Step | Hyp | Ref
| Expression |
1 | | nfv 1918 |
. . 3
⊢
Ⅎ𝑘(0 ∉
𝑦 ∧ 𝑧 ≠ 0 ∧ 𝑛 ≠ 0) |
2 | | nfv 1918 |
. . . 4
⊢
Ⅎ𝑘 𝑛 ∈ ℤ |
3 | | nfv 1918 |
. . . . 5
⊢
Ⅎ𝑘(𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin) |
4 | | nfra1 3142 |
. . . . . 6
⊢
Ⅎ𝑘∀𝑘 ∈ ℤ (∀𝑚 ∈ 𝑦 𝑚 ∥ 𝑘 → (lcm‘𝑦) ∥ 𝑘) |
5 | | nfv 1918 |
. . . . . 6
⊢
Ⅎ𝑘∀𝑛 ∈ ℤ (lcm‘(𝑦 ∪ {𝑛})) = ((lcm‘𝑦) lcm 𝑛) |
6 | 4, 5 | nfan 1903 |
. . . . 5
⊢
Ⅎ𝑘(∀𝑘 ∈ ℤ (∀𝑚 ∈ 𝑦 𝑚 ∥ 𝑘 → (lcm‘𝑦) ∥ 𝑘) ∧ ∀𝑛 ∈ ℤ (lcm‘(𝑦 ∪ {𝑛})) = ((lcm‘𝑦) lcm 𝑛)) |
7 | 3, 6 | nfan 1903 |
. . . 4
⊢
Ⅎ𝑘((𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin) ∧
(∀𝑘 ∈ ℤ
(∀𝑚 ∈ 𝑦 𝑚 ∥ 𝑘 → (lcm‘𝑦) ∥ 𝑘) ∧ ∀𝑛 ∈ ℤ (lcm‘(𝑦 ∪ {𝑛})) = ((lcm‘𝑦) lcm 𝑛))) |
8 | 2, 7 | nfan 1903 |
. . 3
⊢
Ⅎ𝑘(𝑛 ∈ ℤ ∧ ((𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin) ∧
(∀𝑘 ∈ ℤ
(∀𝑚 ∈ 𝑦 𝑚 ∥ 𝑘 → (lcm‘𝑦) ∥ 𝑘) ∧ ∀𝑛 ∈ ℤ (lcm‘(𝑦 ∪ {𝑛})) = ((lcm‘𝑦) lcm 𝑛)))) |
9 | 1, 8 | nfan 1903 |
. 2
⊢
Ⅎ𝑘((0 ∉
𝑦 ∧ 𝑧 ≠ 0 ∧ 𝑛 ≠ 0) ∧ (𝑛 ∈ ℤ ∧ ((𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin) ∧ (∀𝑘 ∈ ℤ (∀𝑚 ∈ 𝑦 𝑚 ∥ 𝑘 → (lcm‘𝑦) ∥ 𝑘) ∧ ∀𝑛 ∈ ℤ (lcm‘(𝑦 ∪ {𝑛})) = ((lcm‘𝑦) lcm 𝑛))))) |
10 | | simprr 769 |
. . . . . . . . . . . 12
⊢ ((((0
∉ 𝑦 ∧ 𝑧 ≠ 0 ∧ 𝑛 ≠ 0) ∧ (𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin)) ∧ (𝑛 ∈ ℤ ∧ 𝑘 ∈ ℕ)) → 𝑘 ∈ ℕ) |
11 | | simp2 1135 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin) → 𝑦 ⊆
ℤ) |
12 | | snssi 4738 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑧 ∈ ℤ → {𝑧} ⊆
ℤ) |
13 | 12 | 3ad2ant1 1131 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin) → {𝑧} ⊆
ℤ) |
14 | 11, 13 | unssd 4116 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin) → (𝑦 ∪ {𝑧}) ⊆ ℤ) |
15 | | simp3 1136 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin) → 𝑦 ∈ Fin) |
16 | | snfi 8788 |
. . . . . . . . . . . . . . . . . 18
⊢ {𝑧} ∈ Fin |
17 | | unfi 8917 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝑦 ∈ Fin ∧ {𝑧} ∈ Fin) → (𝑦 ∪ {𝑧}) ∈ Fin) |
18 | 15, 16, 17 | sylancl 585 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin) → (𝑦 ∪ {𝑧}) ∈ Fin) |
19 | 14, 18 | jca 511 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin) → ((𝑦 ∪ {𝑧}) ⊆ ℤ ∧ (𝑦 ∪ {𝑧}) ∈ Fin)) |
20 | | lcmfcl 16261 |
. . . . . . . . . . . . . . . 16
⊢ (((𝑦 ∪ {𝑧}) ⊆ ℤ ∧ (𝑦 ∪ {𝑧}) ∈ Fin) →
(lcm‘(𝑦 ∪
{𝑧})) ∈
ℕ0) |
21 | 19, 20 | syl 17 |
. . . . . . . . . . . . . . 15
⊢ ((𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin) →
(lcm‘(𝑦 ∪
{𝑧})) ∈
ℕ0) |
22 | 21 | nn0zd 12353 |
. . . . . . . . . . . . . 14
⊢ ((𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin) →
(lcm‘(𝑦 ∪
{𝑧})) ∈
ℤ) |
23 | 22 | adantl 481 |
. . . . . . . . . . . . 13
⊢ (((0
∉ 𝑦 ∧ 𝑧 ≠ 0 ∧ 𝑛 ≠ 0) ∧ (𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin)) → (lcm‘(𝑦 ∪ {𝑧})) ∈ ℤ) |
24 | 23 | adantr 480 |
. . . . . . . . . . . 12
⊢ ((((0
∉ 𝑦 ∧ 𝑧 ≠ 0 ∧ 𝑛 ≠ 0) ∧ (𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin)) ∧ (𝑛 ∈ ℤ ∧ 𝑘 ∈ ℕ)) →
(lcm‘(𝑦 ∪
{𝑧})) ∈
ℤ) |
25 | | simprl 767 |
. . . . . . . . . . . 12
⊢ ((((0
∉ 𝑦 ∧ 𝑧 ≠ 0 ∧ 𝑛 ≠ 0) ∧ (𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin)) ∧ (𝑛 ∈ ℤ ∧ 𝑘 ∈ ℕ)) → 𝑛 ∈ ℤ) |
26 | 10, 24, 25 | 3jca 1126 |
. . . . . . . . . . 11
⊢ ((((0
∉ 𝑦 ∧ 𝑧 ≠ 0 ∧ 𝑛 ≠ 0) ∧ (𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin)) ∧ (𝑛 ∈ ℤ ∧ 𝑘 ∈ ℕ)) → (𝑘 ∈ ℕ ∧
(lcm‘(𝑦 ∪
{𝑧})) ∈ ℤ ∧
𝑛 ∈
ℤ)) |
27 | 14 | adantl 481 |
. . . . . . . . . . . . . . . . . 18
⊢ (((0
∉ 𝑦 ∧ 𝑧 ≠ 0 ∧ 𝑛 ≠ 0) ∧ (𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin)) → (𝑦 ∪ {𝑧}) ⊆ ℤ) |
28 | 18 | adantl 481 |
. . . . . . . . . . . . . . . . . 18
⊢ (((0
∉ 𝑦 ∧ 𝑧 ≠ 0 ∧ 𝑛 ≠ 0) ∧ (𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin)) → (𝑦 ∪ {𝑧}) ∈ Fin) |
29 | | df-nel 3049 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (0
∉ 𝑦 ↔ ¬ 0
∈ 𝑦) |
30 | 29 | biimpi 215 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (0
∉ 𝑦 → ¬ 0
∈ 𝑦) |
31 | | elsni 4575 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (0 ∈
{𝑧} → 0 = 𝑧) |
32 | 31 | eqcomd 2744 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (0 ∈
{𝑧} → 𝑧 = 0) |
33 | 32 | necon3ai 2967 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝑧 ≠ 0 → ¬ 0 ∈
{𝑧}) |
34 | 30, 33 | anim12i 612 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((0
∉ 𝑦 ∧ 𝑧 ≠ 0) → (¬ 0 ∈
𝑦 ∧ ¬ 0 ∈
{𝑧})) |
35 | 34 | 3adant3 1130 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((0
∉ 𝑦 ∧ 𝑧 ≠ 0 ∧ 𝑛 ≠ 0) → (¬ 0 ∈ 𝑦 ∧ ¬ 0 ∈ {𝑧})) |
36 | | df-nel 3049 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (0
∉ (𝑦 ∪ {𝑧}) ↔ ¬ 0 ∈ (𝑦 ∪ {𝑧})) |
37 | | ioran 980 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (¬ (0
∈ 𝑦 ∨ 0 ∈
{𝑧}) ↔ (¬ 0 ∈
𝑦 ∧ ¬ 0 ∈
{𝑧})) |
38 | | elun 4079 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (0 ∈
(𝑦 ∪ {𝑧}) ↔ (0 ∈ 𝑦 ∨ 0 ∈ {𝑧})) |
39 | 37, 38 | xchnxbir 332 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (¬ 0
∈ (𝑦 ∪ {𝑧}) ↔ (¬ 0 ∈ 𝑦 ∧ ¬ 0 ∈ {𝑧})) |
40 | 36, 39 | bitri 274 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (0
∉ (𝑦 ∪ {𝑧}) ↔ (¬ 0 ∈ 𝑦 ∧ ¬ 0 ∈ {𝑧})) |
41 | 35, 40 | sylibr 233 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((0
∉ 𝑦 ∧ 𝑧 ≠ 0 ∧ 𝑛 ≠ 0) → 0 ∉ (𝑦 ∪ {𝑧})) |
42 | 41 | adantr 480 |
. . . . . . . . . . . . . . . . . 18
⊢ (((0
∉ 𝑦 ∧ 𝑧 ≠ 0 ∧ 𝑛 ≠ 0) ∧ (𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin)) → 0 ∉ (𝑦 ∪ {𝑧})) |
43 | 27, 28, 42 | 3jca 1126 |
. . . . . . . . . . . . . . . . 17
⊢ (((0
∉ 𝑦 ∧ 𝑧 ≠ 0 ∧ 𝑛 ≠ 0) ∧ (𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin)) → ((𝑦 ∪ {𝑧}) ⊆ ℤ ∧ (𝑦 ∪ {𝑧}) ∈ Fin ∧ 0 ∉ (𝑦 ∪ {𝑧}))) |
44 | 43 | adantr 480 |
. . . . . . . . . . . . . . . 16
⊢ ((((0
∉ 𝑦 ∧ 𝑧 ≠ 0 ∧ 𝑛 ≠ 0) ∧ (𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin)) ∧ (𝑛 ∈ ℤ ∧ 𝑘 ∈ ℕ)) → ((𝑦 ∪ {𝑧}) ⊆ ℤ ∧ (𝑦 ∪ {𝑧}) ∈ Fin ∧ 0 ∉ (𝑦 ∪ {𝑧}))) |
45 | | lcmfn0cl 16259 |
. . . . . . . . . . . . . . . 16
⊢ (((𝑦 ∪ {𝑧}) ⊆ ℤ ∧ (𝑦 ∪ {𝑧}) ∈ Fin ∧ 0 ∉ (𝑦 ∪ {𝑧})) → (lcm‘(𝑦 ∪ {𝑧})) ∈ ℕ) |
46 | 44, 45 | syl 17 |
. . . . . . . . . . . . . . 15
⊢ ((((0
∉ 𝑦 ∧ 𝑧 ≠ 0 ∧ 𝑛 ≠ 0) ∧ (𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin)) ∧ (𝑛 ∈ ℤ ∧ 𝑘 ∈ ℕ)) →
(lcm‘(𝑦 ∪
{𝑧})) ∈
ℕ) |
47 | 46 | nnne0d 11953 |
. . . . . . . . . . . . . 14
⊢ ((((0
∉ 𝑦 ∧ 𝑧 ≠ 0 ∧ 𝑛 ≠ 0) ∧ (𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin)) ∧ (𝑛 ∈ ℤ ∧ 𝑘 ∈ ℕ)) →
(lcm‘(𝑦 ∪
{𝑧})) ≠
0) |
48 | 47 | neneqd 2947 |
. . . . . . . . . . . . 13
⊢ ((((0
∉ 𝑦 ∧ 𝑧 ≠ 0 ∧ 𝑛 ≠ 0) ∧ (𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin)) ∧ (𝑛 ∈ ℤ ∧ 𝑘 ∈ ℕ)) → ¬
(lcm‘(𝑦 ∪
{𝑧})) = 0) |
49 | | neneq 2948 |
. . . . . . . . . . . . . . 15
⊢ (𝑛 ≠ 0 → ¬ 𝑛 = 0) |
50 | 49 | 3ad2ant3 1133 |
. . . . . . . . . . . . . 14
⊢ ((0
∉ 𝑦 ∧ 𝑧 ≠ 0 ∧ 𝑛 ≠ 0) → ¬ 𝑛 = 0) |
51 | 50 | ad2antrr 722 |
. . . . . . . . . . . . 13
⊢ ((((0
∉ 𝑦 ∧ 𝑧 ≠ 0 ∧ 𝑛 ≠ 0) ∧ (𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin)) ∧ (𝑛 ∈ ℤ ∧ 𝑘 ∈ ℕ)) → ¬ 𝑛 = 0) |
52 | 48, 51 | jca 511 |
. . . . . . . . . . . 12
⊢ ((((0
∉ 𝑦 ∧ 𝑧 ≠ 0 ∧ 𝑛 ≠ 0) ∧ (𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin)) ∧ (𝑛 ∈ ℤ ∧ 𝑘 ∈ ℕ)) → (¬
(lcm‘(𝑦 ∪
{𝑧})) = 0 ∧ ¬ 𝑛 = 0)) |
53 | | ioran 980 |
. . . . . . . . . . . 12
⊢ (¬
((lcm‘(𝑦 ∪
{𝑧})) = 0 ∨ 𝑛 = 0) ↔ (¬
(lcm‘(𝑦 ∪
{𝑧})) = 0 ∧ ¬ 𝑛 = 0)) |
54 | 52, 53 | sylibr 233 |
. . . . . . . . . . 11
⊢ ((((0
∉ 𝑦 ∧ 𝑧 ≠ 0 ∧ 𝑛 ≠ 0) ∧ (𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin)) ∧ (𝑛 ∈ ℤ ∧ 𝑘 ∈ ℕ)) → ¬
((lcm‘(𝑦 ∪
{𝑧})) = 0 ∨ 𝑛 = 0)) |
55 | 26, 54 | jca 511 |
. . . . . . . . . 10
⊢ ((((0
∉ 𝑦 ∧ 𝑧 ≠ 0 ∧ 𝑛 ≠ 0) ∧ (𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin)) ∧ (𝑛 ∈ ℤ ∧ 𝑘 ∈ ℕ)) → ((𝑘 ∈ ℕ ∧
(lcm‘(𝑦 ∪
{𝑧})) ∈ ℤ ∧
𝑛 ∈ ℤ) ∧
¬ ((lcm‘(𝑦
∪ {𝑧})) = 0 ∨ 𝑛 = 0))) |
56 | 55 | exp43 436 |
. . . . . . . . 9
⊢ ((0
∉ 𝑦 ∧ 𝑧 ≠ 0 ∧ 𝑛 ≠ 0) → ((𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin) → (𝑛 ∈ ℤ → (𝑘 ∈ ℕ → ((𝑘 ∈ ℕ ∧
(lcm‘(𝑦 ∪
{𝑧})) ∈ ℤ ∧
𝑛 ∈ ℤ) ∧
¬ ((lcm‘(𝑦
∪ {𝑧})) = 0 ∨ 𝑛 = 0)))))) |
57 | 56 | adantrd 491 |
. . . . . . . 8
⊢ ((0
∉ 𝑦 ∧ 𝑧 ≠ 0 ∧ 𝑛 ≠ 0) → (((𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin) ∧ (∀𝑘 ∈ ℤ (∀𝑚 ∈ 𝑦 𝑚 ∥ 𝑘 → (lcm‘𝑦) ∥ 𝑘) ∧ ∀𝑛 ∈ ℤ (lcm‘(𝑦 ∪ {𝑛})) = ((lcm‘𝑦) lcm 𝑛))) → (𝑛 ∈ ℤ → (𝑘 ∈ ℕ → ((𝑘 ∈ ℕ ∧
(lcm‘(𝑦 ∪
{𝑧})) ∈ ℤ ∧
𝑛 ∈ ℤ) ∧
¬ ((lcm‘(𝑦
∪ {𝑧})) = 0 ∨ 𝑛 = 0)))))) |
58 | 57 | com23 86 |
. . . . . . 7
⊢ ((0
∉ 𝑦 ∧ 𝑧 ≠ 0 ∧ 𝑛 ≠ 0) → (𝑛 ∈ ℤ → (((𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin) ∧ (∀𝑘 ∈ ℤ (∀𝑚 ∈ 𝑦 𝑚 ∥ 𝑘 → (lcm‘𝑦) ∥ 𝑘) ∧ ∀𝑛 ∈ ℤ (lcm‘(𝑦 ∪ {𝑛})) = ((lcm‘𝑦) lcm 𝑛))) → (𝑘 ∈ ℕ → ((𝑘 ∈ ℕ ∧
(lcm‘(𝑦 ∪
{𝑧})) ∈ ℤ ∧
𝑛 ∈ ℤ) ∧
¬ ((lcm‘(𝑦
∪ {𝑧})) = 0 ∨ 𝑛 = 0)))))) |
59 | 58 | imp32 418 |
. . . . . 6
⊢ (((0
∉ 𝑦 ∧ 𝑧 ≠ 0 ∧ 𝑛 ≠ 0) ∧ (𝑛 ∈ ℤ ∧ ((𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin) ∧ (∀𝑘 ∈ ℤ (∀𝑚 ∈ 𝑦 𝑚 ∥ 𝑘 → (lcm‘𝑦) ∥ 𝑘) ∧ ∀𝑛 ∈ ℤ (lcm‘(𝑦 ∪ {𝑛})) = ((lcm‘𝑦) lcm 𝑛))))) → (𝑘 ∈ ℕ → ((𝑘 ∈ ℕ ∧
(lcm‘(𝑦 ∪
{𝑧})) ∈ ℤ ∧
𝑛 ∈ ℤ) ∧
¬ ((lcm‘(𝑦
∪ {𝑧})) = 0 ∨ 𝑛 = 0)))) |
60 | 59 | imp 406 |
. . . . 5
⊢ ((((0
∉ 𝑦 ∧ 𝑧 ≠ 0 ∧ 𝑛 ≠ 0) ∧ (𝑛 ∈ ℤ ∧ ((𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin) ∧ (∀𝑘 ∈ ℤ (∀𝑚 ∈ 𝑦 𝑚 ∥ 𝑘 → (lcm‘𝑦) ∥ 𝑘) ∧ ∀𝑛 ∈ ℤ (lcm‘(𝑦 ∪ {𝑛})) = ((lcm‘𝑦) lcm 𝑛))))) ∧ 𝑘 ∈ ℕ) → ((𝑘 ∈ ℕ ∧
(lcm‘(𝑦 ∪
{𝑧})) ∈ ℤ ∧
𝑛 ∈ ℤ) ∧
¬ ((lcm‘(𝑦
∪ {𝑧})) = 0 ∨ 𝑛 = 0))) |
61 | 60 | adantr 480 |
. . . 4
⊢ (((((0
∉ 𝑦 ∧ 𝑧 ≠ 0 ∧ 𝑛 ≠ 0) ∧ (𝑛 ∈ ℤ ∧ ((𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin) ∧ (∀𝑘 ∈ ℤ (∀𝑚 ∈ 𝑦 𝑚 ∥ 𝑘 → (lcm‘𝑦) ∥ 𝑘) ∧ ∀𝑛 ∈ ℤ (lcm‘(𝑦 ∪ {𝑛})) = ((lcm‘𝑦) lcm 𝑛))))) ∧ 𝑘 ∈ ℕ) ∧ ∀𝑖 ∈ ((𝑦 ∪ {𝑧}) ∪ {𝑛})𝑖 ∥ 𝑘) → ((𝑘 ∈ ℕ ∧
(lcm‘(𝑦 ∪
{𝑧})) ∈ ℤ ∧
𝑛 ∈ ℤ) ∧
¬ ((lcm‘(𝑦
∪ {𝑧})) = 0 ∨ 𝑛 = 0))) |
62 | | sneq 4568 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝑛 = 𝑧 → {𝑛} = {𝑧}) |
63 | 62 | uneq2d 4093 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑛 = 𝑧 → (𝑦 ∪ {𝑛}) = (𝑦 ∪ {𝑧})) |
64 | 63 | fveq2d 6760 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑛 = 𝑧 → (lcm‘(𝑦 ∪ {𝑛})) = (lcm‘(𝑦 ∪ {𝑧}))) |
65 | | oveq2 7263 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑛 = 𝑧 → ((lcm‘𝑦) lcm 𝑛) = ((lcm‘𝑦) lcm 𝑧)) |
66 | 64, 65 | eqeq12d 2754 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑛 = 𝑧 → ((lcm‘(𝑦 ∪ {𝑛})) = ((lcm‘𝑦) lcm 𝑛) ↔ (lcm‘(𝑦 ∪ {𝑧})) = ((lcm‘𝑦) lcm 𝑧))) |
67 | 66 | rspcv 3547 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑧 ∈ ℤ →
(∀𝑛 ∈ ℤ
(lcm‘(𝑦 ∪
{𝑛})) =
((lcm‘𝑦) lcm
𝑛) →
(lcm‘(𝑦 ∪
{𝑧})) =
((lcm‘𝑦) lcm
𝑧))) |
68 | 67 | 3ad2ant1 1131 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin) →
(∀𝑛 ∈ ℤ
(lcm‘(𝑦 ∪
{𝑛})) =
((lcm‘𝑦) lcm
𝑛) →
(lcm‘(𝑦 ∪
{𝑧})) =
((lcm‘𝑦) lcm
𝑧))) |
69 | | nnz 12272 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ (𝑘 ∈ ℕ → 𝑘 ∈
ℤ) |
70 | 69 | adantl 481 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ ((𝑛 ∈ ℤ ∧ 𝑘 ∈ ℕ) → 𝑘 ∈
ℤ) |
71 | 70 | adantl 481 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ ((((𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin) ∧ ∀𝑘 ∈ ℤ (∀𝑚 ∈ 𝑦 𝑚 ∥ 𝑘 → (lcm‘𝑦) ∥ 𝑘)) ∧ (𝑛 ∈ ℤ ∧ 𝑘 ∈ ℕ)) → 𝑘 ∈ ℤ) |
72 | | lcmfcl 16261 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ ((𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin) →
(lcm‘𝑦) ∈
ℕ0) |
73 | 72 | nn0zd 12353 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ ((𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin) →
(lcm‘𝑦) ∈
ℤ) |
74 | 73 | 3adant1 1128 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ ((𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin) →
(lcm‘𝑦) ∈
ℤ) |
75 | 74 | ad2antrr 722 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ ((((𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin) ∧ ∀𝑘 ∈ ℤ (∀𝑚 ∈ 𝑦 𝑚 ∥ 𝑘 → (lcm‘𝑦) ∥ 𝑘)) ∧ (𝑛 ∈ ℤ ∧ 𝑘 ∈ ℕ)) →
(lcm‘𝑦) ∈
ℤ) |
76 | | simpll1 1210 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ ((((𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin) ∧ ∀𝑘 ∈ ℤ (∀𝑚 ∈ 𝑦 𝑚 ∥ 𝑘 → (lcm‘𝑦) ∥ 𝑘)) ∧ (𝑛 ∈ ℤ ∧ 𝑘 ∈ ℕ)) → 𝑧 ∈ ℤ) |
77 | 71, 75, 76 | 3jca 1126 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((((𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin) ∧ ∀𝑘 ∈ ℤ (∀𝑚 ∈ 𝑦 𝑚 ∥ 𝑘 → (lcm‘𝑦) ∥ 𝑘)) ∧ (𝑛 ∈ ℤ ∧ 𝑘 ∈ ℕ)) → (𝑘 ∈ ℤ ∧ (lcm‘𝑦) ∈ ℤ ∧ 𝑧 ∈
ℤ)) |
78 | 77 | ad2antrr 722 |
. . . . . . . . . . . . . . . . . . . . 21
⊢
((((((𝑧 ∈
ℤ ∧ 𝑦 ⊆
ℤ ∧ 𝑦 ∈ Fin)
∧ ∀𝑘 ∈
ℤ (∀𝑚 ∈
𝑦 𝑚 ∥ 𝑘 → (lcm‘𝑦) ∥ 𝑘)) ∧ (𝑛 ∈ ℤ ∧ 𝑘 ∈ ℕ)) ∧ (0 ∉ 𝑦 ∧ 𝑧 ≠ 0 ∧ 𝑛 ≠ 0)) ∧ ∀𝑖 ∈ ((𝑦 ∪ {𝑧}) ∪ {𝑛})𝑖 ∥ 𝑘) → (𝑘 ∈ ℤ ∧ (lcm‘𝑦) ∈ ℤ ∧ 𝑧 ∈
ℤ)) |
79 | | elun1 4106 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. 35
⊢ (𝑚 ∈ 𝑦 → 𝑚 ∈ (𝑦 ∪ {𝑧})) |
80 | 79 | orcd 869 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
34
⊢ (𝑚 ∈ 𝑦 → (𝑚 ∈ (𝑦 ∪ {𝑧}) ∨ 𝑚 ∈ {𝑛})) |
81 | | elun 4079 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
34
⊢ (𝑚 ∈ ((𝑦 ∪ {𝑧}) ∪ {𝑛}) ↔ (𝑚 ∈ (𝑦 ∪ {𝑧}) ∨ 𝑚 ∈ {𝑛})) |
82 | 80, 81 | sylibr 233 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
33
⊢ (𝑚 ∈ 𝑦 → 𝑚 ∈ ((𝑦 ∪ {𝑧}) ∪ {𝑛})) |
83 | | breq1 5073 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
34
⊢ (𝑖 = 𝑚 → (𝑖 ∥ 𝑘 ↔ 𝑚 ∥ 𝑘)) |
84 | 83 | rspcv 3547 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
33
⊢ (𝑚 ∈ ((𝑦 ∪ {𝑧}) ∪ {𝑛}) → (∀𝑖 ∈ ((𝑦 ∪ {𝑧}) ∪ {𝑛})𝑖 ∥ 𝑘 → 𝑚 ∥ 𝑘)) |
85 | 82, 84 | syl 17 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
32
⊢ (𝑚 ∈ 𝑦 → (∀𝑖 ∈ ((𝑦 ∪ {𝑧}) ∪ {𝑛})𝑖 ∥ 𝑘 → 𝑚 ∥ 𝑘)) |
86 | 85 | com12 32 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
31
⊢
(∀𝑖 ∈
((𝑦 ∪ {𝑧}) ∪ {𝑛})𝑖 ∥ 𝑘 → (𝑚 ∈ 𝑦 → 𝑚 ∥ 𝑘)) |
87 | 86 | adantl 481 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . .
30
⊢ (((𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin) ∧ ∀𝑖 ∈ ((𝑦 ∪ {𝑧}) ∪ {𝑛})𝑖 ∥ 𝑘) → (𝑚 ∈ 𝑦 → 𝑚 ∥ 𝑘)) |
88 | 87 | ralrimiv 3106 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
⊢ (((𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin) ∧ ∀𝑖 ∈ ((𝑦 ∪ {𝑧}) ∪ {𝑛})𝑖 ∥ 𝑘) → ∀𝑚 ∈ 𝑦 𝑚 ∥ 𝑘) |
89 | 88 | adantr 480 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢ ((((𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin) ∧ ∀𝑖 ∈ ((𝑦 ∪ {𝑧}) ∪ {𝑛})𝑖 ∥ 𝑘) ∧ ((𝑛 ∈ ℤ ∧ 𝑘 ∈ ℕ) ∧ (0 ∉ 𝑦 ∧ 𝑧 ≠ 0 ∧ 𝑛 ≠ 0))) → ∀𝑚 ∈ 𝑦 𝑚 ∥ 𝑘) |
90 | | breq2 5074 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
32
⊢ (𝑘 = 𝑙 → (𝑚 ∥ 𝑘 ↔ 𝑚 ∥ 𝑙)) |
91 | 90 | ralbidv 3120 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
31
⊢ (𝑘 = 𝑙 → (∀𝑚 ∈ 𝑦 𝑚 ∥ 𝑘 ↔ ∀𝑚 ∈ 𝑦 𝑚 ∥ 𝑙)) |
92 | | breq2 5074 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
31
⊢ (𝑘 = 𝑙 → ((lcm‘𝑦) ∥ 𝑘 ↔ (lcm‘𝑦) ∥ 𝑙)) |
93 | 91, 92 | imbi12d 344 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . .
30
⊢ (𝑘 = 𝑙 → ((∀𝑚 ∈ 𝑦 𝑚 ∥ 𝑘 → (lcm‘𝑦) ∥ 𝑘) ↔ (∀𝑚 ∈ 𝑦 𝑚 ∥ 𝑙 → (lcm‘𝑦) ∥ 𝑙))) |
94 | 93 | cbvralvw 3372 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
⊢
(∀𝑘 ∈
ℤ (∀𝑚 ∈
𝑦 𝑚 ∥ 𝑘 → (lcm‘𝑦) ∥ 𝑘) ↔ ∀𝑙 ∈ ℤ (∀𝑚 ∈ 𝑦 𝑚 ∥ 𝑙 → (lcm‘𝑦) ∥ 𝑙)) |
95 | 70 | adantr 480 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
31
⊢ (((𝑛 ∈ ℤ ∧ 𝑘 ∈ ℕ) ∧ (0
∉ 𝑦 ∧ 𝑧 ≠ 0 ∧ 𝑛 ≠ 0)) → 𝑘 ∈ ℤ) |
96 | 95 | adantl 481 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . .
30
⊢ ((((𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin) ∧ ∀𝑖 ∈ ((𝑦 ∪ {𝑧}) ∪ {𝑛})𝑖 ∥ 𝑘) ∧ ((𝑛 ∈ ℤ ∧ 𝑘 ∈ ℕ) ∧ (0 ∉ 𝑦 ∧ 𝑧 ≠ 0 ∧ 𝑛 ≠ 0))) → 𝑘 ∈ ℤ) |
97 | | breq2 5074 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
33
⊢ (𝑙 = 𝑘 → (𝑚 ∥ 𝑙 ↔ 𝑚 ∥ 𝑘)) |
98 | 97 | ralbidv 3120 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
32
⊢ (𝑙 = 𝑘 → (∀𝑚 ∈ 𝑦 𝑚 ∥ 𝑙 ↔ ∀𝑚 ∈ 𝑦 𝑚 ∥ 𝑘)) |
99 | | breq2 5074 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
32
⊢ (𝑙 = 𝑘 → ((lcm‘𝑦) ∥ 𝑙 ↔ (lcm‘𝑦) ∥ 𝑘)) |
100 | 98, 99 | imbi12d 344 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
31
⊢ (𝑙 = 𝑘 → ((∀𝑚 ∈ 𝑦 𝑚 ∥ 𝑙 → (lcm‘𝑦) ∥ 𝑙) ↔ (∀𝑚 ∈ 𝑦 𝑚 ∥ 𝑘 → (lcm‘𝑦) ∥ 𝑘))) |
101 | 100 | rspcv 3547 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . .
30
⊢ (𝑘 ∈ ℤ →
(∀𝑙 ∈ ℤ
(∀𝑚 ∈ 𝑦 𝑚 ∥ 𝑙 → (lcm‘𝑦) ∥ 𝑙) → (∀𝑚 ∈ 𝑦 𝑚 ∥ 𝑘 → (lcm‘𝑦) ∥ 𝑘))) |
102 | 96, 101 | syl 17 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
⊢ ((((𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin) ∧ ∀𝑖 ∈ ((𝑦 ∪ {𝑧}) ∪ {𝑛})𝑖 ∥ 𝑘) ∧ ((𝑛 ∈ ℤ ∧ 𝑘 ∈ ℕ) ∧ (0 ∉ 𝑦 ∧ 𝑧 ≠ 0 ∧ 𝑛 ≠ 0))) → (∀𝑙 ∈ ℤ (∀𝑚 ∈ 𝑦 𝑚 ∥ 𝑙 → (lcm‘𝑦) ∥ 𝑙) → (∀𝑚 ∈ 𝑦 𝑚 ∥ 𝑘 → (lcm‘𝑦) ∥ 𝑘))) |
103 | 94, 102 | syl5bi 241 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢ ((((𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin) ∧ ∀𝑖 ∈ ((𝑦 ∪ {𝑧}) ∪ {𝑛})𝑖 ∥ 𝑘) ∧ ((𝑛 ∈ ℤ ∧ 𝑘 ∈ ℕ) ∧ (0 ∉ 𝑦 ∧ 𝑧 ≠ 0 ∧ 𝑛 ≠ 0))) → (∀𝑘 ∈ ℤ (∀𝑚 ∈ 𝑦 𝑚 ∥ 𝑘 → (lcm‘𝑦) ∥ 𝑘) → (∀𝑚 ∈ 𝑦 𝑚 ∥ 𝑘 → (lcm‘𝑦) ∥ 𝑘))) |
104 | 89, 103 | mpid 44 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ ((((𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin) ∧ ∀𝑖 ∈ ((𝑦 ∪ {𝑧}) ∪ {𝑛})𝑖 ∥ 𝑘) ∧ ((𝑛 ∈ ℤ ∧ 𝑘 ∈ ℕ) ∧ (0 ∉ 𝑦 ∧ 𝑧 ≠ 0 ∧ 𝑛 ≠ 0))) → (∀𝑘 ∈ ℤ (∀𝑚 ∈ 𝑦 𝑚 ∥ 𝑘 → (lcm‘𝑦) ∥ 𝑘) → (lcm‘𝑦) ∥ 𝑘)) |
105 | 104 | exp31 419 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ ((𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin) →
(∀𝑖 ∈ ((𝑦 ∪ {𝑧}) ∪ {𝑛})𝑖 ∥ 𝑘 → (((𝑛 ∈ ℤ ∧ 𝑘 ∈ ℕ) ∧ (0 ∉ 𝑦 ∧ 𝑧 ≠ 0 ∧ 𝑛 ≠ 0)) → (∀𝑘 ∈ ℤ (∀𝑚 ∈ 𝑦 𝑚 ∥ 𝑘 → (lcm‘𝑦) ∥ 𝑘) → (lcm‘𝑦) ∥ 𝑘)))) |
106 | 105 | com24 95 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ ((𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin) →
(∀𝑘 ∈ ℤ
(∀𝑚 ∈ 𝑦 𝑚 ∥ 𝑘 → (lcm‘𝑦) ∥ 𝑘) → (((𝑛 ∈ ℤ ∧ 𝑘 ∈ ℕ) ∧ (0 ∉ 𝑦 ∧ 𝑧 ≠ 0 ∧ 𝑛 ≠ 0)) → (∀𝑖 ∈ ((𝑦 ∪ {𝑧}) ∪ {𝑛})𝑖 ∥ 𝑘 → (lcm‘𝑦) ∥ 𝑘)))) |
107 | 106 | imp 406 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (((𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin) ∧ ∀𝑘 ∈ ℤ (∀𝑚 ∈ 𝑦 𝑚 ∥ 𝑘 → (lcm‘𝑦) ∥ 𝑘)) → (((𝑛 ∈ ℤ ∧ 𝑘 ∈ ℕ) ∧ (0 ∉ 𝑦 ∧ 𝑧 ≠ 0 ∧ 𝑛 ≠ 0)) → (∀𝑖 ∈ ((𝑦 ∪ {𝑧}) ∪ {𝑛})𝑖 ∥ 𝑘 → (lcm‘𝑦) ∥ 𝑘))) |
108 | 107 | impl 455 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢
(((((𝑧 ∈
ℤ ∧ 𝑦 ⊆
ℤ ∧ 𝑦 ∈ Fin)
∧ ∀𝑘 ∈
ℤ (∀𝑚 ∈
𝑦 𝑚 ∥ 𝑘 → (lcm‘𝑦) ∥ 𝑘)) ∧ (𝑛 ∈ ℤ ∧ 𝑘 ∈ ℕ)) ∧ (0 ∉ 𝑦 ∧ 𝑧 ≠ 0 ∧ 𝑛 ≠ 0)) → (∀𝑖 ∈ ((𝑦 ∪ {𝑧}) ∪ {𝑛})𝑖 ∥ 𝑘 → (lcm‘𝑦) ∥ 𝑘)) |
109 | 108 | imp 406 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢
((((((𝑧 ∈
ℤ ∧ 𝑦 ⊆
ℤ ∧ 𝑦 ∈ Fin)
∧ ∀𝑘 ∈
ℤ (∀𝑚 ∈
𝑦 𝑚 ∥ 𝑘 → (lcm‘𝑦) ∥ 𝑘)) ∧ (𝑛 ∈ ℤ ∧ 𝑘 ∈ ℕ)) ∧ (0 ∉ 𝑦 ∧ 𝑧 ≠ 0 ∧ 𝑛 ≠ 0)) ∧ ∀𝑖 ∈ ((𝑦 ∪ {𝑧}) ∪ {𝑛})𝑖 ∥ 𝑘) → (lcm‘𝑦) ∥ 𝑘) |
110 | | vsnid 4595 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢ 𝑧 ∈ {𝑧} |
111 | 110 | olci 862 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ (𝑧 ∈ 𝑦 ∨ 𝑧 ∈ {𝑧}) |
112 | | elun 4079 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ (𝑧 ∈ (𝑦 ∪ {𝑧}) ↔ (𝑧 ∈ 𝑦 ∨ 𝑧 ∈ {𝑧})) |
113 | 111, 112 | mpbir 230 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ 𝑧 ∈ (𝑦 ∪ {𝑧}) |
114 | 113 | orci 861 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ (𝑧 ∈ (𝑦 ∪ {𝑧}) ∨ 𝑧 ∈ {𝑛}) |
115 | | elun 4079 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ (𝑧 ∈ ((𝑦 ∪ {𝑧}) ∪ {𝑛}) ↔ (𝑧 ∈ (𝑦 ∪ {𝑧}) ∨ 𝑧 ∈ {𝑛})) |
116 | 114, 115 | mpbir 230 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ 𝑧 ∈ ((𝑦 ∪ {𝑧}) ∪ {𝑛}) |
117 | | breq1 5073 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ (𝑖 = 𝑧 → (𝑖 ∥ 𝑘 ↔ 𝑧 ∥ 𝑘)) |
118 | 117 | rspcv 3547 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (𝑧 ∈ ((𝑦 ∪ {𝑧}) ∪ {𝑛}) → (∀𝑖 ∈ ((𝑦 ∪ {𝑧}) ∪ {𝑛})𝑖 ∥ 𝑘 → 𝑧 ∥ 𝑘)) |
119 | 116, 118 | mp1i 13 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢
(((((𝑧 ∈
ℤ ∧ 𝑦 ⊆
ℤ ∧ 𝑦 ∈ Fin)
∧ ∀𝑘 ∈
ℤ (∀𝑚 ∈
𝑦 𝑚 ∥ 𝑘 → (lcm‘𝑦) ∥ 𝑘)) ∧ (𝑛 ∈ ℤ ∧ 𝑘 ∈ ℕ)) ∧ (0 ∉ 𝑦 ∧ 𝑧 ≠ 0 ∧ 𝑛 ≠ 0)) → (∀𝑖 ∈ ((𝑦 ∪ {𝑧}) ∪ {𝑛})𝑖 ∥ 𝑘 → 𝑧 ∥ 𝑘)) |
120 | 119 | imp 406 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢
((((((𝑧 ∈
ℤ ∧ 𝑦 ⊆
ℤ ∧ 𝑦 ∈ Fin)
∧ ∀𝑘 ∈
ℤ (∀𝑚 ∈
𝑦 𝑚 ∥ 𝑘 → (lcm‘𝑦) ∥ 𝑘)) ∧ (𝑛 ∈ ℤ ∧ 𝑘 ∈ ℕ)) ∧ (0 ∉ 𝑦 ∧ 𝑧 ≠ 0 ∧ 𝑛 ≠ 0)) ∧ ∀𝑖 ∈ ((𝑦 ∪ {𝑧}) ∪ {𝑛})𝑖 ∥ 𝑘) → 𝑧 ∥ 𝑘) |
121 | 109, 120 | jca 511 |
. . . . . . . . . . . . . . . . . . . . 21
⊢
((((((𝑧 ∈
ℤ ∧ 𝑦 ⊆
ℤ ∧ 𝑦 ∈ Fin)
∧ ∀𝑘 ∈
ℤ (∀𝑚 ∈
𝑦 𝑚 ∥ 𝑘 → (lcm‘𝑦) ∥ 𝑘)) ∧ (𝑛 ∈ ℤ ∧ 𝑘 ∈ ℕ)) ∧ (0 ∉ 𝑦 ∧ 𝑧 ≠ 0 ∧ 𝑛 ≠ 0)) ∧ ∀𝑖 ∈ ((𝑦 ∪ {𝑧}) ∪ {𝑛})𝑖 ∥ 𝑘) → ((lcm‘𝑦) ∥ 𝑘 ∧ 𝑧 ∥ 𝑘)) |
122 | | lcmdvds 16241 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((𝑘 ∈ ℤ ∧
(lcm‘𝑦) ∈
ℤ ∧ 𝑧 ∈
ℤ) → (((lcm‘𝑦) ∥ 𝑘 ∧ 𝑧 ∥ 𝑘) → ((lcm‘𝑦) lcm 𝑧) ∥ 𝑘)) |
123 | 78, 121, 122 | sylc 65 |
. . . . . . . . . . . . . . . . . . . 20
⊢
((((((𝑧 ∈
ℤ ∧ 𝑦 ⊆
ℤ ∧ 𝑦 ∈ Fin)
∧ ∀𝑘 ∈
ℤ (∀𝑚 ∈
𝑦 𝑚 ∥ 𝑘 → (lcm‘𝑦) ∥ 𝑘)) ∧ (𝑛 ∈ ℤ ∧ 𝑘 ∈ ℕ)) ∧ (0 ∉ 𝑦 ∧ 𝑧 ≠ 0 ∧ 𝑛 ≠ 0)) ∧ ∀𝑖 ∈ ((𝑦 ∪ {𝑧}) ∪ {𝑛})𝑖 ∥ 𝑘) → ((lcm‘𝑦) lcm 𝑧) ∥ 𝑘) |
124 | | breq1 5073 |
. . . . . . . . . . . . . . . . . . . 20
⊢
((lcm‘(𝑦 ∪ {𝑧})) = ((lcm‘𝑦) lcm 𝑧) → ((lcm‘(𝑦 ∪ {𝑧})) ∥ 𝑘 ↔ ((lcm‘𝑦) lcm 𝑧) ∥ 𝑘)) |
125 | 123, 124 | syl5ibr 245 |
. . . . . . . . . . . . . . . . . . 19
⊢
((lcm‘(𝑦 ∪ {𝑧})) = ((lcm‘𝑦) lcm 𝑧) → ((((((𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin) ∧ ∀𝑘 ∈ ℤ (∀𝑚 ∈ 𝑦 𝑚 ∥ 𝑘 → (lcm‘𝑦) ∥ 𝑘)) ∧ (𝑛 ∈ ℤ ∧ 𝑘 ∈ ℕ)) ∧ (0 ∉ 𝑦 ∧ 𝑧 ≠ 0 ∧ 𝑛 ≠ 0)) ∧ ∀𝑖 ∈ ((𝑦 ∪ {𝑧}) ∪ {𝑛})𝑖 ∥ 𝑘) → (lcm‘(𝑦 ∪ {𝑧})) ∥ 𝑘)) |
126 | 125 | expd 415 |
. . . . . . . . . . . . . . . . . 18
⊢
((lcm‘(𝑦 ∪ {𝑧})) = ((lcm‘𝑦) lcm 𝑧) → (((((𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin) ∧ ∀𝑘 ∈ ℤ (∀𝑚 ∈ 𝑦 𝑚 ∥ 𝑘 → (lcm‘𝑦) ∥ 𝑘)) ∧ (𝑛 ∈ ℤ ∧ 𝑘 ∈ ℕ)) ∧ (0 ∉ 𝑦 ∧ 𝑧 ≠ 0 ∧ 𝑛 ≠ 0)) → (∀𝑖 ∈ ((𝑦 ∪ {𝑧}) ∪ {𝑛})𝑖 ∥ 𝑘 → (lcm‘(𝑦 ∪ {𝑧})) ∥ 𝑘))) |
127 | 126 | exp5j 445 |
. . . . . . . . . . . . . . . . 17
⊢
((lcm‘(𝑦 ∪ {𝑧})) = ((lcm‘𝑦) lcm 𝑧) → ((𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin) → (∀𝑘 ∈ ℤ (∀𝑚 ∈ 𝑦 𝑚 ∥ 𝑘 → (lcm‘𝑦) ∥ 𝑘) → ((𝑛 ∈ ℤ ∧ 𝑘 ∈ ℕ) → ((0 ∉ 𝑦 ∧ 𝑧 ≠ 0 ∧ 𝑛 ≠ 0) → (∀𝑖 ∈ ((𝑦 ∪ {𝑧}) ∪ {𝑛})𝑖 ∥ 𝑘 → (lcm‘(𝑦 ∪ {𝑧})) ∥ 𝑘)))))) |
128 | 127 | com12 32 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin) →
((lcm‘(𝑦 ∪
{𝑧})) =
((lcm‘𝑦) lcm
𝑧) → (∀𝑘 ∈ ℤ (∀𝑚 ∈ 𝑦 𝑚 ∥ 𝑘 → (lcm‘𝑦) ∥ 𝑘) → ((𝑛 ∈ ℤ ∧ 𝑘 ∈ ℕ) → ((0 ∉ 𝑦 ∧ 𝑧 ≠ 0 ∧ 𝑛 ≠ 0) → (∀𝑖 ∈ ((𝑦 ∪ {𝑧}) ∪ {𝑛})𝑖 ∥ 𝑘 → (lcm‘(𝑦 ∪ {𝑧})) ∥ 𝑘)))))) |
129 | 68, 128 | syld 47 |
. . . . . . . . . . . . . . 15
⊢ ((𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin) →
(∀𝑛 ∈ ℤ
(lcm‘(𝑦 ∪
{𝑛})) =
((lcm‘𝑦) lcm
𝑛) → (∀𝑘 ∈ ℤ (∀𝑚 ∈ 𝑦 𝑚 ∥ 𝑘 → (lcm‘𝑦) ∥ 𝑘) → ((𝑛 ∈ ℤ ∧ 𝑘 ∈ ℕ) → ((0 ∉ 𝑦 ∧ 𝑧 ≠ 0 ∧ 𝑛 ≠ 0) → (∀𝑖 ∈ ((𝑦 ∪ {𝑧}) ∪ {𝑛})𝑖 ∥ 𝑘 → (lcm‘(𝑦 ∪ {𝑧})) ∥ 𝑘)))))) |
130 | 129 | com23 86 |
. . . . . . . . . . . . . 14
⊢ ((𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin) →
(∀𝑘 ∈ ℤ
(∀𝑚 ∈ 𝑦 𝑚 ∥ 𝑘 → (lcm‘𝑦) ∥ 𝑘) → (∀𝑛 ∈ ℤ (lcm‘(𝑦 ∪ {𝑛})) = ((lcm‘𝑦) lcm 𝑛) → ((𝑛 ∈ ℤ ∧ 𝑘 ∈ ℕ) → ((0 ∉ 𝑦 ∧ 𝑧 ≠ 0 ∧ 𝑛 ≠ 0) → (∀𝑖 ∈ ((𝑦 ∪ {𝑧}) ∪ {𝑛})𝑖 ∥ 𝑘 → (lcm‘(𝑦 ∪ {𝑧})) ∥ 𝑘)))))) |
131 | 130 | imp32 418 |
. . . . . . . . . . . . 13
⊢ (((𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin) ∧
(∀𝑘 ∈ ℤ
(∀𝑚 ∈ 𝑦 𝑚 ∥ 𝑘 → (lcm‘𝑦) ∥ 𝑘) ∧ ∀𝑛 ∈ ℤ (lcm‘(𝑦 ∪ {𝑛})) = ((lcm‘𝑦) lcm 𝑛))) → ((𝑛 ∈ ℤ ∧ 𝑘 ∈ ℕ) → ((0 ∉ 𝑦 ∧ 𝑧 ≠ 0 ∧ 𝑛 ≠ 0) → (∀𝑖 ∈ ((𝑦 ∪ {𝑧}) ∪ {𝑛})𝑖 ∥ 𝑘 → (lcm‘(𝑦 ∪ {𝑧})) ∥ 𝑘)))) |
132 | 131 | expd 415 |
. . . . . . . . . . . 12
⊢ (((𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin) ∧
(∀𝑘 ∈ ℤ
(∀𝑚 ∈ 𝑦 𝑚 ∥ 𝑘 → (lcm‘𝑦) ∥ 𝑘) ∧ ∀𝑛 ∈ ℤ (lcm‘(𝑦 ∪ {𝑛})) = ((lcm‘𝑦) lcm 𝑛))) → (𝑛 ∈ ℤ → (𝑘 ∈ ℕ → ((0 ∉ 𝑦 ∧ 𝑧 ≠ 0 ∧ 𝑛 ≠ 0) → (∀𝑖 ∈ ((𝑦 ∪ {𝑧}) ∪ {𝑛})𝑖 ∥ 𝑘 → (lcm‘(𝑦 ∪ {𝑧})) ∥ 𝑘))))) |
133 | 132 | com34 91 |
. . . . . . . . . . 11
⊢ (((𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin) ∧
(∀𝑘 ∈ ℤ
(∀𝑚 ∈ 𝑦 𝑚 ∥ 𝑘 → (lcm‘𝑦) ∥ 𝑘) ∧ ∀𝑛 ∈ ℤ (lcm‘(𝑦 ∪ {𝑛})) = ((lcm‘𝑦) lcm 𝑛))) → (𝑛 ∈ ℤ → ((0 ∉ 𝑦 ∧ 𝑧 ≠ 0 ∧ 𝑛 ≠ 0) → (𝑘 ∈ ℕ → (∀𝑖 ∈ ((𝑦 ∪ {𝑧}) ∪ {𝑛})𝑖 ∥ 𝑘 → (lcm‘(𝑦 ∪ {𝑧})) ∥ 𝑘))))) |
134 | 133 | com12 32 |
. . . . . . . . . 10
⊢ (𝑛 ∈ ℤ → (((𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin) ∧
(∀𝑘 ∈ ℤ
(∀𝑚 ∈ 𝑦 𝑚 ∥ 𝑘 → (lcm‘𝑦) ∥ 𝑘) ∧ ∀𝑛 ∈ ℤ (lcm‘(𝑦 ∪ {𝑛})) = ((lcm‘𝑦) lcm 𝑛))) → ((0 ∉ 𝑦 ∧ 𝑧 ≠ 0 ∧ 𝑛 ≠ 0) → (𝑘 ∈ ℕ → (∀𝑖 ∈ ((𝑦 ∪ {𝑧}) ∪ {𝑛})𝑖 ∥ 𝑘 → (lcm‘(𝑦 ∪ {𝑧})) ∥ 𝑘))))) |
135 | 134 | imp 406 |
. . . . . . . . 9
⊢ ((𝑛 ∈ ℤ ∧ ((𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin) ∧
(∀𝑘 ∈ ℤ
(∀𝑚 ∈ 𝑦 𝑚 ∥ 𝑘 → (lcm‘𝑦) ∥ 𝑘) ∧ ∀𝑛 ∈ ℤ (lcm‘(𝑦 ∪ {𝑛})) = ((lcm‘𝑦) lcm 𝑛)))) → ((0 ∉ 𝑦 ∧ 𝑧 ≠ 0 ∧ 𝑛 ≠ 0) → (𝑘 ∈ ℕ → (∀𝑖 ∈ ((𝑦 ∪ {𝑧}) ∪ {𝑛})𝑖 ∥ 𝑘 → (lcm‘(𝑦 ∪ {𝑧})) ∥ 𝑘)))) |
136 | 135 | com12 32 |
. . . . . . . 8
⊢ ((0
∉ 𝑦 ∧ 𝑧 ≠ 0 ∧ 𝑛 ≠ 0) → ((𝑛 ∈ ℤ ∧ ((𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin) ∧ (∀𝑘 ∈ ℤ (∀𝑚 ∈ 𝑦 𝑚 ∥ 𝑘 → (lcm‘𝑦) ∥ 𝑘) ∧ ∀𝑛 ∈ ℤ (lcm‘(𝑦 ∪ {𝑛})) = ((lcm‘𝑦) lcm 𝑛)))) → (𝑘 ∈ ℕ → (∀𝑖 ∈ ((𝑦 ∪ {𝑧}) ∪ {𝑛})𝑖 ∥ 𝑘 → (lcm‘(𝑦 ∪ {𝑧})) ∥ 𝑘)))) |
137 | 136 | imp 406 |
. . . . . . 7
⊢ (((0
∉ 𝑦 ∧ 𝑧 ≠ 0 ∧ 𝑛 ≠ 0) ∧ (𝑛 ∈ ℤ ∧ ((𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin) ∧ (∀𝑘 ∈ ℤ (∀𝑚 ∈ 𝑦 𝑚 ∥ 𝑘 → (lcm‘𝑦) ∥ 𝑘) ∧ ∀𝑛 ∈ ℤ (lcm‘(𝑦 ∪ {𝑛})) = ((lcm‘𝑦) lcm 𝑛))))) → (𝑘 ∈ ℕ → (∀𝑖 ∈ ((𝑦 ∪ {𝑧}) ∪ {𝑛})𝑖 ∥ 𝑘 → (lcm‘(𝑦 ∪ {𝑧})) ∥ 𝑘))) |
138 | 137 | imp 406 |
. . . . . 6
⊢ ((((0
∉ 𝑦 ∧ 𝑧 ≠ 0 ∧ 𝑛 ≠ 0) ∧ (𝑛 ∈ ℤ ∧ ((𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin) ∧ (∀𝑘 ∈ ℤ (∀𝑚 ∈ 𝑦 𝑚 ∥ 𝑘 → (lcm‘𝑦) ∥ 𝑘) ∧ ∀𝑛 ∈ ℤ (lcm‘(𝑦 ∪ {𝑛})) = ((lcm‘𝑦) lcm 𝑛))))) ∧ 𝑘 ∈ ℕ) → (∀𝑖 ∈ ((𝑦 ∪ {𝑧}) ∪ {𝑛})𝑖 ∥ 𝑘 → (lcm‘(𝑦 ∪ {𝑧})) ∥ 𝑘)) |
139 | 138 | imp 406 |
. . . . 5
⊢ (((((0
∉ 𝑦 ∧ 𝑧 ≠ 0 ∧ 𝑛 ≠ 0) ∧ (𝑛 ∈ ℤ ∧ ((𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin) ∧ (∀𝑘 ∈ ℤ (∀𝑚 ∈ 𝑦 𝑚 ∥ 𝑘 → (lcm‘𝑦) ∥ 𝑘) ∧ ∀𝑛 ∈ ℤ (lcm‘(𝑦 ∪ {𝑛})) = ((lcm‘𝑦) lcm 𝑛))))) ∧ 𝑘 ∈ ℕ) ∧ ∀𝑖 ∈ ((𝑦 ∪ {𝑧}) ∪ {𝑛})𝑖 ∥ 𝑘) → (lcm‘(𝑦 ∪ {𝑧})) ∥ 𝑘) |
140 | | vsnid 4595 |
. . . . . . . . 9
⊢ 𝑛 ∈ {𝑛} |
141 | 140 | olci 862 |
. . . . . . . 8
⊢ (𝑛 ∈ (𝑦 ∪ {𝑧}) ∨ 𝑛 ∈ {𝑛}) |
142 | | elun 4079 |
. . . . . . . 8
⊢ (𝑛 ∈ ((𝑦 ∪ {𝑧}) ∪ {𝑛}) ↔ (𝑛 ∈ (𝑦 ∪ {𝑧}) ∨ 𝑛 ∈ {𝑛})) |
143 | 141, 142 | mpbir 230 |
. . . . . . 7
⊢ 𝑛 ∈ ((𝑦 ∪ {𝑧}) ∪ {𝑛}) |
144 | | breq1 5073 |
. . . . . . . 8
⊢ (𝑖 = 𝑛 → (𝑖 ∥ 𝑘 ↔ 𝑛 ∥ 𝑘)) |
145 | 144 | rspcv 3547 |
. . . . . . 7
⊢ (𝑛 ∈ ((𝑦 ∪ {𝑧}) ∪ {𝑛}) → (∀𝑖 ∈ ((𝑦 ∪ {𝑧}) ∪ {𝑛})𝑖 ∥ 𝑘 → 𝑛 ∥ 𝑘)) |
146 | 143, 145 | mp1i 13 |
. . . . . 6
⊢ ((((0
∉ 𝑦 ∧ 𝑧 ≠ 0 ∧ 𝑛 ≠ 0) ∧ (𝑛 ∈ ℤ ∧ ((𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin) ∧ (∀𝑘 ∈ ℤ (∀𝑚 ∈ 𝑦 𝑚 ∥ 𝑘 → (lcm‘𝑦) ∥ 𝑘) ∧ ∀𝑛 ∈ ℤ (lcm‘(𝑦 ∪ {𝑛})) = ((lcm‘𝑦) lcm 𝑛))))) ∧ 𝑘 ∈ ℕ) → (∀𝑖 ∈ ((𝑦 ∪ {𝑧}) ∪ {𝑛})𝑖 ∥ 𝑘 → 𝑛 ∥ 𝑘)) |
147 | 146 | imp 406 |
. . . . 5
⊢ (((((0
∉ 𝑦 ∧ 𝑧 ≠ 0 ∧ 𝑛 ≠ 0) ∧ (𝑛 ∈ ℤ ∧ ((𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin) ∧ (∀𝑘 ∈ ℤ (∀𝑚 ∈ 𝑦 𝑚 ∥ 𝑘 → (lcm‘𝑦) ∥ 𝑘) ∧ ∀𝑛 ∈ ℤ (lcm‘(𝑦 ∪ {𝑛})) = ((lcm‘𝑦) lcm 𝑛))))) ∧ 𝑘 ∈ ℕ) ∧ ∀𝑖 ∈ ((𝑦 ∪ {𝑧}) ∪ {𝑛})𝑖 ∥ 𝑘) → 𝑛 ∥ 𝑘) |
148 | 139, 147 | jca 511 |
. . . 4
⊢ (((((0
∉ 𝑦 ∧ 𝑧 ≠ 0 ∧ 𝑛 ≠ 0) ∧ (𝑛 ∈ ℤ ∧ ((𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin) ∧ (∀𝑘 ∈ ℤ (∀𝑚 ∈ 𝑦 𝑚 ∥ 𝑘 → (lcm‘𝑦) ∥ 𝑘) ∧ ∀𝑛 ∈ ℤ (lcm‘(𝑦 ∪ {𝑛})) = ((lcm‘𝑦) lcm 𝑛))))) ∧ 𝑘 ∈ ℕ) ∧ ∀𝑖 ∈ ((𝑦 ∪ {𝑧}) ∪ {𝑛})𝑖 ∥ 𝑘) → ((lcm‘(𝑦 ∪ {𝑧})) ∥ 𝑘 ∧ 𝑛 ∥ 𝑘)) |
149 | | lcmledvds 16232 |
. . . 4
⊢ (((𝑘 ∈ ℕ ∧
(lcm‘(𝑦 ∪
{𝑧})) ∈ ℤ ∧
𝑛 ∈ ℤ) ∧
¬ ((lcm‘(𝑦
∪ {𝑧})) = 0 ∨ 𝑛 = 0)) →
(((lcm‘(𝑦
∪ {𝑧})) ∥ 𝑘 ∧ 𝑛 ∥ 𝑘) → ((lcm‘(𝑦 ∪ {𝑧})) lcm 𝑛) ≤ 𝑘)) |
150 | 61, 148, 149 | sylc 65 |
. . 3
⊢ (((((0
∉ 𝑦 ∧ 𝑧 ≠ 0 ∧ 𝑛 ≠ 0) ∧ (𝑛 ∈ ℤ ∧ ((𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin) ∧ (∀𝑘 ∈ ℤ (∀𝑚 ∈ 𝑦 𝑚 ∥ 𝑘 → (lcm‘𝑦) ∥ 𝑘) ∧ ∀𝑛 ∈ ℤ (lcm‘(𝑦 ∪ {𝑛})) = ((lcm‘𝑦) lcm 𝑛))))) ∧ 𝑘 ∈ ℕ) ∧ ∀𝑖 ∈ ((𝑦 ∪ {𝑧}) ∪ {𝑛})𝑖 ∥ 𝑘) → ((lcm‘(𝑦 ∪ {𝑧})) lcm 𝑛) ≤ 𝑘) |
151 | 150 | exp31 419 |
. 2
⊢ (((0
∉ 𝑦 ∧ 𝑧 ≠ 0 ∧ 𝑛 ≠ 0) ∧ (𝑛 ∈ ℤ ∧ ((𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin) ∧ (∀𝑘 ∈ ℤ (∀𝑚 ∈ 𝑦 𝑚 ∥ 𝑘 → (lcm‘𝑦) ∥ 𝑘) ∧ ∀𝑛 ∈ ℤ (lcm‘(𝑦 ∪ {𝑛})) = ((lcm‘𝑦) lcm 𝑛))))) → (𝑘 ∈ ℕ → (∀𝑖 ∈ ((𝑦 ∪ {𝑧}) ∪ {𝑛})𝑖 ∥ 𝑘 → ((lcm‘(𝑦 ∪ {𝑧})) lcm 𝑛) ≤ 𝑘))) |
152 | 9, 151 | ralrimi 3139 |
1
⊢ (((0
∉ 𝑦 ∧ 𝑧 ≠ 0 ∧ 𝑛 ≠ 0) ∧ (𝑛 ∈ ℤ ∧ ((𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin) ∧ (∀𝑘 ∈ ℤ (∀𝑚 ∈ 𝑦 𝑚 ∥ 𝑘 → (lcm‘𝑦) ∥ 𝑘) ∧ ∀𝑛 ∈ ℤ (lcm‘(𝑦 ∪ {𝑛})) = ((lcm‘𝑦) lcm 𝑛))))) → ∀𝑘 ∈ ℕ (∀𝑖 ∈ ((𝑦 ∪ {𝑧}) ∪ {𝑛})𝑖 ∥ 𝑘 → ((lcm‘(𝑦 ∪ {𝑧})) lcm 𝑛) ≤ 𝑘)) |