MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  lcmfunsnlem2lem1 Structured version   Visualization version   GIF version

Theorem lcmfunsnlem2lem1 16582
Description: Lemma 1 for lcmfunsnlem2 16584. (Contributed by AV, 26-Aug-2020.)
Assertion
Ref Expression
lcmfunsnlem2lem1 (((0 ∉ 𝑦𝑧 ≠ 0 ∧ 𝑛 ≠ 0) ∧ (𝑛 ∈ ℤ ∧ ((𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin) ∧ (∀𝑘 ∈ ℤ (∀𝑚𝑦 𝑚𝑘 → (lcm𝑦) ∥ 𝑘) ∧ ∀𝑛 ∈ ℤ (lcm‘(𝑦 ∪ {𝑛})) = ((lcm𝑦) lcm 𝑛))))) → ∀𝑘 ∈ ℕ (∀𝑖 ∈ ((𝑦 ∪ {𝑧}) ∪ {𝑛})𝑖𝑘 → ((lcm‘(𝑦 ∪ {𝑧})) lcm 𝑛) ≤ 𝑘))
Distinct variable groups:   𝑦,𝑚,𝑧   𝑘,𝑛,𝑦,𝑧,𝑚,𝑖

Proof of Theorem lcmfunsnlem2lem1
Dummy variable 𝑙 is distinct from all other variables.
StepHypRef Expression
1 nfv 1916 . . 3 𝑘(0 ∉ 𝑦𝑧 ≠ 0 ∧ 𝑛 ≠ 0)
2 nfv 1916 . . . 4 𝑘 𝑛 ∈ ℤ
3 nfv 1916 . . . . 5 𝑘(𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin)
4 nfra1 3280 . . . . . 6 𝑘𝑘 ∈ ℤ (∀𝑚𝑦 𝑚𝑘 → (lcm𝑦) ∥ 𝑘)
5 nfv 1916 . . . . . 6 𝑘𝑛 ∈ ℤ (lcm‘(𝑦 ∪ {𝑛})) = ((lcm𝑦) lcm 𝑛)
64, 5nfan 1901 . . . . 5 𝑘(∀𝑘 ∈ ℤ (∀𝑚𝑦 𝑚𝑘 → (lcm𝑦) ∥ 𝑘) ∧ ∀𝑛 ∈ ℤ (lcm‘(𝑦 ∪ {𝑛})) = ((lcm𝑦) lcm 𝑛))
73, 6nfan 1901 . . . 4 𝑘((𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin) ∧ (∀𝑘 ∈ ℤ (∀𝑚𝑦 𝑚𝑘 → (lcm𝑦) ∥ 𝑘) ∧ ∀𝑛 ∈ ℤ (lcm‘(𝑦 ∪ {𝑛})) = ((lcm𝑦) lcm 𝑛)))
82, 7nfan 1901 . . 3 𝑘(𝑛 ∈ ℤ ∧ ((𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin) ∧ (∀𝑘 ∈ ℤ (∀𝑚𝑦 𝑚𝑘 → (lcm𝑦) ∥ 𝑘) ∧ ∀𝑛 ∈ ℤ (lcm‘(𝑦 ∪ {𝑛})) = ((lcm𝑦) lcm 𝑛))))
91, 8nfan 1901 . 2 𝑘((0 ∉ 𝑦𝑧 ≠ 0 ∧ 𝑛 ≠ 0) ∧ (𝑛 ∈ ℤ ∧ ((𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin) ∧ (∀𝑘 ∈ ℤ (∀𝑚𝑦 𝑚𝑘 → (lcm𝑦) ∥ 𝑘) ∧ ∀𝑛 ∈ ℤ (lcm‘(𝑦 ∪ {𝑛})) = ((lcm𝑦) lcm 𝑛)))))
10 simprr 770 . . . . . . . . . . . 12 ((((0 ∉ 𝑦𝑧 ≠ 0 ∧ 𝑛 ≠ 0) ∧ (𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin)) ∧ (𝑛 ∈ ℤ ∧ 𝑘 ∈ ℕ)) → 𝑘 ∈ ℕ)
11 simp2 1136 . . . . . . . . . . . . . . . . . 18 ((𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin) → 𝑦 ⊆ ℤ)
12 snssi 4811 . . . . . . . . . . . . . . . . . . 19 (𝑧 ∈ ℤ → {𝑧} ⊆ ℤ)
13123ad2ant1 1132 . . . . . . . . . . . . . . . . . 18 ((𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin) → {𝑧} ⊆ ℤ)
1411, 13unssd 4186 . . . . . . . . . . . . . . . . 17 ((𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin) → (𝑦 ∪ {𝑧}) ⊆ ℤ)
15 simp3 1137 . . . . . . . . . . . . . . . . . 18 ((𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin) → 𝑦 ∈ Fin)
16 snfi 9050 . . . . . . . . . . . . . . . . . 18 {𝑧} ∈ Fin
17 unfi 9178 . . . . . . . . . . . . . . . . . 18 ((𝑦 ∈ Fin ∧ {𝑧} ∈ Fin) → (𝑦 ∪ {𝑧}) ∈ Fin)
1815, 16, 17sylancl 585 . . . . . . . . . . . . . . . . 17 ((𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin) → (𝑦 ∪ {𝑧}) ∈ Fin)
1914, 18jca 511 . . . . . . . . . . . . . . . 16 ((𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin) → ((𝑦 ∪ {𝑧}) ⊆ ℤ ∧ (𝑦 ∪ {𝑧}) ∈ Fin))
20 lcmfcl 16572 . . . . . . . . . . . . . . . 16 (((𝑦 ∪ {𝑧}) ⊆ ℤ ∧ (𝑦 ∪ {𝑧}) ∈ Fin) → (lcm‘(𝑦 ∪ {𝑧})) ∈ ℕ0)
2119, 20syl 17 . . . . . . . . . . . . . . 15 ((𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin) → (lcm‘(𝑦 ∪ {𝑧})) ∈ ℕ0)
2221nn0zd 12591 . . . . . . . . . . . . . 14 ((𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin) → (lcm‘(𝑦 ∪ {𝑧})) ∈ ℤ)
2322adantl 481 . . . . . . . . . . . . 13 (((0 ∉ 𝑦𝑧 ≠ 0 ∧ 𝑛 ≠ 0) ∧ (𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin)) → (lcm‘(𝑦 ∪ {𝑧})) ∈ ℤ)
2423adantr 480 . . . . . . . . . . . 12 ((((0 ∉ 𝑦𝑧 ≠ 0 ∧ 𝑛 ≠ 0) ∧ (𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin)) ∧ (𝑛 ∈ ℤ ∧ 𝑘 ∈ ℕ)) → (lcm‘(𝑦 ∪ {𝑧})) ∈ ℤ)
25 simprl 768 . . . . . . . . . . . 12 ((((0 ∉ 𝑦𝑧 ≠ 0 ∧ 𝑛 ≠ 0) ∧ (𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin)) ∧ (𝑛 ∈ ℤ ∧ 𝑘 ∈ ℕ)) → 𝑛 ∈ ℤ)
2610, 24, 253jca 1127 . . . . . . . . . . 11 ((((0 ∉ 𝑦𝑧 ≠ 0 ∧ 𝑛 ≠ 0) ∧ (𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin)) ∧ (𝑛 ∈ ℤ ∧ 𝑘 ∈ ℕ)) → (𝑘 ∈ ℕ ∧ (lcm‘(𝑦 ∪ {𝑧})) ∈ ℤ ∧ 𝑛 ∈ ℤ))
2714adantl 481 . . . . . . . . . . . . . . . . . 18 (((0 ∉ 𝑦𝑧 ≠ 0 ∧ 𝑛 ≠ 0) ∧ (𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin)) → (𝑦 ∪ {𝑧}) ⊆ ℤ)
2818adantl 481 . . . . . . . . . . . . . . . . . 18 (((0 ∉ 𝑦𝑧 ≠ 0 ∧ 𝑛 ≠ 0) ∧ (𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin)) → (𝑦 ∪ {𝑧}) ∈ Fin)
29 df-nel 3046 . . . . . . . . . . . . . . . . . . . . . . 23 (0 ∉ 𝑦 ↔ ¬ 0 ∈ 𝑦)
3029biimpi 215 . . . . . . . . . . . . . . . . . . . . . 22 (0 ∉ 𝑦 → ¬ 0 ∈ 𝑦)
31 elsni 4645 . . . . . . . . . . . . . . . . . . . . . . . 24 (0 ∈ {𝑧} → 0 = 𝑧)
3231eqcomd 2737 . . . . . . . . . . . . . . . . . . . . . . 23 (0 ∈ {𝑧} → 𝑧 = 0)
3332necon3ai 2964 . . . . . . . . . . . . . . . . . . . . . 22 (𝑧 ≠ 0 → ¬ 0 ∈ {𝑧})
3430, 33anim12i 612 . . . . . . . . . . . . . . . . . . . . 21 ((0 ∉ 𝑦𝑧 ≠ 0) → (¬ 0 ∈ 𝑦 ∧ ¬ 0 ∈ {𝑧}))
35343adant3 1131 . . . . . . . . . . . . . . . . . . . 20 ((0 ∉ 𝑦𝑧 ≠ 0 ∧ 𝑛 ≠ 0) → (¬ 0 ∈ 𝑦 ∧ ¬ 0 ∈ {𝑧}))
36 df-nel 3046 . . . . . . . . . . . . . . . . . . . . 21 (0 ∉ (𝑦 ∪ {𝑧}) ↔ ¬ 0 ∈ (𝑦 ∪ {𝑧}))
37 ioran 981 . . . . . . . . . . . . . . . . . . . . . 22 (¬ (0 ∈ 𝑦 ∨ 0 ∈ {𝑧}) ↔ (¬ 0 ∈ 𝑦 ∧ ¬ 0 ∈ {𝑧}))
38 elun 4148 . . . . . . . . . . . . . . . . . . . . . 22 (0 ∈ (𝑦 ∪ {𝑧}) ↔ (0 ∈ 𝑦 ∨ 0 ∈ {𝑧}))
3937, 38xchnxbir 333 . . . . . . . . . . . . . . . . . . . . 21 (¬ 0 ∈ (𝑦 ∪ {𝑧}) ↔ (¬ 0 ∈ 𝑦 ∧ ¬ 0 ∈ {𝑧}))
4036, 39bitri 275 . . . . . . . . . . . . . . . . . . . 20 (0 ∉ (𝑦 ∪ {𝑧}) ↔ (¬ 0 ∈ 𝑦 ∧ ¬ 0 ∈ {𝑧}))
4135, 40sylibr 233 . . . . . . . . . . . . . . . . . . 19 ((0 ∉ 𝑦𝑧 ≠ 0 ∧ 𝑛 ≠ 0) → 0 ∉ (𝑦 ∪ {𝑧}))
4241adantr 480 . . . . . . . . . . . . . . . . . 18 (((0 ∉ 𝑦𝑧 ≠ 0 ∧ 𝑛 ≠ 0) ∧ (𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin)) → 0 ∉ (𝑦 ∪ {𝑧}))
4327, 28, 423jca 1127 . . . . . . . . . . . . . . . . 17 (((0 ∉ 𝑦𝑧 ≠ 0 ∧ 𝑛 ≠ 0) ∧ (𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin)) → ((𝑦 ∪ {𝑧}) ⊆ ℤ ∧ (𝑦 ∪ {𝑧}) ∈ Fin ∧ 0 ∉ (𝑦 ∪ {𝑧})))
4443adantr 480 . . . . . . . . . . . . . . . 16 ((((0 ∉ 𝑦𝑧 ≠ 0 ∧ 𝑛 ≠ 0) ∧ (𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin)) ∧ (𝑛 ∈ ℤ ∧ 𝑘 ∈ ℕ)) → ((𝑦 ∪ {𝑧}) ⊆ ℤ ∧ (𝑦 ∪ {𝑧}) ∈ Fin ∧ 0 ∉ (𝑦 ∪ {𝑧})))
45 lcmfn0cl 16570 . . . . . . . . . . . . . . . 16 (((𝑦 ∪ {𝑧}) ⊆ ℤ ∧ (𝑦 ∪ {𝑧}) ∈ Fin ∧ 0 ∉ (𝑦 ∪ {𝑧})) → (lcm‘(𝑦 ∪ {𝑧})) ∈ ℕ)
4644, 45syl 17 . . . . . . . . . . . . . . 15 ((((0 ∉ 𝑦𝑧 ≠ 0 ∧ 𝑛 ≠ 0) ∧ (𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin)) ∧ (𝑛 ∈ ℤ ∧ 𝑘 ∈ ℕ)) → (lcm‘(𝑦 ∪ {𝑧})) ∈ ℕ)
4746nnne0d 12269 . . . . . . . . . . . . . 14 ((((0 ∉ 𝑦𝑧 ≠ 0 ∧ 𝑛 ≠ 0) ∧ (𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin)) ∧ (𝑛 ∈ ℤ ∧ 𝑘 ∈ ℕ)) → (lcm‘(𝑦 ∪ {𝑧})) ≠ 0)
4847neneqd 2944 . . . . . . . . . . . . 13 ((((0 ∉ 𝑦𝑧 ≠ 0 ∧ 𝑛 ≠ 0) ∧ (𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin)) ∧ (𝑛 ∈ ℤ ∧ 𝑘 ∈ ℕ)) → ¬ (lcm‘(𝑦 ∪ {𝑧})) = 0)
49 neneq 2945 . . . . . . . . . . . . . . 15 (𝑛 ≠ 0 → ¬ 𝑛 = 0)
50493ad2ant3 1134 . . . . . . . . . . . . . 14 ((0 ∉ 𝑦𝑧 ≠ 0 ∧ 𝑛 ≠ 0) → ¬ 𝑛 = 0)
5150ad2antrr 723 . . . . . . . . . . . . 13 ((((0 ∉ 𝑦𝑧 ≠ 0 ∧ 𝑛 ≠ 0) ∧ (𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin)) ∧ (𝑛 ∈ ℤ ∧ 𝑘 ∈ ℕ)) → ¬ 𝑛 = 0)
5248, 51jca 511 . . . . . . . . . . . 12 ((((0 ∉ 𝑦𝑧 ≠ 0 ∧ 𝑛 ≠ 0) ∧ (𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin)) ∧ (𝑛 ∈ ℤ ∧ 𝑘 ∈ ℕ)) → (¬ (lcm‘(𝑦 ∪ {𝑧})) = 0 ∧ ¬ 𝑛 = 0))
53 ioran 981 . . . . . . . . . . . 12 (¬ ((lcm‘(𝑦 ∪ {𝑧})) = 0 ∨ 𝑛 = 0) ↔ (¬ (lcm‘(𝑦 ∪ {𝑧})) = 0 ∧ ¬ 𝑛 = 0))
5452, 53sylibr 233 . . . . . . . . . . 11 ((((0 ∉ 𝑦𝑧 ≠ 0 ∧ 𝑛 ≠ 0) ∧ (𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin)) ∧ (𝑛 ∈ ℤ ∧ 𝑘 ∈ ℕ)) → ¬ ((lcm‘(𝑦 ∪ {𝑧})) = 0 ∨ 𝑛 = 0))
5526, 54jca 511 . . . . . . . . . 10 ((((0 ∉ 𝑦𝑧 ≠ 0 ∧ 𝑛 ≠ 0) ∧ (𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin)) ∧ (𝑛 ∈ ℤ ∧ 𝑘 ∈ ℕ)) → ((𝑘 ∈ ℕ ∧ (lcm‘(𝑦 ∪ {𝑧})) ∈ ℤ ∧ 𝑛 ∈ ℤ) ∧ ¬ ((lcm‘(𝑦 ∪ {𝑧})) = 0 ∨ 𝑛 = 0)))
5655exp43 436 . . . . . . . . 9 ((0 ∉ 𝑦𝑧 ≠ 0 ∧ 𝑛 ≠ 0) → ((𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin) → (𝑛 ∈ ℤ → (𝑘 ∈ ℕ → ((𝑘 ∈ ℕ ∧ (lcm‘(𝑦 ∪ {𝑧})) ∈ ℤ ∧ 𝑛 ∈ ℤ) ∧ ¬ ((lcm‘(𝑦 ∪ {𝑧})) = 0 ∨ 𝑛 = 0))))))
5756adantrd 491 . . . . . . . 8 ((0 ∉ 𝑦𝑧 ≠ 0 ∧ 𝑛 ≠ 0) → (((𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin) ∧ (∀𝑘 ∈ ℤ (∀𝑚𝑦 𝑚𝑘 → (lcm𝑦) ∥ 𝑘) ∧ ∀𝑛 ∈ ℤ (lcm‘(𝑦 ∪ {𝑛})) = ((lcm𝑦) lcm 𝑛))) → (𝑛 ∈ ℤ → (𝑘 ∈ ℕ → ((𝑘 ∈ ℕ ∧ (lcm‘(𝑦 ∪ {𝑧})) ∈ ℤ ∧ 𝑛 ∈ ℤ) ∧ ¬ ((lcm‘(𝑦 ∪ {𝑧})) = 0 ∨ 𝑛 = 0))))))
5857com23 86 . . . . . . 7 ((0 ∉ 𝑦𝑧 ≠ 0 ∧ 𝑛 ≠ 0) → (𝑛 ∈ ℤ → (((𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin) ∧ (∀𝑘 ∈ ℤ (∀𝑚𝑦 𝑚𝑘 → (lcm𝑦) ∥ 𝑘) ∧ ∀𝑛 ∈ ℤ (lcm‘(𝑦 ∪ {𝑛})) = ((lcm𝑦) lcm 𝑛))) → (𝑘 ∈ ℕ → ((𝑘 ∈ ℕ ∧ (lcm‘(𝑦 ∪ {𝑧})) ∈ ℤ ∧ 𝑛 ∈ ℤ) ∧ ¬ ((lcm‘(𝑦 ∪ {𝑧})) = 0 ∨ 𝑛 = 0))))))
5958imp32 418 . . . . . 6 (((0 ∉ 𝑦𝑧 ≠ 0 ∧ 𝑛 ≠ 0) ∧ (𝑛 ∈ ℤ ∧ ((𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin) ∧ (∀𝑘 ∈ ℤ (∀𝑚𝑦 𝑚𝑘 → (lcm𝑦) ∥ 𝑘) ∧ ∀𝑛 ∈ ℤ (lcm‘(𝑦 ∪ {𝑛})) = ((lcm𝑦) lcm 𝑛))))) → (𝑘 ∈ ℕ → ((𝑘 ∈ ℕ ∧ (lcm‘(𝑦 ∪ {𝑧})) ∈ ℤ ∧ 𝑛 ∈ ℤ) ∧ ¬ ((lcm‘(𝑦 ∪ {𝑧})) = 0 ∨ 𝑛 = 0))))
6059imp 406 . . . . 5 ((((0 ∉ 𝑦𝑧 ≠ 0 ∧ 𝑛 ≠ 0) ∧ (𝑛 ∈ ℤ ∧ ((𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin) ∧ (∀𝑘 ∈ ℤ (∀𝑚𝑦 𝑚𝑘 → (lcm𝑦) ∥ 𝑘) ∧ ∀𝑛 ∈ ℤ (lcm‘(𝑦 ∪ {𝑛})) = ((lcm𝑦) lcm 𝑛))))) ∧ 𝑘 ∈ ℕ) → ((𝑘 ∈ ℕ ∧ (lcm‘(𝑦 ∪ {𝑧})) ∈ ℤ ∧ 𝑛 ∈ ℤ) ∧ ¬ ((lcm‘(𝑦 ∪ {𝑧})) = 0 ∨ 𝑛 = 0)))
6160adantr 480 . . . 4 (((((0 ∉ 𝑦𝑧 ≠ 0 ∧ 𝑛 ≠ 0) ∧ (𝑛 ∈ ℤ ∧ ((𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin) ∧ (∀𝑘 ∈ ℤ (∀𝑚𝑦 𝑚𝑘 → (lcm𝑦) ∥ 𝑘) ∧ ∀𝑛 ∈ ℤ (lcm‘(𝑦 ∪ {𝑛})) = ((lcm𝑦) lcm 𝑛))))) ∧ 𝑘 ∈ ℕ) ∧ ∀𝑖 ∈ ((𝑦 ∪ {𝑧}) ∪ {𝑛})𝑖𝑘) → ((𝑘 ∈ ℕ ∧ (lcm‘(𝑦 ∪ {𝑧})) ∈ ℤ ∧ 𝑛 ∈ ℤ) ∧ ¬ ((lcm‘(𝑦 ∪ {𝑧})) = 0 ∨ 𝑛 = 0)))
62 sneq 4638 . . . . . . . . . . . . . . . . . . . . 21 (𝑛 = 𝑧 → {𝑛} = {𝑧})
6362uneq2d 4163 . . . . . . . . . . . . . . . . . . . 20 (𝑛 = 𝑧 → (𝑦 ∪ {𝑛}) = (𝑦 ∪ {𝑧}))
6463fveq2d 6895 . . . . . . . . . . . . . . . . . . 19 (𝑛 = 𝑧 → (lcm‘(𝑦 ∪ {𝑛})) = (lcm‘(𝑦 ∪ {𝑧})))
65 oveq2 7420 . . . . . . . . . . . . . . . . . . 19 (𝑛 = 𝑧 → ((lcm𝑦) lcm 𝑛) = ((lcm𝑦) lcm 𝑧))
6664, 65eqeq12d 2747 . . . . . . . . . . . . . . . . . 18 (𝑛 = 𝑧 → ((lcm‘(𝑦 ∪ {𝑛})) = ((lcm𝑦) lcm 𝑛) ↔ (lcm‘(𝑦 ∪ {𝑧})) = ((lcm𝑦) lcm 𝑧)))
6766rspcv 3608 . . . . . . . . . . . . . . . . 17 (𝑧 ∈ ℤ → (∀𝑛 ∈ ℤ (lcm‘(𝑦 ∪ {𝑛})) = ((lcm𝑦) lcm 𝑛) → (lcm‘(𝑦 ∪ {𝑧})) = ((lcm𝑦) lcm 𝑧)))
68673ad2ant1 1132 . . . . . . . . . . . . . . . 16 ((𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin) → (∀𝑛 ∈ ℤ (lcm‘(𝑦 ∪ {𝑛})) = ((lcm𝑦) lcm 𝑛) → (lcm‘(𝑦 ∪ {𝑧})) = ((lcm𝑦) lcm 𝑧)))
69 nnz 12586 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑘 ∈ ℕ → 𝑘 ∈ ℤ)
7069adantl 481 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝑛 ∈ ℤ ∧ 𝑘 ∈ ℕ) → 𝑘 ∈ ℤ)
7170adantl 481 . . . . . . . . . . . . . . . . . . . . . . 23 ((((𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin) ∧ ∀𝑘 ∈ ℤ (∀𝑚𝑦 𝑚𝑘 → (lcm𝑦) ∥ 𝑘)) ∧ (𝑛 ∈ ℤ ∧ 𝑘 ∈ ℕ)) → 𝑘 ∈ ℤ)
72 lcmfcl 16572 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin) → (lcm𝑦) ∈ ℕ0)
7372nn0zd 12591 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin) → (lcm𝑦) ∈ ℤ)
74733adant1 1129 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin) → (lcm𝑦) ∈ ℤ)
7574ad2antrr 723 . . . . . . . . . . . . . . . . . . . . . . 23 ((((𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin) ∧ ∀𝑘 ∈ ℤ (∀𝑚𝑦 𝑚𝑘 → (lcm𝑦) ∥ 𝑘)) ∧ (𝑛 ∈ ℤ ∧ 𝑘 ∈ ℕ)) → (lcm𝑦) ∈ ℤ)
76 simpll1 1211 . . . . . . . . . . . . . . . . . . . . . . 23 ((((𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin) ∧ ∀𝑘 ∈ ℤ (∀𝑚𝑦 𝑚𝑘 → (lcm𝑦) ∥ 𝑘)) ∧ (𝑛 ∈ ℤ ∧ 𝑘 ∈ ℕ)) → 𝑧 ∈ ℤ)
7771, 75, 763jca 1127 . . . . . . . . . . . . . . . . . . . . . 22 ((((𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin) ∧ ∀𝑘 ∈ ℤ (∀𝑚𝑦 𝑚𝑘 → (lcm𝑦) ∥ 𝑘)) ∧ (𝑛 ∈ ℤ ∧ 𝑘 ∈ ℕ)) → (𝑘 ∈ ℤ ∧ (lcm𝑦) ∈ ℤ ∧ 𝑧 ∈ ℤ))
7877ad2antrr 723 . . . . . . . . . . . . . . . . . . . . 21 ((((((𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin) ∧ ∀𝑘 ∈ ℤ (∀𝑚𝑦 𝑚𝑘 → (lcm𝑦) ∥ 𝑘)) ∧ (𝑛 ∈ ℤ ∧ 𝑘 ∈ ℕ)) ∧ (0 ∉ 𝑦𝑧 ≠ 0 ∧ 𝑛 ≠ 0)) ∧ ∀𝑖 ∈ ((𝑦 ∪ {𝑧}) ∪ {𝑛})𝑖𝑘) → (𝑘 ∈ ℤ ∧ (lcm𝑦) ∈ ℤ ∧ 𝑧 ∈ ℤ))
79 elun1 4176 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 (𝑚𝑦𝑚 ∈ (𝑦 ∪ {𝑧}))
8079orcd 870 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 (𝑚𝑦 → (𝑚 ∈ (𝑦 ∪ {𝑧}) ∨ 𝑚 ∈ {𝑛}))
81 elun 4148 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 (𝑚 ∈ ((𝑦 ∪ {𝑧}) ∪ {𝑛}) ↔ (𝑚 ∈ (𝑦 ∪ {𝑧}) ∨ 𝑚 ∈ {𝑛}))
8280, 81sylibr 233 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 (𝑚𝑦𝑚 ∈ ((𝑦 ∪ {𝑧}) ∪ {𝑛}))
83 breq1 5151 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 (𝑖 = 𝑚 → (𝑖𝑘𝑚𝑘))
8483rspcv 3608 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 (𝑚 ∈ ((𝑦 ∪ {𝑧}) ∪ {𝑛}) → (∀𝑖 ∈ ((𝑦 ∪ {𝑧}) ∪ {𝑛})𝑖𝑘𝑚𝑘))
8582, 84syl 17 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 (𝑚𝑦 → (∀𝑖 ∈ ((𝑦 ∪ {𝑧}) ∪ {𝑛})𝑖𝑘𝑚𝑘))
8685com12 32 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 (∀𝑖 ∈ ((𝑦 ∪ {𝑧}) ∪ {𝑛})𝑖𝑘 → (𝑚𝑦𝑚𝑘))
8786adantl 481 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (((𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin) ∧ ∀𝑖 ∈ ((𝑦 ∪ {𝑧}) ∪ {𝑛})𝑖𝑘) → (𝑚𝑦𝑚𝑘))
8887ralrimiv 3144 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (((𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin) ∧ ∀𝑖 ∈ ((𝑦 ∪ {𝑧}) ∪ {𝑛})𝑖𝑘) → ∀𝑚𝑦 𝑚𝑘)
8988adantr 480 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((((𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin) ∧ ∀𝑖 ∈ ((𝑦 ∪ {𝑧}) ∪ {𝑛})𝑖𝑘) ∧ ((𝑛 ∈ ℤ ∧ 𝑘 ∈ ℕ) ∧ (0 ∉ 𝑦𝑧 ≠ 0 ∧ 𝑛 ≠ 0))) → ∀𝑚𝑦 𝑚𝑘)
90 breq2 5152 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 (𝑘 = 𝑙 → (𝑚𝑘𝑚𝑙))
9190ralbidv 3176 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 (𝑘 = 𝑙 → (∀𝑚𝑦 𝑚𝑘 ↔ ∀𝑚𝑦 𝑚𝑙))
92 breq2 5152 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 (𝑘 = 𝑙 → ((lcm𝑦) ∥ 𝑘 ↔ (lcm𝑦) ∥ 𝑙))
9391, 92imbi12d 344 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (𝑘 = 𝑙 → ((∀𝑚𝑦 𝑚𝑘 → (lcm𝑦) ∥ 𝑘) ↔ (∀𝑚𝑦 𝑚𝑙 → (lcm𝑦) ∥ 𝑙)))
9493cbvralvw 3233 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (∀𝑘 ∈ ℤ (∀𝑚𝑦 𝑚𝑘 → (lcm𝑦) ∥ 𝑘) ↔ ∀𝑙 ∈ ℤ (∀𝑚𝑦 𝑚𝑙 → (lcm𝑦) ∥ 𝑙))
9570adantr 480 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 (((𝑛 ∈ ℤ ∧ 𝑘 ∈ ℕ) ∧ (0 ∉ 𝑦𝑧 ≠ 0 ∧ 𝑛 ≠ 0)) → 𝑘 ∈ ℤ)
9695adantl 481 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 ((((𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin) ∧ ∀𝑖 ∈ ((𝑦 ∪ {𝑧}) ∪ {𝑛})𝑖𝑘) ∧ ((𝑛 ∈ ℤ ∧ 𝑘 ∈ ℕ) ∧ (0 ∉ 𝑦𝑧 ≠ 0 ∧ 𝑛 ≠ 0))) → 𝑘 ∈ ℤ)
97 breq2 5152 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 (𝑙 = 𝑘 → (𝑚𝑙𝑚𝑘))
9897ralbidv 3176 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 (𝑙 = 𝑘 → (∀𝑚𝑦 𝑚𝑙 ↔ ∀𝑚𝑦 𝑚𝑘))
99 breq2 5152 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 (𝑙 = 𝑘 → ((lcm𝑦) ∥ 𝑙 ↔ (lcm𝑦) ∥ 𝑘))
10098, 99imbi12d 344 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 (𝑙 = 𝑘 → ((∀𝑚𝑦 𝑚𝑙 → (lcm𝑦) ∥ 𝑙) ↔ (∀𝑚𝑦 𝑚𝑘 → (lcm𝑦) ∥ 𝑘)))
101100rspcv 3608 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (𝑘 ∈ ℤ → (∀𝑙 ∈ ℤ (∀𝑚𝑦 𝑚𝑙 → (lcm𝑦) ∥ 𝑙) → (∀𝑚𝑦 𝑚𝑘 → (lcm𝑦) ∥ 𝑘)))
10296, 101syl 17 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 ((((𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin) ∧ ∀𝑖 ∈ ((𝑦 ∪ {𝑧}) ∪ {𝑛})𝑖𝑘) ∧ ((𝑛 ∈ ℤ ∧ 𝑘 ∈ ℕ) ∧ (0 ∉ 𝑦𝑧 ≠ 0 ∧ 𝑛 ≠ 0))) → (∀𝑙 ∈ ℤ (∀𝑚𝑦 𝑚𝑙 → (lcm𝑦) ∥ 𝑙) → (∀𝑚𝑦 𝑚𝑘 → (lcm𝑦) ∥ 𝑘)))
10394, 102biimtrid 241 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((((𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin) ∧ ∀𝑖 ∈ ((𝑦 ∪ {𝑧}) ∪ {𝑛})𝑖𝑘) ∧ ((𝑛 ∈ ℤ ∧ 𝑘 ∈ ℕ) ∧ (0 ∉ 𝑦𝑧 ≠ 0 ∧ 𝑛 ≠ 0))) → (∀𝑘 ∈ ℤ (∀𝑚𝑦 𝑚𝑘 → (lcm𝑦) ∥ 𝑘) → (∀𝑚𝑦 𝑚𝑘 → (lcm𝑦) ∥ 𝑘)))
10489, 103mpid 44 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((((𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin) ∧ ∀𝑖 ∈ ((𝑦 ∪ {𝑧}) ∪ {𝑛})𝑖𝑘) ∧ ((𝑛 ∈ ℤ ∧ 𝑘 ∈ ℕ) ∧ (0 ∉ 𝑦𝑧 ≠ 0 ∧ 𝑛 ≠ 0))) → (∀𝑘 ∈ ℤ (∀𝑚𝑦 𝑚𝑘 → (lcm𝑦) ∥ 𝑘) → (lcm𝑦) ∥ 𝑘))
105104exp31 419 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin) → (∀𝑖 ∈ ((𝑦 ∪ {𝑧}) ∪ {𝑛})𝑖𝑘 → (((𝑛 ∈ ℤ ∧ 𝑘 ∈ ℕ) ∧ (0 ∉ 𝑦𝑧 ≠ 0 ∧ 𝑛 ≠ 0)) → (∀𝑘 ∈ ℤ (∀𝑚𝑦 𝑚𝑘 → (lcm𝑦) ∥ 𝑘) → (lcm𝑦) ∥ 𝑘))))
106105com24 95 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin) → (∀𝑘 ∈ ℤ (∀𝑚𝑦 𝑚𝑘 → (lcm𝑦) ∥ 𝑘) → (((𝑛 ∈ ℤ ∧ 𝑘 ∈ ℕ) ∧ (0 ∉ 𝑦𝑧 ≠ 0 ∧ 𝑛 ≠ 0)) → (∀𝑖 ∈ ((𝑦 ∪ {𝑧}) ∪ {𝑛})𝑖𝑘 → (lcm𝑦) ∥ 𝑘))))
107106imp 406 . . . . . . . . . . . . . . . . . . . . . . . 24 (((𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin) ∧ ∀𝑘 ∈ ℤ (∀𝑚𝑦 𝑚𝑘 → (lcm𝑦) ∥ 𝑘)) → (((𝑛 ∈ ℤ ∧ 𝑘 ∈ ℕ) ∧ (0 ∉ 𝑦𝑧 ≠ 0 ∧ 𝑛 ≠ 0)) → (∀𝑖 ∈ ((𝑦 ∪ {𝑧}) ∪ {𝑛})𝑖𝑘 → (lcm𝑦) ∥ 𝑘)))
108107impl 455 . . . . . . . . . . . . . . . . . . . . . . 23 (((((𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin) ∧ ∀𝑘 ∈ ℤ (∀𝑚𝑦 𝑚𝑘 → (lcm𝑦) ∥ 𝑘)) ∧ (𝑛 ∈ ℤ ∧ 𝑘 ∈ ℕ)) ∧ (0 ∉ 𝑦𝑧 ≠ 0 ∧ 𝑛 ≠ 0)) → (∀𝑖 ∈ ((𝑦 ∪ {𝑧}) ∪ {𝑛})𝑖𝑘 → (lcm𝑦) ∥ 𝑘))
109108imp 406 . . . . . . . . . . . . . . . . . . . . . 22 ((((((𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin) ∧ ∀𝑘 ∈ ℤ (∀𝑚𝑦 𝑚𝑘 → (lcm𝑦) ∥ 𝑘)) ∧ (𝑛 ∈ ℤ ∧ 𝑘 ∈ ℕ)) ∧ (0 ∉ 𝑦𝑧 ≠ 0 ∧ 𝑛 ≠ 0)) ∧ ∀𝑖 ∈ ((𝑦 ∪ {𝑧}) ∪ {𝑛})𝑖𝑘) → (lcm𝑦) ∥ 𝑘)
110 vsnid 4665 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 𝑧 ∈ {𝑧}
111110olci 863 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (𝑧𝑦𝑧 ∈ {𝑧})
112 elun 4148 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (𝑧 ∈ (𝑦 ∪ {𝑧}) ↔ (𝑧𝑦𝑧 ∈ {𝑧}))
113111, 112mpbir 230 . . . . . . . . . . . . . . . . . . . . . . . . . 26 𝑧 ∈ (𝑦 ∪ {𝑧})
114113orci 862 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑧 ∈ (𝑦 ∪ {𝑧}) ∨ 𝑧 ∈ {𝑛})
115 elun 4148 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑧 ∈ ((𝑦 ∪ {𝑧}) ∪ {𝑛}) ↔ (𝑧 ∈ (𝑦 ∪ {𝑧}) ∨ 𝑧 ∈ {𝑛}))
116114, 115mpbir 230 . . . . . . . . . . . . . . . . . . . . . . . 24 𝑧 ∈ ((𝑦 ∪ {𝑧}) ∪ {𝑛})
117 breq1 5151 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑖 = 𝑧 → (𝑖𝑘𝑧𝑘))
118117rspcv 3608 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑧 ∈ ((𝑦 ∪ {𝑧}) ∪ {𝑛}) → (∀𝑖 ∈ ((𝑦 ∪ {𝑧}) ∪ {𝑛})𝑖𝑘𝑧𝑘))
119116, 118mp1i 13 . . . . . . . . . . . . . . . . . . . . . . 23 (((((𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin) ∧ ∀𝑘 ∈ ℤ (∀𝑚𝑦 𝑚𝑘 → (lcm𝑦) ∥ 𝑘)) ∧ (𝑛 ∈ ℤ ∧ 𝑘 ∈ ℕ)) ∧ (0 ∉ 𝑦𝑧 ≠ 0 ∧ 𝑛 ≠ 0)) → (∀𝑖 ∈ ((𝑦 ∪ {𝑧}) ∪ {𝑛})𝑖𝑘𝑧𝑘))
120119imp 406 . . . . . . . . . . . . . . . . . . . . . 22 ((((((𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin) ∧ ∀𝑘 ∈ ℤ (∀𝑚𝑦 𝑚𝑘 → (lcm𝑦) ∥ 𝑘)) ∧ (𝑛 ∈ ℤ ∧ 𝑘 ∈ ℕ)) ∧ (0 ∉ 𝑦𝑧 ≠ 0 ∧ 𝑛 ≠ 0)) ∧ ∀𝑖 ∈ ((𝑦 ∪ {𝑧}) ∪ {𝑛})𝑖𝑘) → 𝑧𝑘)
121109, 120jca 511 . . . . . . . . . . . . . . . . . . . . 21 ((((((𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin) ∧ ∀𝑘 ∈ ℤ (∀𝑚𝑦 𝑚𝑘 → (lcm𝑦) ∥ 𝑘)) ∧ (𝑛 ∈ ℤ ∧ 𝑘 ∈ ℕ)) ∧ (0 ∉ 𝑦𝑧 ≠ 0 ∧ 𝑛 ≠ 0)) ∧ ∀𝑖 ∈ ((𝑦 ∪ {𝑧}) ∪ {𝑛})𝑖𝑘) → ((lcm𝑦) ∥ 𝑘𝑧𝑘))
122 lcmdvds 16552 . . . . . . . . . . . . . . . . . . . . 21 ((𝑘 ∈ ℤ ∧ (lcm𝑦) ∈ ℤ ∧ 𝑧 ∈ ℤ) → (((lcm𝑦) ∥ 𝑘𝑧𝑘) → ((lcm𝑦) lcm 𝑧) ∥ 𝑘))
12378, 121, 122sylc 65 . . . . . . . . . . . . . . . . . . . 20 ((((((𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin) ∧ ∀𝑘 ∈ ℤ (∀𝑚𝑦 𝑚𝑘 → (lcm𝑦) ∥ 𝑘)) ∧ (𝑛 ∈ ℤ ∧ 𝑘 ∈ ℕ)) ∧ (0 ∉ 𝑦𝑧 ≠ 0 ∧ 𝑛 ≠ 0)) ∧ ∀𝑖 ∈ ((𝑦 ∪ {𝑧}) ∪ {𝑛})𝑖𝑘) → ((lcm𝑦) lcm 𝑧) ∥ 𝑘)
124 breq1 5151 . . . . . . . . . . . . . . . . . . . 20 ((lcm‘(𝑦 ∪ {𝑧})) = ((lcm𝑦) lcm 𝑧) → ((lcm‘(𝑦 ∪ {𝑧})) ∥ 𝑘 ↔ ((lcm𝑦) lcm 𝑧) ∥ 𝑘))
125123, 124imbitrrid 245 . . . . . . . . . . . . . . . . . . 19 ((lcm‘(𝑦 ∪ {𝑧})) = ((lcm𝑦) lcm 𝑧) → ((((((𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin) ∧ ∀𝑘 ∈ ℤ (∀𝑚𝑦 𝑚𝑘 → (lcm𝑦) ∥ 𝑘)) ∧ (𝑛 ∈ ℤ ∧ 𝑘 ∈ ℕ)) ∧ (0 ∉ 𝑦𝑧 ≠ 0 ∧ 𝑛 ≠ 0)) ∧ ∀𝑖 ∈ ((𝑦 ∪ {𝑧}) ∪ {𝑛})𝑖𝑘) → (lcm‘(𝑦 ∪ {𝑧})) ∥ 𝑘))
126125expd 415 . . . . . . . . . . . . . . . . . 18 ((lcm‘(𝑦 ∪ {𝑧})) = ((lcm𝑦) lcm 𝑧) → (((((𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin) ∧ ∀𝑘 ∈ ℤ (∀𝑚𝑦 𝑚𝑘 → (lcm𝑦) ∥ 𝑘)) ∧ (𝑛 ∈ ℤ ∧ 𝑘 ∈ ℕ)) ∧ (0 ∉ 𝑦𝑧 ≠ 0 ∧ 𝑛 ≠ 0)) → (∀𝑖 ∈ ((𝑦 ∪ {𝑧}) ∪ {𝑛})𝑖𝑘 → (lcm‘(𝑦 ∪ {𝑧})) ∥ 𝑘)))
127126exp5j 445 . . . . . . . . . . . . . . . . 17 ((lcm‘(𝑦 ∪ {𝑧})) = ((lcm𝑦) lcm 𝑧) → ((𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin) → (∀𝑘 ∈ ℤ (∀𝑚𝑦 𝑚𝑘 → (lcm𝑦) ∥ 𝑘) → ((𝑛 ∈ ℤ ∧ 𝑘 ∈ ℕ) → ((0 ∉ 𝑦𝑧 ≠ 0 ∧ 𝑛 ≠ 0) → (∀𝑖 ∈ ((𝑦 ∪ {𝑧}) ∪ {𝑛})𝑖𝑘 → (lcm‘(𝑦 ∪ {𝑧})) ∥ 𝑘))))))
128127com12 32 . . . . . . . . . . . . . . . 16 ((𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin) → ((lcm‘(𝑦 ∪ {𝑧})) = ((lcm𝑦) lcm 𝑧) → (∀𝑘 ∈ ℤ (∀𝑚𝑦 𝑚𝑘 → (lcm𝑦) ∥ 𝑘) → ((𝑛 ∈ ℤ ∧ 𝑘 ∈ ℕ) → ((0 ∉ 𝑦𝑧 ≠ 0 ∧ 𝑛 ≠ 0) → (∀𝑖 ∈ ((𝑦 ∪ {𝑧}) ∪ {𝑛})𝑖𝑘 → (lcm‘(𝑦 ∪ {𝑧})) ∥ 𝑘))))))
12968, 128syld 47 . . . . . . . . . . . . . . 15 ((𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin) → (∀𝑛 ∈ ℤ (lcm‘(𝑦 ∪ {𝑛})) = ((lcm𝑦) lcm 𝑛) → (∀𝑘 ∈ ℤ (∀𝑚𝑦 𝑚𝑘 → (lcm𝑦) ∥ 𝑘) → ((𝑛 ∈ ℤ ∧ 𝑘 ∈ ℕ) → ((0 ∉ 𝑦𝑧 ≠ 0 ∧ 𝑛 ≠ 0) → (∀𝑖 ∈ ((𝑦 ∪ {𝑧}) ∪ {𝑛})𝑖𝑘 → (lcm‘(𝑦 ∪ {𝑧})) ∥ 𝑘))))))
130129com23 86 . . . . . . . . . . . . . 14 ((𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin) → (∀𝑘 ∈ ℤ (∀𝑚𝑦 𝑚𝑘 → (lcm𝑦) ∥ 𝑘) → (∀𝑛 ∈ ℤ (lcm‘(𝑦 ∪ {𝑛})) = ((lcm𝑦) lcm 𝑛) → ((𝑛 ∈ ℤ ∧ 𝑘 ∈ ℕ) → ((0 ∉ 𝑦𝑧 ≠ 0 ∧ 𝑛 ≠ 0) → (∀𝑖 ∈ ((𝑦 ∪ {𝑧}) ∪ {𝑛})𝑖𝑘 → (lcm‘(𝑦 ∪ {𝑧})) ∥ 𝑘))))))
131130imp32 418 . . . . . . . . . . . . 13 (((𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin) ∧ (∀𝑘 ∈ ℤ (∀𝑚𝑦 𝑚𝑘 → (lcm𝑦) ∥ 𝑘) ∧ ∀𝑛 ∈ ℤ (lcm‘(𝑦 ∪ {𝑛})) = ((lcm𝑦) lcm 𝑛))) → ((𝑛 ∈ ℤ ∧ 𝑘 ∈ ℕ) → ((0 ∉ 𝑦𝑧 ≠ 0 ∧ 𝑛 ≠ 0) → (∀𝑖 ∈ ((𝑦 ∪ {𝑧}) ∪ {𝑛})𝑖𝑘 → (lcm‘(𝑦 ∪ {𝑧})) ∥ 𝑘))))
132131expd 415 . . . . . . . . . . . 12 (((𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin) ∧ (∀𝑘 ∈ ℤ (∀𝑚𝑦 𝑚𝑘 → (lcm𝑦) ∥ 𝑘) ∧ ∀𝑛 ∈ ℤ (lcm‘(𝑦 ∪ {𝑛})) = ((lcm𝑦) lcm 𝑛))) → (𝑛 ∈ ℤ → (𝑘 ∈ ℕ → ((0 ∉ 𝑦𝑧 ≠ 0 ∧ 𝑛 ≠ 0) → (∀𝑖 ∈ ((𝑦 ∪ {𝑧}) ∪ {𝑛})𝑖𝑘 → (lcm‘(𝑦 ∪ {𝑧})) ∥ 𝑘)))))
133132com34 91 . . . . . . . . . . 11 (((𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin) ∧ (∀𝑘 ∈ ℤ (∀𝑚𝑦 𝑚𝑘 → (lcm𝑦) ∥ 𝑘) ∧ ∀𝑛 ∈ ℤ (lcm‘(𝑦 ∪ {𝑛})) = ((lcm𝑦) lcm 𝑛))) → (𝑛 ∈ ℤ → ((0 ∉ 𝑦𝑧 ≠ 0 ∧ 𝑛 ≠ 0) → (𝑘 ∈ ℕ → (∀𝑖 ∈ ((𝑦 ∪ {𝑧}) ∪ {𝑛})𝑖𝑘 → (lcm‘(𝑦 ∪ {𝑧})) ∥ 𝑘)))))
134133com12 32 . . . . . . . . . 10 (𝑛 ∈ ℤ → (((𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin) ∧ (∀𝑘 ∈ ℤ (∀𝑚𝑦 𝑚𝑘 → (lcm𝑦) ∥ 𝑘) ∧ ∀𝑛 ∈ ℤ (lcm‘(𝑦 ∪ {𝑛})) = ((lcm𝑦) lcm 𝑛))) → ((0 ∉ 𝑦𝑧 ≠ 0 ∧ 𝑛 ≠ 0) → (𝑘 ∈ ℕ → (∀𝑖 ∈ ((𝑦 ∪ {𝑧}) ∪ {𝑛})𝑖𝑘 → (lcm‘(𝑦 ∪ {𝑧})) ∥ 𝑘)))))
135134imp 406 . . . . . . . . 9 ((𝑛 ∈ ℤ ∧ ((𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin) ∧ (∀𝑘 ∈ ℤ (∀𝑚𝑦 𝑚𝑘 → (lcm𝑦) ∥ 𝑘) ∧ ∀𝑛 ∈ ℤ (lcm‘(𝑦 ∪ {𝑛})) = ((lcm𝑦) lcm 𝑛)))) → ((0 ∉ 𝑦𝑧 ≠ 0 ∧ 𝑛 ≠ 0) → (𝑘 ∈ ℕ → (∀𝑖 ∈ ((𝑦 ∪ {𝑧}) ∪ {𝑛})𝑖𝑘 → (lcm‘(𝑦 ∪ {𝑧})) ∥ 𝑘))))
136135com12 32 . . . . . . . 8 ((0 ∉ 𝑦𝑧 ≠ 0 ∧ 𝑛 ≠ 0) → ((𝑛 ∈ ℤ ∧ ((𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin) ∧ (∀𝑘 ∈ ℤ (∀𝑚𝑦 𝑚𝑘 → (lcm𝑦) ∥ 𝑘) ∧ ∀𝑛 ∈ ℤ (lcm‘(𝑦 ∪ {𝑛})) = ((lcm𝑦) lcm 𝑛)))) → (𝑘 ∈ ℕ → (∀𝑖 ∈ ((𝑦 ∪ {𝑧}) ∪ {𝑛})𝑖𝑘 → (lcm‘(𝑦 ∪ {𝑧})) ∥ 𝑘))))
137136imp 406 . . . . . . 7 (((0 ∉ 𝑦𝑧 ≠ 0 ∧ 𝑛 ≠ 0) ∧ (𝑛 ∈ ℤ ∧ ((𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin) ∧ (∀𝑘 ∈ ℤ (∀𝑚𝑦 𝑚𝑘 → (lcm𝑦) ∥ 𝑘) ∧ ∀𝑛 ∈ ℤ (lcm‘(𝑦 ∪ {𝑛})) = ((lcm𝑦) lcm 𝑛))))) → (𝑘 ∈ ℕ → (∀𝑖 ∈ ((𝑦 ∪ {𝑧}) ∪ {𝑛})𝑖𝑘 → (lcm‘(𝑦 ∪ {𝑧})) ∥ 𝑘)))
138137imp 406 . . . . . 6 ((((0 ∉ 𝑦𝑧 ≠ 0 ∧ 𝑛 ≠ 0) ∧ (𝑛 ∈ ℤ ∧ ((𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin) ∧ (∀𝑘 ∈ ℤ (∀𝑚𝑦 𝑚𝑘 → (lcm𝑦) ∥ 𝑘) ∧ ∀𝑛 ∈ ℤ (lcm‘(𝑦 ∪ {𝑛})) = ((lcm𝑦) lcm 𝑛))))) ∧ 𝑘 ∈ ℕ) → (∀𝑖 ∈ ((𝑦 ∪ {𝑧}) ∪ {𝑛})𝑖𝑘 → (lcm‘(𝑦 ∪ {𝑧})) ∥ 𝑘))
139138imp 406 . . . . 5 (((((0 ∉ 𝑦𝑧 ≠ 0 ∧ 𝑛 ≠ 0) ∧ (𝑛 ∈ ℤ ∧ ((𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin) ∧ (∀𝑘 ∈ ℤ (∀𝑚𝑦 𝑚𝑘 → (lcm𝑦) ∥ 𝑘) ∧ ∀𝑛 ∈ ℤ (lcm‘(𝑦 ∪ {𝑛})) = ((lcm𝑦) lcm 𝑛))))) ∧ 𝑘 ∈ ℕ) ∧ ∀𝑖 ∈ ((𝑦 ∪ {𝑧}) ∪ {𝑛})𝑖𝑘) → (lcm‘(𝑦 ∪ {𝑧})) ∥ 𝑘)
140 vsnid 4665 . . . . . . . . 9 𝑛 ∈ {𝑛}
141140olci 863 . . . . . . . 8 (𝑛 ∈ (𝑦 ∪ {𝑧}) ∨ 𝑛 ∈ {𝑛})
142 elun 4148 . . . . . . . 8 (𝑛 ∈ ((𝑦 ∪ {𝑧}) ∪ {𝑛}) ↔ (𝑛 ∈ (𝑦 ∪ {𝑧}) ∨ 𝑛 ∈ {𝑛}))
143141, 142mpbir 230 . . . . . . 7 𝑛 ∈ ((𝑦 ∪ {𝑧}) ∪ {𝑛})
144 breq1 5151 . . . . . . . 8 (𝑖 = 𝑛 → (𝑖𝑘𝑛𝑘))
145144rspcv 3608 . . . . . . 7 (𝑛 ∈ ((𝑦 ∪ {𝑧}) ∪ {𝑛}) → (∀𝑖 ∈ ((𝑦 ∪ {𝑧}) ∪ {𝑛})𝑖𝑘𝑛𝑘))
146143, 145mp1i 13 . . . . . 6 ((((0 ∉ 𝑦𝑧 ≠ 0 ∧ 𝑛 ≠ 0) ∧ (𝑛 ∈ ℤ ∧ ((𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin) ∧ (∀𝑘 ∈ ℤ (∀𝑚𝑦 𝑚𝑘 → (lcm𝑦) ∥ 𝑘) ∧ ∀𝑛 ∈ ℤ (lcm‘(𝑦 ∪ {𝑛})) = ((lcm𝑦) lcm 𝑛))))) ∧ 𝑘 ∈ ℕ) → (∀𝑖 ∈ ((𝑦 ∪ {𝑧}) ∪ {𝑛})𝑖𝑘𝑛𝑘))
147146imp 406 . . . . 5 (((((0 ∉ 𝑦𝑧 ≠ 0 ∧ 𝑛 ≠ 0) ∧ (𝑛 ∈ ℤ ∧ ((𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin) ∧ (∀𝑘 ∈ ℤ (∀𝑚𝑦 𝑚𝑘 → (lcm𝑦) ∥ 𝑘) ∧ ∀𝑛 ∈ ℤ (lcm‘(𝑦 ∪ {𝑛})) = ((lcm𝑦) lcm 𝑛))))) ∧ 𝑘 ∈ ℕ) ∧ ∀𝑖 ∈ ((𝑦 ∪ {𝑧}) ∪ {𝑛})𝑖𝑘) → 𝑛𝑘)
148139, 147jca 511 . . . 4 (((((0 ∉ 𝑦𝑧 ≠ 0 ∧ 𝑛 ≠ 0) ∧ (𝑛 ∈ ℤ ∧ ((𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin) ∧ (∀𝑘 ∈ ℤ (∀𝑚𝑦 𝑚𝑘 → (lcm𝑦) ∥ 𝑘) ∧ ∀𝑛 ∈ ℤ (lcm‘(𝑦 ∪ {𝑛})) = ((lcm𝑦) lcm 𝑛))))) ∧ 𝑘 ∈ ℕ) ∧ ∀𝑖 ∈ ((𝑦 ∪ {𝑧}) ∪ {𝑛})𝑖𝑘) → ((lcm‘(𝑦 ∪ {𝑧})) ∥ 𝑘𝑛𝑘))
149 lcmledvds 16543 . . . 4 (((𝑘 ∈ ℕ ∧ (lcm‘(𝑦 ∪ {𝑧})) ∈ ℤ ∧ 𝑛 ∈ ℤ) ∧ ¬ ((lcm‘(𝑦 ∪ {𝑧})) = 0 ∨ 𝑛 = 0)) → (((lcm‘(𝑦 ∪ {𝑧})) ∥ 𝑘𝑛𝑘) → ((lcm‘(𝑦 ∪ {𝑧})) lcm 𝑛) ≤ 𝑘))
15061, 148, 149sylc 65 . . 3 (((((0 ∉ 𝑦𝑧 ≠ 0 ∧ 𝑛 ≠ 0) ∧ (𝑛 ∈ ℤ ∧ ((𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin) ∧ (∀𝑘 ∈ ℤ (∀𝑚𝑦 𝑚𝑘 → (lcm𝑦) ∥ 𝑘) ∧ ∀𝑛 ∈ ℤ (lcm‘(𝑦 ∪ {𝑛})) = ((lcm𝑦) lcm 𝑛))))) ∧ 𝑘 ∈ ℕ) ∧ ∀𝑖 ∈ ((𝑦 ∪ {𝑧}) ∪ {𝑛})𝑖𝑘) → ((lcm‘(𝑦 ∪ {𝑧})) lcm 𝑛) ≤ 𝑘)
151150exp31 419 . 2 (((0 ∉ 𝑦𝑧 ≠ 0 ∧ 𝑛 ≠ 0) ∧ (𝑛 ∈ ℤ ∧ ((𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin) ∧ (∀𝑘 ∈ ℤ (∀𝑚𝑦 𝑚𝑘 → (lcm𝑦) ∥ 𝑘) ∧ ∀𝑛 ∈ ℤ (lcm‘(𝑦 ∪ {𝑛})) = ((lcm𝑦) lcm 𝑛))))) → (𝑘 ∈ ℕ → (∀𝑖 ∈ ((𝑦 ∪ {𝑧}) ∪ {𝑛})𝑖𝑘 → ((lcm‘(𝑦 ∪ {𝑧})) lcm 𝑛) ≤ 𝑘)))
1529, 151ralrimi 3253 1 (((0 ∉ 𝑦𝑧 ≠ 0 ∧ 𝑛 ≠ 0) ∧ (𝑛 ∈ ℤ ∧ ((𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin) ∧ (∀𝑘 ∈ ℤ (∀𝑚𝑦 𝑚𝑘 → (lcm𝑦) ∥ 𝑘) ∧ ∀𝑛 ∈ ℤ (lcm‘(𝑦 ∪ {𝑛})) = ((lcm𝑦) lcm 𝑛))))) → ∀𝑘 ∈ ℕ (∀𝑖 ∈ ((𝑦 ∪ {𝑧}) ∪ {𝑛})𝑖𝑘 → ((lcm‘(𝑦 ∪ {𝑧})) lcm 𝑛) ≤ 𝑘))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395  wo 844  w3a 1086   = wceq 1540  wcel 2105  wne 2939  wnel 3045  wral 3060  cun 3946  wss 3948  {csn 4628   class class class wbr 5148  cfv 6543  (class class class)co 7412  Fincfn 8945  0cc0 11116  cle 11256  cn 12219  0cn0 12479  cz 12565  cdvds 16204   lcm clcm 16532  lcmclcmf 16533
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1912  ax-6 1970  ax-7 2010  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2153  ax-12 2170  ax-ext 2702  ax-rep 5285  ax-sep 5299  ax-nul 5306  ax-pow 5363  ax-pr 5427  ax-un 7729  ax-inf2 9642  ax-cnex 11172  ax-resscn 11173  ax-1cn 11174  ax-icn 11175  ax-addcl 11176  ax-addrcl 11177  ax-mulcl 11178  ax-mulrcl 11179  ax-mulcom 11180  ax-addass 11181  ax-mulass 11182  ax-distr 11183  ax-i2m1 11184  ax-1ne0 11185  ax-1rid 11186  ax-rnegex 11187  ax-rrecex 11188  ax-cnre 11189  ax-pre-lttri 11190  ax-pre-lttrn 11191  ax-pre-ltadd 11192  ax-pre-mulgt0 11193  ax-pre-sup 11194
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1781  df-nf 1785  df-sb 2067  df-mo 2533  df-eu 2562  df-clab 2709  df-cleq 2723  df-clel 2809  df-nfc 2884  df-ne 2940  df-nel 3046  df-ral 3061  df-rex 3070  df-rmo 3375  df-reu 3376  df-rab 3432  df-v 3475  df-sbc 3778  df-csb 3894  df-dif 3951  df-un 3953  df-in 3955  df-ss 3965  df-pss 3967  df-nul 4323  df-if 4529  df-pw 4604  df-sn 4629  df-pr 4631  df-op 4635  df-uni 4909  df-int 4951  df-iun 4999  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5574  df-eprel 5580  df-po 5588  df-so 5589  df-fr 5631  df-se 5632  df-we 5633  df-xp 5682  df-rel 5683  df-cnv 5684  df-co 5685  df-dm 5686  df-rn 5687  df-res 5688  df-ima 5689  df-pred 6300  df-ord 6367  df-on 6368  df-lim 6369  df-suc 6370  df-iota 6495  df-fun 6545  df-fn 6546  df-f 6547  df-f1 6548  df-fo 6549  df-f1o 6550  df-fv 6551  df-isom 6552  df-riota 7368  df-ov 7415  df-oprab 7416  df-mpo 7417  df-om 7860  df-1st 7979  df-2nd 7980  df-frecs 8272  df-wrecs 8303  df-recs 8377  df-rdg 8416  df-1o 8472  df-er 8709  df-en 8946  df-dom 8947  df-sdom 8948  df-fin 8949  df-sup 9443  df-inf 9444  df-oi 9511  df-card 9940  df-pnf 11257  df-mnf 11258  df-xr 11259  df-ltxr 11260  df-le 11261  df-sub 11453  df-neg 11454  df-div 11879  df-nn 12220  df-2 12282  df-3 12283  df-n0 12480  df-z 12566  df-uz 12830  df-rp 12982  df-fz 13492  df-fzo 13635  df-fl 13764  df-mod 13842  df-seq 13974  df-exp 14035  df-hash 14298  df-cj 15053  df-re 15054  df-im 15055  df-sqrt 15189  df-abs 15190  df-clim 15439  df-prod 15857  df-dvds 16205  df-gcd 16443  df-lcm 16534  df-lcmf 16535
This theorem is referenced by:  lcmfunsnlem2lem2  16583
  Copyright terms: Public domain W3C validator