))))) |
| 128 | 127 | com12 32 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin) →
((lcm‘(𝑦 ∪
{𝑧})) =
((lcm‘𝑦) lcm
𝑧) → (∀𝑘 ∈ ℤ (∀𝑚 ∈ 𝑦 𝑚 ∥ 𝑘 → (lcm‘𝑦) ∥ 𝑘) → ((𝑛 ∈ ℤ ∧ 𝑘 ∈ ℕ) → ((0 ∉ 𝑦 ∧ 𝑧 ≠ 0 ∧ 𝑛 ≠ 0) → (∀𝑖 ∈ ((𝑦 ∪ {𝑧}) ∪ {𝑛})𝑖 ∥ 𝑘 → (lcm‘(𝑦 ∪ {𝑧})) ∥ 𝑘)))))) |
| 129 | 68, 128 | syld 47 |
. . . . . . . . . . . . . . 15
⊢ ((𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin) →
(∀𝑛 ∈ ℤ
(lcm‘(𝑦 ∪
{𝑛})) =
((lcm‘𝑦) lcm
𝑛) → (∀𝑘 ∈ ℤ (∀𝑚 ∈ 𝑦 𝑚 ∥ 𝑘 → (lcm‘𝑦) ∥ 𝑘) → ((𝑛 ∈ ℤ ∧ 𝑘 ∈ ℕ) → ((0 ∉ 𝑦 ∧ 𝑧 ≠ 0 ∧ 𝑛 ≠ 0) → (∀𝑖 ∈ ((𝑦 ∪ {𝑧}) ∪ {𝑛})𝑖 ∥ 𝑘 → (lcm‘(𝑦 ∪ {𝑧})) ∥ 𝑘)))))) |
| 130 | 129 | com23 86 |
. . . . . . . . . . . . . 14
⊢ ((𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin) →
(∀𝑘 ∈ ℤ
(∀𝑚 ∈ 𝑦 𝑚 ∥ 𝑘 → (lcm‘𝑦) ∥ 𝑘) → (∀𝑛 ∈ ℤ (lcm‘(𝑦 ∪ {𝑛})) = ((lcm‘𝑦) lcm 𝑛) → ((𝑛 ∈ ℤ ∧ 𝑘 ∈ ℕ) → ((0 ∉ 𝑦 ∧ 𝑧 ≠ 0 ∧ 𝑛 ≠ 0) → (∀𝑖 ∈ ((𝑦 ∪ {𝑧}) ∪ {𝑛})𝑖 ∥ 𝑘 → (lcm‘(𝑦 ∪ {𝑧})) ∥ 𝑘)))))) |
| 131 | 130 | imp32 418 |
. . . . . . . . . . . . 13
⊢ (((𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin) ∧
(∀𝑘 ∈ ℤ
(∀𝑚 ∈ 𝑦 𝑚 ∥ 𝑘 → (lcm‘𝑦) ∥ 𝑘) ∧ ∀𝑛 ∈ ℤ (lcm‘(𝑦 ∪ {𝑛})) = ((lcm‘𝑦) lcm 𝑛))) → ((𝑛 ∈ ℤ ∧ 𝑘 ∈ ℕ) → ((0 ∉ 𝑦 ∧ 𝑧 ≠ 0 ∧ 𝑛 ≠ 0) → (∀𝑖 ∈ ((𝑦 ∪ {𝑧}) ∪ {𝑛})𝑖 ∥ 𝑘 → (lcm‘(𝑦 ∪ {𝑧})) ∥ 𝑘)))) |
| 132 | 131 | expd 415 |
. . . . . . . . . . . 12
⊢ (((𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin) ∧
(∀𝑘 ∈ ℤ
(∀𝑚 ∈ 𝑦 𝑚 ∥ 𝑘 → (lcm‘𝑦) ∥ 𝑘) ∧ ∀𝑛 ∈ ℤ (lcm‘(𝑦 ∪ {𝑛})) = ((lcm‘𝑦) lcm 𝑛))) → (𝑛 ∈ ℤ → (𝑘 ∈ ℕ → ((0 ∉ 𝑦 ∧ 𝑧 ≠ 0 ∧ 𝑛 ≠ 0) → (∀𝑖 ∈ ((𝑦 ∪ {𝑧}) ∪ {𝑛})𝑖 ∥ 𝑘 → (lcm‘(𝑦 ∪ {𝑧})) ∥ 𝑘))))) |
| 133 | 132 | com34 91 |
. . . . . . . . . . 11
⊢ (((𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin) ∧
(∀𝑘 ∈ ℤ
(∀𝑚 ∈ 𝑦 𝑚 ∥ 𝑘 → (lcm‘𝑦) ∥ 𝑘) ∧ ∀𝑛 ∈ ℤ (lcm‘(𝑦 ∪ {𝑛})) = ((lcm‘𝑦) lcm 𝑛))) → (𝑛 ∈ ℤ → ((0 ∉ 𝑦 ∧ 𝑧 ≠ 0 ∧ 𝑛 ≠ 0) → (𝑘 ∈ ℕ → (∀𝑖 ∈ ((𝑦 ∪ {𝑧}) ∪ {𝑛})𝑖 ∥ 𝑘 → (lcm‘(𝑦 ∪ {𝑧})) ∥ 𝑘))))) |
| 134 | 133 | com12 32 |
. . . . . . . . . 10
⊢ (𝑛 ∈ ℤ → (((𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin) ∧
(∀𝑘 ∈ ℤ
(∀𝑚 ∈ 𝑦 𝑚 ∥ 𝑘 → (lcm‘𝑦) ∥ 𝑘) ∧ ∀𝑛 ∈ ℤ (lcm‘(𝑦 ∪ {𝑛})) = ((lcm‘𝑦) lcm 𝑛))) → ((0 ∉ 𝑦 ∧ 𝑧 ≠ 0 ∧ 𝑛 ≠ 0) → (𝑘 ∈ ℕ → (∀𝑖 ∈ ((𝑦 ∪ {𝑧}) ∪ {𝑛})𝑖 ∥ 𝑘 → (lcm‘(𝑦 ∪ {𝑧})) ∥ 𝑘))))) |
| 135 | 134 | imp 406 |
. . . . . . . . 9
⊢ ((𝑛 ∈ ℤ ∧ ((𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin) ∧
(∀𝑘 ∈ ℤ
(∀𝑚 ∈ 𝑦 𝑚 ∥ 𝑘 → (lcm‘𝑦) ∥ 𝑘) ∧ ∀𝑛 ∈ ℤ (lcm‘(𝑦 ∪ {𝑛})) = ((lcm‘𝑦) lcm 𝑛)))) → ((0 ∉ 𝑦 ∧ 𝑧 ≠ 0 ∧ 𝑛 ≠ 0) → (𝑘 ∈ ℕ → (∀𝑖 ∈ ((𝑦 ∪ {𝑧}) ∪ {𝑛})𝑖 ∥ 𝑘 → (lcm‘(𝑦 ∪ {𝑧})) ∥ 𝑘)))) |
| 136 | 135 | com12 32 |
. . . . . . . 8
⊢ ((0
∉ 𝑦 ∧ 𝑧 ≠ 0 ∧ 𝑛 ≠ 0) → ((𝑛 ∈ ℤ ∧ ((𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin) ∧ (∀𝑘 ∈ ℤ (∀𝑚 ∈ 𝑦 𝑚 ∥ 𝑘 → (lcm‘𝑦) ∥ 𝑘) ∧ ∀𝑛 ∈ ℤ (lcm‘(𝑦 ∪ {𝑛})) = ((lcm‘𝑦) lcm 𝑛)))) → (𝑘 ∈ ℕ → (∀𝑖 ∈ ((𝑦 ∪ {𝑧}) ∪ {𝑛})𝑖 ∥ 𝑘 → (lcm‘(𝑦 ∪ {𝑧})) ∥ 𝑘)))) |
| 137 | 136 | imp 406 |
. . . . . . 7
⊢ (((0
∉ 𝑦 ∧ 𝑧 ≠ 0 ∧ 𝑛 ≠ 0) ∧ (𝑛 ∈ ℤ ∧ ((𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin) ∧ (∀𝑘 ∈ ℤ (∀𝑚 ∈ 𝑦 𝑚 ∥ 𝑘 → (lcm‘𝑦) ∥ 𝑘) ∧ ∀𝑛 ∈ ℤ (lcm‘(𝑦 ∪ {𝑛})) = ((lcm‘𝑦) lcm 𝑛))))) → (𝑘 ∈ ℕ → (∀𝑖 ∈ ((𝑦 ∪ {𝑧}) ∪ {𝑛})𝑖 ∥ 𝑘 → (lcm‘(𝑦 ∪ {𝑧})) ∥ 𝑘))) |
| 138 | 137 | imp 406 |
. . . . . 6
⊢ ((((0
∉ 𝑦 ∧ 𝑧 ≠ 0 ∧ 𝑛 ≠ 0) ∧ (𝑛 ∈ ℤ ∧ ((𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin) ∧ (∀𝑘 ∈ ℤ (∀𝑚 ∈ 𝑦 𝑚 ∥ 𝑘 → (lcm‘𝑦) ∥ 𝑘) ∧ ∀𝑛 ∈ ℤ (lcm‘(𝑦 ∪ {𝑛})) = ((lcm‘𝑦) lcm 𝑛))))) ∧ 𝑘 ∈ ℕ) → (∀𝑖 ∈ ((𝑦 ∪ {𝑧}) ∪ {𝑛})𝑖 ∥ 𝑘 → (lcm‘(𝑦 ∪ {𝑧})) ∥ 𝑘)) |
| 139 | 138 | imp 406 |
. . . . 5
⊢ (((((0
∉ 𝑦 ∧ 𝑧 ≠ 0 ∧ 𝑛 ≠ 0) ∧ (𝑛 ∈ ℤ ∧ ((𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin) ∧ (∀𝑘 ∈ ℤ (∀𝑚 ∈ 𝑦 𝑚 ∥ 𝑘 → (lcm‘𝑦) ∥ 𝑘) ∧ ∀𝑛 ∈ ℤ (lcm‘(𝑦 ∪ {𝑛})) = ((lcm‘𝑦) lcm 𝑛))))) ∧ 𝑘 ∈ ℕ) ∧ ∀𝑖 ∈ ((𝑦 ∪ {𝑧}) ∪ {𝑛})𝑖 ∥ 𝑘) → (lcm‘(𝑦 ∪ {𝑧})) ∥ 𝑘) |
| 140 | | vsnid 4663 |
. . . . . . . . 9
⊢ 𝑛 ∈ {𝑛} |
| 141 | 140 | olci 867 |
. . . . . . . 8
⊢ (𝑛 ∈ (𝑦 ∪ {𝑧}) ∨ 𝑛 ∈ {𝑛}) |
| 142 | | elun 4153 |
. . . . . . . 8
⊢ (𝑛 ∈ ((𝑦 ∪ {𝑧}) ∪ {𝑛}) ↔ (𝑛 ∈ (𝑦 ∪ {𝑧}) ∨ 𝑛 ∈ {𝑛})) |
| 143 | 141, 142 | mpbir 231 |
. . . . . . 7
⊢ 𝑛 ∈ ((𝑦 ∪ {𝑧}) ∪ {𝑛}) |
| 144 | | breq1 5146 |
. . . . . . . 8
⊢ (𝑖 = 𝑛 → (𝑖 ∥ 𝑘 ↔ 𝑛 ∥ 𝑘)) |
| 145 | 144 | rspcv 3618 |
. . . . . . 7
⊢ (𝑛 ∈ ((𝑦 ∪ {𝑧}) ∪ {𝑛}) → (∀𝑖 ∈ ((𝑦 ∪ {𝑧}) ∪ {𝑛})𝑖 ∥ 𝑘 → 𝑛 ∥ 𝑘)) |
| 146 | 143, 145 | mp1i 13 |
. . . . . 6
⊢ ((((0
∉ 𝑦 ∧ 𝑧 ≠ 0 ∧ 𝑛 ≠ 0) ∧ (𝑛 ∈ ℤ ∧ ((𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin) ∧ (∀𝑘 ∈ ℤ (∀𝑚 ∈ 𝑦 𝑚 ∥ 𝑘 → (lcm‘𝑦) ∥ 𝑘) ∧ ∀𝑛 ∈ ℤ (lcm‘(𝑦 ∪ {𝑛})) = ((lcm‘𝑦) lcm 𝑛))))) ∧ 𝑘 ∈ ℕ) → (∀𝑖 ∈ ((𝑦 ∪ {𝑧}) ∪ {𝑛})𝑖 ∥ 𝑘 → 𝑛 ∥ 𝑘)) |
| 147 | 146 | imp 406 |
. . . . 5
⊢ (((((0
∉ 𝑦 ∧ 𝑧 ≠ 0 ∧ 𝑛 ≠ 0) ∧ (𝑛 ∈ ℤ ∧ ((𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin) ∧ (∀𝑘 ∈ ℤ (∀𝑚 ∈ 𝑦 𝑚 ∥ 𝑘 → (lcm‘𝑦) ∥ 𝑘) ∧ ∀𝑛 ∈ ℤ (lcm‘(𝑦 ∪ {𝑛})) = ((lcm‘𝑦) lcm 𝑛))))) ∧ 𝑘 ∈ ℕ) ∧ ∀𝑖 ∈ ((𝑦 ∪ {𝑧}) ∪ {𝑛})𝑖 ∥ 𝑘) → 𝑛 ∥ 𝑘) |
| 148 | 139, 147 | jca 511 |
. . . 4
⊢ (((((0
∉ 𝑦 ∧ 𝑧 ≠ 0 ∧ 𝑛 ≠ 0) ∧ (𝑛 ∈ ℤ ∧ ((𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin) ∧ (∀𝑘 ∈ ℤ (∀𝑚 ∈ 𝑦 𝑚 ∥ 𝑘 → (lcm‘𝑦) ∥ 𝑘) ∧ ∀𝑛 ∈ ℤ (lcm‘(𝑦 ∪ {𝑛})) = ((lcm‘𝑦) lcm 𝑛))))) ∧ 𝑘 ∈ ℕ) ∧ ∀𝑖 ∈ ((𝑦 ∪ {𝑧}) ∪ {𝑛})𝑖 ∥ 𝑘) → ((lcm‘(𝑦 ∪ {𝑧})) ∥ 𝑘 ∧ 𝑛 ∥ 𝑘)) |
| 149 | | lcmledvds 16636 |
. . . 4
⊢ (((𝑘 ∈ ℕ ∧
(lcm‘(𝑦 ∪
{𝑧})) ∈ ℤ ∧
𝑛 ∈ ℤ) ∧
¬ ((lcm‘(𝑦
∪ {𝑧})) = 0 ∨ 𝑛 = 0)) →
(((lcm‘(𝑦
∪ {𝑧})) ∥ 𝑘 ∧ 𝑛 ∥ 𝑘) → ((lcm‘(𝑦 ∪ {𝑧})) lcm 𝑛) ≤ 𝑘)) |
| 150 | 61, 148, 149 | sylc 65 |
. . 3
⊢ (((((0
∉ 𝑦 ∧ 𝑧 ≠ 0 ∧ 𝑛 ≠ 0) ∧ (𝑛 ∈ ℤ ∧ ((𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin) ∧ (∀𝑘 ∈ ℤ (∀𝑚 ∈ 𝑦 𝑚 ∥ 𝑘 → (lcm‘𝑦) ∥ 𝑘) ∧ ∀𝑛 ∈ ℤ (lcm‘(𝑦 ∪ {𝑛})) = ((lcm‘𝑦) lcm 𝑛))))) ∧ 𝑘 ∈ ℕ) ∧ ∀𝑖 ∈ ((𝑦 ∪ {𝑧}) ∪ {𝑛})𝑖 ∥ 𝑘) → ((lcm‘(𝑦 ∪ {𝑧})) lcm 𝑛) ≤ 𝑘) |
| 151 | 150 | exp31 419 |
. 2
⊢ (((0
∉ 𝑦 ∧ 𝑧 ≠ 0 ∧ 𝑛 ≠ 0) ∧ (𝑛 ∈ ℤ ∧ ((𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin) ∧ (∀𝑘 ∈ ℤ (∀𝑚 ∈ 𝑦 𝑚 ∥ 𝑘 → (lcm‘𝑦) ∥ 𝑘) ∧ ∀𝑛 ∈ ℤ (lcm‘(𝑦 ∪ {𝑛})) = ((lcm‘𝑦) lcm 𝑛))))) → (𝑘 ∈ ℕ → (∀𝑖 ∈ ((𝑦 ∪ {𝑧}) ∪ {𝑛})𝑖 ∥ 𝑘 → ((lcm‘(𝑦 ∪ {𝑧})) lcm 𝑛) ≤ 𝑘))) |
| 152 | 9, 151 | ralrimi 3257 |
1
⊢ (((0
∉ 𝑦 ∧ 𝑧 ≠ 0 ∧ 𝑛 ≠ 0) ∧ (𝑛 ∈ ℤ ∧ ((𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin) ∧ (∀𝑘 ∈ ℤ (∀𝑚 ∈ 𝑦 𝑚 ∥ 𝑘 → (lcm‘𝑦) ∥ 𝑘) ∧ ∀𝑛 ∈ ℤ (lcm‘(𝑦 ∪ {𝑛})) = ((lcm‘𝑦) lcm 𝑛))))) → ∀𝑘 ∈ ℕ (∀𝑖 ∈ ((𝑦 ∪ {𝑧}) ∪ {𝑛})𝑖 ∥ 𝑘 → ((lcm‘(𝑦 ∪ {𝑧})) lcm 𝑛) ≤ 𝑘)) |