MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  lcmfunsnlem2lem1 Structured version   Visualization version   GIF version

Theorem lcmfunsnlem2lem1 15633
Description: Lemma 1 for lcmfunsnlem2 15635. (Contributed by AV, 26-Aug-2020.)
Assertion
Ref Expression
lcmfunsnlem2lem1 (((0 ∉ 𝑦𝑧 ≠ 0 ∧ 𝑛 ≠ 0) ∧ (𝑛 ∈ ℤ ∧ ((𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin) ∧ (∀𝑘 ∈ ℤ (∀𝑚𝑦 𝑚𝑘 → (lcm𝑦) ∥ 𝑘) ∧ ∀𝑛 ∈ ℤ (lcm‘(𝑦 ∪ {𝑛})) = ((lcm𝑦) lcm 𝑛))))) → ∀𝑘 ∈ ℕ (∀𝑖 ∈ ((𝑦 ∪ {𝑧}) ∪ {𝑛})𝑖𝑘 → ((lcm‘(𝑦 ∪ {𝑧})) lcm 𝑛) ≤ 𝑘))
Distinct variable groups:   𝑦,𝑚,𝑧   𝑘,𝑛,𝑦,𝑧,𝑚,𝑖

Proof of Theorem lcmfunsnlem2lem1
Dummy variable 𝑙 is distinct from all other variables.
StepHypRef Expression
1 nfv 2009 . . 3 𝑘(0 ∉ 𝑦𝑧 ≠ 0 ∧ 𝑛 ≠ 0)
2 nfv 2009 . . . 4 𝑘 𝑛 ∈ ℤ
3 nfv 2009 . . . . 5 𝑘(𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin)
4 nfra1 3087 . . . . . 6 𝑘𝑘 ∈ ℤ (∀𝑚𝑦 𝑚𝑘 → (lcm𝑦) ∥ 𝑘)
5 nfv 2009 . . . . . 6 𝑘𝑛 ∈ ℤ (lcm‘(𝑦 ∪ {𝑛})) = ((lcm𝑦) lcm 𝑛)
64, 5nfan 1998 . . . . 5 𝑘(∀𝑘 ∈ ℤ (∀𝑚𝑦 𝑚𝑘 → (lcm𝑦) ∥ 𝑘) ∧ ∀𝑛 ∈ ℤ (lcm‘(𝑦 ∪ {𝑛})) = ((lcm𝑦) lcm 𝑛))
73, 6nfan 1998 . . . 4 𝑘((𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin) ∧ (∀𝑘 ∈ ℤ (∀𝑚𝑦 𝑚𝑘 → (lcm𝑦) ∥ 𝑘) ∧ ∀𝑛 ∈ ℤ (lcm‘(𝑦 ∪ {𝑛})) = ((lcm𝑦) lcm 𝑛)))
82, 7nfan 1998 . . 3 𝑘(𝑛 ∈ ℤ ∧ ((𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin) ∧ (∀𝑘 ∈ ℤ (∀𝑚𝑦 𝑚𝑘 → (lcm𝑦) ∥ 𝑘) ∧ ∀𝑛 ∈ ℤ (lcm‘(𝑦 ∪ {𝑛})) = ((lcm𝑦) lcm 𝑛))))
91, 8nfan 1998 . 2 𝑘((0 ∉ 𝑦𝑧 ≠ 0 ∧ 𝑛 ≠ 0) ∧ (𝑛 ∈ ℤ ∧ ((𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin) ∧ (∀𝑘 ∈ ℤ (∀𝑚𝑦 𝑚𝑘 → (lcm𝑦) ∥ 𝑘) ∧ ∀𝑛 ∈ ℤ (lcm‘(𝑦 ∪ {𝑛})) = ((lcm𝑦) lcm 𝑛)))))
10 simprr 789 . . . . . . . . . . . 12 ((((0 ∉ 𝑦𝑧 ≠ 0 ∧ 𝑛 ≠ 0) ∧ (𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin)) ∧ (𝑛 ∈ ℤ ∧ 𝑘 ∈ ℕ)) → 𝑘 ∈ ℕ)
11 simp2 1167 . . . . . . . . . . . . . . . . . 18 ((𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin) → 𝑦 ⊆ ℤ)
12 snssi 4492 . . . . . . . . . . . . . . . . . . 19 (𝑧 ∈ ℤ → {𝑧} ⊆ ℤ)
13123ad2ant1 1163 . . . . . . . . . . . . . . . . . 18 ((𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin) → {𝑧} ⊆ ℤ)
1411, 13unssd 3950 . . . . . . . . . . . . . . . . 17 ((𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin) → (𝑦 ∪ {𝑧}) ⊆ ℤ)
15 simp3 1168 . . . . . . . . . . . . . . . . . 18 ((𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin) → 𝑦 ∈ Fin)
16 snfi 8244 . . . . . . . . . . . . . . . . . 18 {𝑧} ∈ Fin
17 unfi 8433 . . . . . . . . . . . . . . . . . 18 ((𝑦 ∈ Fin ∧ {𝑧} ∈ Fin) → (𝑦 ∪ {𝑧}) ∈ Fin)
1815, 16, 17sylancl 580 . . . . . . . . . . . . . . . . 17 ((𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin) → (𝑦 ∪ {𝑧}) ∈ Fin)
1914, 18jca 507 . . . . . . . . . . . . . . . 16 ((𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin) → ((𝑦 ∪ {𝑧}) ⊆ ℤ ∧ (𝑦 ∪ {𝑧}) ∈ Fin))
20 lcmfcl 15623 . . . . . . . . . . . . . . . 16 (((𝑦 ∪ {𝑧}) ⊆ ℤ ∧ (𝑦 ∪ {𝑧}) ∈ Fin) → (lcm‘(𝑦 ∪ {𝑧})) ∈ ℕ0)
2119, 20syl 17 . . . . . . . . . . . . . . 15 ((𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin) → (lcm‘(𝑦 ∪ {𝑧})) ∈ ℕ0)
2221nn0zd 11726 . . . . . . . . . . . . . 14 ((𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin) → (lcm‘(𝑦 ∪ {𝑧})) ∈ ℤ)
2322adantl 473 . . . . . . . . . . . . 13 (((0 ∉ 𝑦𝑧 ≠ 0 ∧ 𝑛 ≠ 0) ∧ (𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin)) → (lcm‘(𝑦 ∪ {𝑧})) ∈ ℤ)
2423adantr 472 . . . . . . . . . . . 12 ((((0 ∉ 𝑦𝑧 ≠ 0 ∧ 𝑛 ≠ 0) ∧ (𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin)) ∧ (𝑛 ∈ ℤ ∧ 𝑘 ∈ ℕ)) → (lcm‘(𝑦 ∪ {𝑧})) ∈ ℤ)
25 simprl 787 . . . . . . . . . . . 12 ((((0 ∉ 𝑦𝑧 ≠ 0 ∧ 𝑛 ≠ 0) ∧ (𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin)) ∧ (𝑛 ∈ ℤ ∧ 𝑘 ∈ ℕ)) → 𝑛 ∈ ℤ)
2610, 24, 253jca 1158 . . . . . . . . . . 11 ((((0 ∉ 𝑦𝑧 ≠ 0 ∧ 𝑛 ≠ 0) ∧ (𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin)) ∧ (𝑛 ∈ ℤ ∧ 𝑘 ∈ ℕ)) → (𝑘 ∈ ℕ ∧ (lcm‘(𝑦 ∪ {𝑧})) ∈ ℤ ∧ 𝑛 ∈ ℤ))
2714adantl 473 . . . . . . . . . . . . . . . . . 18 (((0 ∉ 𝑦𝑧 ≠ 0 ∧ 𝑛 ≠ 0) ∧ (𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin)) → (𝑦 ∪ {𝑧}) ⊆ ℤ)
2818adantl 473 . . . . . . . . . . . . . . . . . 18 (((0 ∉ 𝑦𝑧 ≠ 0 ∧ 𝑛 ≠ 0) ∧ (𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin)) → (𝑦 ∪ {𝑧}) ∈ Fin)
29 df-nel 3040 . . . . . . . . . . . . . . . . . . . . . . 23 (0 ∉ 𝑦 ↔ ¬ 0 ∈ 𝑦)
3029biimpi 207 . . . . . . . . . . . . . . . . . . . . . 22 (0 ∉ 𝑦 → ¬ 0 ∈ 𝑦)
31 elsni 4350 . . . . . . . . . . . . . . . . . . . . . . . 24 (0 ∈ {𝑧} → 0 = 𝑧)
3231eqcomd 2770 . . . . . . . . . . . . . . . . . . . . . . 23 (0 ∈ {𝑧} → 𝑧 = 0)
3332necon3ai 2961 . . . . . . . . . . . . . . . . . . . . . 22 (𝑧 ≠ 0 → ¬ 0 ∈ {𝑧})
3430, 33anim12i 606 . . . . . . . . . . . . . . . . . . . . 21 ((0 ∉ 𝑦𝑧 ≠ 0) → (¬ 0 ∈ 𝑦 ∧ ¬ 0 ∈ {𝑧}))
35343adant3 1162 . . . . . . . . . . . . . . . . . . . 20 ((0 ∉ 𝑦𝑧 ≠ 0 ∧ 𝑛 ≠ 0) → (¬ 0 ∈ 𝑦 ∧ ¬ 0 ∈ {𝑧}))
36 df-nel 3040 . . . . . . . . . . . . . . . . . . . . 21 (0 ∉ (𝑦 ∪ {𝑧}) ↔ ¬ 0 ∈ (𝑦 ∪ {𝑧}))
37 ioran 1006 . . . . . . . . . . . . . . . . . . . . . 22 (¬ (0 ∈ 𝑦 ∨ 0 ∈ {𝑧}) ↔ (¬ 0 ∈ 𝑦 ∧ ¬ 0 ∈ {𝑧}))
38 elun 3914 . . . . . . . . . . . . . . . . . . . . . 22 (0 ∈ (𝑦 ∪ {𝑧}) ↔ (0 ∈ 𝑦 ∨ 0 ∈ {𝑧}))
3937, 38xchnxbir 324 . . . . . . . . . . . . . . . . . . . . 21 (¬ 0 ∈ (𝑦 ∪ {𝑧}) ↔ (¬ 0 ∈ 𝑦 ∧ ¬ 0 ∈ {𝑧}))
4036, 39bitri 266 . . . . . . . . . . . . . . . . . . . 20 (0 ∉ (𝑦 ∪ {𝑧}) ↔ (¬ 0 ∈ 𝑦 ∧ ¬ 0 ∈ {𝑧}))
4135, 40sylibr 225 . . . . . . . . . . . . . . . . . . 19 ((0 ∉ 𝑦𝑧 ≠ 0 ∧ 𝑛 ≠ 0) → 0 ∉ (𝑦 ∪ {𝑧}))
4241adantr 472 . . . . . . . . . . . . . . . . . 18 (((0 ∉ 𝑦𝑧 ≠ 0 ∧ 𝑛 ≠ 0) ∧ (𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin)) → 0 ∉ (𝑦 ∪ {𝑧}))
4327, 28, 423jca 1158 . . . . . . . . . . . . . . . . 17 (((0 ∉ 𝑦𝑧 ≠ 0 ∧ 𝑛 ≠ 0) ∧ (𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin)) → ((𝑦 ∪ {𝑧}) ⊆ ℤ ∧ (𝑦 ∪ {𝑧}) ∈ Fin ∧ 0 ∉ (𝑦 ∪ {𝑧})))
4443adantr 472 . . . . . . . . . . . . . . . 16 ((((0 ∉ 𝑦𝑧 ≠ 0 ∧ 𝑛 ≠ 0) ∧ (𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin)) ∧ (𝑛 ∈ ℤ ∧ 𝑘 ∈ ℕ)) → ((𝑦 ∪ {𝑧}) ⊆ ℤ ∧ (𝑦 ∪ {𝑧}) ∈ Fin ∧ 0 ∉ (𝑦 ∪ {𝑧})))
45 lcmfn0cl 15621 . . . . . . . . . . . . . . . 16 (((𝑦 ∪ {𝑧}) ⊆ ℤ ∧ (𝑦 ∪ {𝑧}) ∈ Fin ∧ 0 ∉ (𝑦 ∪ {𝑧})) → (lcm‘(𝑦 ∪ {𝑧})) ∈ ℕ)
4644, 45syl 17 . . . . . . . . . . . . . . 15 ((((0 ∉ 𝑦𝑧 ≠ 0 ∧ 𝑛 ≠ 0) ∧ (𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin)) ∧ (𝑛 ∈ ℤ ∧ 𝑘 ∈ ℕ)) → (lcm‘(𝑦 ∪ {𝑧})) ∈ ℕ)
4746nnne0d 11321 . . . . . . . . . . . . . 14 ((((0 ∉ 𝑦𝑧 ≠ 0 ∧ 𝑛 ≠ 0) ∧ (𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin)) ∧ (𝑛 ∈ ℤ ∧ 𝑘 ∈ ℕ)) → (lcm‘(𝑦 ∪ {𝑧})) ≠ 0)
4847neneqd 2941 . . . . . . . . . . . . 13 ((((0 ∉ 𝑦𝑧 ≠ 0 ∧ 𝑛 ≠ 0) ∧ (𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin)) ∧ (𝑛 ∈ ℤ ∧ 𝑘 ∈ ℕ)) → ¬ (lcm‘(𝑦 ∪ {𝑧})) = 0)
49 neneq 2942 . . . . . . . . . . . . . . 15 (𝑛 ≠ 0 → ¬ 𝑛 = 0)
50493ad2ant3 1165 . . . . . . . . . . . . . 14 ((0 ∉ 𝑦𝑧 ≠ 0 ∧ 𝑛 ≠ 0) → ¬ 𝑛 = 0)
5150ad2antrr 717 . . . . . . . . . . . . 13 ((((0 ∉ 𝑦𝑧 ≠ 0 ∧ 𝑛 ≠ 0) ∧ (𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin)) ∧ (𝑛 ∈ ℤ ∧ 𝑘 ∈ ℕ)) → ¬ 𝑛 = 0)
5248, 51jca 507 . . . . . . . . . . . 12 ((((0 ∉ 𝑦𝑧 ≠ 0 ∧ 𝑛 ≠ 0) ∧ (𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin)) ∧ (𝑛 ∈ ℤ ∧ 𝑘 ∈ ℕ)) → (¬ (lcm‘(𝑦 ∪ {𝑧})) = 0 ∧ ¬ 𝑛 = 0))
53 ioran 1006 . . . . . . . . . . . 12 (¬ ((lcm‘(𝑦 ∪ {𝑧})) = 0 ∨ 𝑛 = 0) ↔ (¬ (lcm‘(𝑦 ∪ {𝑧})) = 0 ∧ ¬ 𝑛 = 0))
5452, 53sylibr 225 . . . . . . . . . . 11 ((((0 ∉ 𝑦𝑧 ≠ 0 ∧ 𝑛 ≠ 0) ∧ (𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin)) ∧ (𝑛 ∈ ℤ ∧ 𝑘 ∈ ℕ)) → ¬ ((lcm‘(𝑦 ∪ {𝑧})) = 0 ∨ 𝑛 = 0))
5526, 54jca 507 . . . . . . . . . 10 ((((0 ∉ 𝑦𝑧 ≠ 0 ∧ 𝑛 ≠ 0) ∧ (𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin)) ∧ (𝑛 ∈ ℤ ∧ 𝑘 ∈ ℕ)) → ((𝑘 ∈ ℕ ∧ (lcm‘(𝑦 ∪ {𝑧})) ∈ ℤ ∧ 𝑛 ∈ ℤ) ∧ ¬ ((lcm‘(𝑦 ∪ {𝑧})) = 0 ∨ 𝑛 = 0)))
5655exp43 427 . . . . . . . . 9 ((0 ∉ 𝑦𝑧 ≠ 0 ∧ 𝑛 ≠ 0) → ((𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin) → (𝑛 ∈ ℤ → (𝑘 ∈ ℕ → ((𝑘 ∈ ℕ ∧ (lcm‘(𝑦 ∪ {𝑧})) ∈ ℤ ∧ 𝑛 ∈ ℤ) ∧ ¬ ((lcm‘(𝑦 ∪ {𝑧})) = 0 ∨ 𝑛 = 0))))))
5756adantrd 485 . . . . . . . 8 ((0 ∉ 𝑦𝑧 ≠ 0 ∧ 𝑛 ≠ 0) → (((𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin) ∧ (∀𝑘 ∈ ℤ (∀𝑚𝑦 𝑚𝑘 → (lcm𝑦) ∥ 𝑘) ∧ ∀𝑛 ∈ ℤ (lcm‘(𝑦 ∪ {𝑛})) = ((lcm𝑦) lcm 𝑛))) → (𝑛 ∈ ℤ → (𝑘 ∈ ℕ → ((𝑘 ∈ ℕ ∧ (lcm‘(𝑦 ∪ {𝑧})) ∈ ℤ ∧ 𝑛 ∈ ℤ) ∧ ¬ ((lcm‘(𝑦 ∪ {𝑧})) = 0 ∨ 𝑛 = 0))))))
5857com23 86 . . . . . . 7 ((0 ∉ 𝑦𝑧 ≠ 0 ∧ 𝑛 ≠ 0) → (𝑛 ∈ ℤ → (((𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin) ∧ (∀𝑘 ∈ ℤ (∀𝑚𝑦 𝑚𝑘 → (lcm𝑦) ∥ 𝑘) ∧ ∀𝑛 ∈ ℤ (lcm‘(𝑦 ∪ {𝑛})) = ((lcm𝑦) lcm 𝑛))) → (𝑘 ∈ ℕ → ((𝑘 ∈ ℕ ∧ (lcm‘(𝑦 ∪ {𝑧})) ∈ ℤ ∧ 𝑛 ∈ ℤ) ∧ ¬ ((lcm‘(𝑦 ∪ {𝑧})) = 0 ∨ 𝑛 = 0))))))
5958imp32 409 . . . . . 6 (((0 ∉ 𝑦𝑧 ≠ 0 ∧ 𝑛 ≠ 0) ∧ (𝑛 ∈ ℤ ∧ ((𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin) ∧ (∀𝑘 ∈ ℤ (∀𝑚𝑦 𝑚𝑘 → (lcm𝑦) ∥ 𝑘) ∧ ∀𝑛 ∈ ℤ (lcm‘(𝑦 ∪ {𝑛})) = ((lcm𝑦) lcm 𝑛))))) → (𝑘 ∈ ℕ → ((𝑘 ∈ ℕ ∧ (lcm‘(𝑦 ∪ {𝑧})) ∈ ℤ ∧ 𝑛 ∈ ℤ) ∧ ¬ ((lcm‘(𝑦 ∪ {𝑧})) = 0 ∨ 𝑛 = 0))))
6059imp 395 . . . . 5 ((((0 ∉ 𝑦𝑧 ≠ 0 ∧ 𝑛 ≠ 0) ∧ (𝑛 ∈ ℤ ∧ ((𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin) ∧ (∀𝑘 ∈ ℤ (∀𝑚𝑦 𝑚𝑘 → (lcm𝑦) ∥ 𝑘) ∧ ∀𝑛 ∈ ℤ (lcm‘(𝑦 ∪ {𝑛})) = ((lcm𝑦) lcm 𝑛))))) ∧ 𝑘 ∈ ℕ) → ((𝑘 ∈ ℕ ∧ (lcm‘(𝑦 ∪ {𝑧})) ∈ ℤ ∧ 𝑛 ∈ ℤ) ∧ ¬ ((lcm‘(𝑦 ∪ {𝑧})) = 0 ∨ 𝑛 = 0)))
6160adantr 472 . . . 4 (((((0 ∉ 𝑦𝑧 ≠ 0 ∧ 𝑛 ≠ 0) ∧ (𝑛 ∈ ℤ ∧ ((𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin) ∧ (∀𝑘 ∈ ℤ (∀𝑚𝑦 𝑚𝑘 → (lcm𝑦) ∥ 𝑘) ∧ ∀𝑛 ∈ ℤ (lcm‘(𝑦 ∪ {𝑛})) = ((lcm𝑦) lcm 𝑛))))) ∧ 𝑘 ∈ ℕ) ∧ ∀𝑖 ∈ ((𝑦 ∪ {𝑧}) ∪ {𝑛})𝑖𝑘) → ((𝑘 ∈ ℕ ∧ (lcm‘(𝑦 ∪ {𝑧})) ∈ ℤ ∧ 𝑛 ∈ ℤ) ∧ ¬ ((lcm‘(𝑦 ∪ {𝑧})) = 0 ∨ 𝑛 = 0)))
62 sneq 4343 . . . . . . . . . . . . . . . . . . . . 21 (𝑛 = 𝑧 → {𝑛} = {𝑧})
6362uneq2d 3928 . . . . . . . . . . . . . . . . . . . 20 (𝑛 = 𝑧 → (𝑦 ∪ {𝑛}) = (𝑦 ∪ {𝑧}))
6463fveq2d 6378 . . . . . . . . . . . . . . . . . . 19 (𝑛 = 𝑧 → (lcm‘(𝑦 ∪ {𝑛})) = (lcm‘(𝑦 ∪ {𝑧})))
65 oveq2 6849 . . . . . . . . . . . . . . . . . . 19 (𝑛 = 𝑧 → ((lcm𝑦) lcm 𝑛) = ((lcm𝑦) lcm 𝑧))
6664, 65eqeq12d 2779 . . . . . . . . . . . . . . . . . 18 (𝑛 = 𝑧 → ((lcm‘(𝑦 ∪ {𝑛})) = ((lcm𝑦) lcm 𝑛) ↔ (lcm‘(𝑦 ∪ {𝑧})) = ((lcm𝑦) lcm 𝑧)))
6766rspcv 3456 . . . . . . . . . . . . . . . . 17 (𝑧 ∈ ℤ → (∀𝑛 ∈ ℤ (lcm‘(𝑦 ∪ {𝑛})) = ((lcm𝑦) lcm 𝑛) → (lcm‘(𝑦 ∪ {𝑧})) = ((lcm𝑦) lcm 𝑧)))
68673ad2ant1 1163 . . . . . . . . . . . . . . . 16 ((𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin) → (∀𝑛 ∈ ℤ (lcm‘(𝑦 ∪ {𝑛})) = ((lcm𝑦) lcm 𝑛) → (lcm‘(𝑦 ∪ {𝑧})) = ((lcm𝑦) lcm 𝑧)))
69 nnz 11645 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑘 ∈ ℕ → 𝑘 ∈ ℤ)
7069adantl 473 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝑛 ∈ ℤ ∧ 𝑘 ∈ ℕ) → 𝑘 ∈ ℤ)
7170adantl 473 . . . . . . . . . . . . . . . . . . . . . . 23 ((((𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin) ∧ ∀𝑘 ∈ ℤ (∀𝑚𝑦 𝑚𝑘 → (lcm𝑦) ∥ 𝑘)) ∧ (𝑛 ∈ ℤ ∧ 𝑘 ∈ ℕ)) → 𝑘 ∈ ℤ)
72 lcmfcl 15623 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin) → (lcm𝑦) ∈ ℕ0)
7372nn0zd 11726 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin) → (lcm𝑦) ∈ ℤ)
74733adant1 1160 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin) → (lcm𝑦) ∈ ℤ)
7574ad2antrr 717 . . . . . . . . . . . . . . . . . . . . . . 23 ((((𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin) ∧ ∀𝑘 ∈ ℤ (∀𝑚𝑦 𝑚𝑘 → (lcm𝑦) ∥ 𝑘)) ∧ (𝑛 ∈ ℤ ∧ 𝑘 ∈ ℕ)) → (lcm𝑦) ∈ ℤ)
76 simpll1 1269 . . . . . . . . . . . . . . . . . . . . . . 23 ((((𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin) ∧ ∀𝑘 ∈ ℤ (∀𝑚𝑦 𝑚𝑘 → (lcm𝑦) ∥ 𝑘)) ∧ (𝑛 ∈ ℤ ∧ 𝑘 ∈ ℕ)) → 𝑧 ∈ ℤ)
7771, 75, 763jca 1158 . . . . . . . . . . . . . . . . . . . . . 22 ((((𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin) ∧ ∀𝑘 ∈ ℤ (∀𝑚𝑦 𝑚𝑘 → (lcm𝑦) ∥ 𝑘)) ∧ (𝑛 ∈ ℤ ∧ 𝑘 ∈ ℕ)) → (𝑘 ∈ ℤ ∧ (lcm𝑦) ∈ ℤ ∧ 𝑧 ∈ ℤ))
7877ad2antrr 717 . . . . . . . . . . . . . . . . . . . . 21 ((((((𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin) ∧ ∀𝑘 ∈ ℤ (∀𝑚𝑦 𝑚𝑘 → (lcm𝑦) ∥ 𝑘)) ∧ (𝑛 ∈ ℤ ∧ 𝑘 ∈ ℕ)) ∧ (0 ∉ 𝑦𝑧 ≠ 0 ∧ 𝑛 ≠ 0)) ∧ ∀𝑖 ∈ ((𝑦 ∪ {𝑧}) ∪ {𝑛})𝑖𝑘) → (𝑘 ∈ ℤ ∧ (lcm𝑦) ∈ ℤ ∧ 𝑧 ∈ ℤ))
79 elun1 3941 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 (𝑚𝑦𝑚 ∈ (𝑦 ∪ {𝑧}))
8079orcd 899 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 (𝑚𝑦 → (𝑚 ∈ (𝑦 ∪ {𝑧}) ∨ 𝑚 ∈ {𝑛}))
81 elun 3914 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 (𝑚 ∈ ((𝑦 ∪ {𝑧}) ∪ {𝑛}) ↔ (𝑚 ∈ (𝑦 ∪ {𝑧}) ∨ 𝑚 ∈ {𝑛}))
8280, 81sylibr 225 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 (𝑚𝑦𝑚 ∈ ((𝑦 ∪ {𝑧}) ∪ {𝑛}))
83 breq1 4811 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 (𝑖 = 𝑚 → (𝑖𝑘𝑚𝑘))
8483rspcv 3456 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 (𝑚 ∈ ((𝑦 ∪ {𝑧}) ∪ {𝑛}) → (∀𝑖 ∈ ((𝑦 ∪ {𝑧}) ∪ {𝑛})𝑖𝑘𝑚𝑘))
8582, 84syl 17 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 (𝑚𝑦 → (∀𝑖 ∈ ((𝑦 ∪ {𝑧}) ∪ {𝑛})𝑖𝑘𝑚𝑘))
8685com12 32 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 (∀𝑖 ∈ ((𝑦 ∪ {𝑧}) ∪ {𝑛})𝑖𝑘 → (𝑚𝑦𝑚𝑘))
8786adantl 473 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (((𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin) ∧ ∀𝑖 ∈ ((𝑦 ∪ {𝑧}) ∪ {𝑛})𝑖𝑘) → (𝑚𝑦𝑚𝑘))
8887ralrimiv 3111 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (((𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin) ∧ ∀𝑖 ∈ ((𝑦 ∪ {𝑧}) ∪ {𝑛})𝑖𝑘) → ∀𝑚𝑦 𝑚𝑘)
8988adantr 472 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((((𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin) ∧ ∀𝑖 ∈ ((𝑦 ∪ {𝑧}) ∪ {𝑛})𝑖𝑘) ∧ ((𝑛 ∈ ℤ ∧ 𝑘 ∈ ℕ) ∧ (0 ∉ 𝑦𝑧 ≠ 0 ∧ 𝑛 ≠ 0))) → ∀𝑚𝑦 𝑚𝑘)
90 breq2 4812 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 (𝑘 = 𝑙 → (𝑚𝑘𝑚𝑙))
9190ralbidv 3132 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 (𝑘 = 𝑙 → (∀𝑚𝑦 𝑚𝑘 ↔ ∀𝑚𝑦 𝑚𝑙))
92 breq2 4812 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 (𝑘 = 𝑙 → ((lcm𝑦) ∥ 𝑘 ↔ (lcm𝑦) ∥ 𝑙))
9391, 92imbi12d 335 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (𝑘 = 𝑙 → ((∀𝑚𝑦 𝑚𝑘 → (lcm𝑦) ∥ 𝑘) ↔ (∀𝑚𝑦 𝑚𝑙 → (lcm𝑦) ∥ 𝑙)))
9493cbvralv 3318 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (∀𝑘 ∈ ℤ (∀𝑚𝑦 𝑚𝑘 → (lcm𝑦) ∥ 𝑘) ↔ ∀𝑙 ∈ ℤ (∀𝑚𝑦 𝑚𝑙 → (lcm𝑦) ∥ 𝑙))
9570adantr 472 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 (((𝑛 ∈ ℤ ∧ 𝑘 ∈ ℕ) ∧ (0 ∉ 𝑦𝑧 ≠ 0 ∧ 𝑛 ≠ 0)) → 𝑘 ∈ ℤ)
9695adantl 473 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 ((((𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin) ∧ ∀𝑖 ∈ ((𝑦 ∪ {𝑧}) ∪ {𝑛})𝑖𝑘) ∧ ((𝑛 ∈ ℤ ∧ 𝑘 ∈ ℕ) ∧ (0 ∉ 𝑦𝑧 ≠ 0 ∧ 𝑛 ≠ 0))) → 𝑘 ∈ ℤ)
97 breq2 4812 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 (𝑙 = 𝑘 → (𝑚𝑙𝑚𝑘))
9897ralbidv 3132 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 (𝑙 = 𝑘 → (∀𝑚𝑦 𝑚𝑙 ↔ ∀𝑚𝑦 𝑚𝑘))
99 breq2 4812 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 (𝑙 = 𝑘 → ((lcm𝑦) ∥ 𝑙 ↔ (lcm𝑦) ∥ 𝑘))
10098, 99imbi12d 335 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 (𝑙 = 𝑘 → ((∀𝑚𝑦 𝑚𝑙 → (lcm𝑦) ∥ 𝑙) ↔ (∀𝑚𝑦 𝑚𝑘 → (lcm𝑦) ∥ 𝑘)))
101100rspcv 3456 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (𝑘 ∈ ℤ → (∀𝑙 ∈ ℤ (∀𝑚𝑦 𝑚𝑙 → (lcm𝑦) ∥ 𝑙) → (∀𝑚𝑦 𝑚𝑘 → (lcm𝑦) ∥ 𝑘)))
10296, 101syl 17 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 ((((𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin) ∧ ∀𝑖 ∈ ((𝑦 ∪ {𝑧}) ∪ {𝑛})𝑖𝑘) ∧ ((𝑛 ∈ ℤ ∧ 𝑘 ∈ ℕ) ∧ (0 ∉ 𝑦𝑧 ≠ 0 ∧ 𝑛 ≠ 0))) → (∀𝑙 ∈ ℤ (∀𝑚𝑦 𝑚𝑙 → (lcm𝑦) ∥ 𝑙) → (∀𝑚𝑦 𝑚𝑘 → (lcm𝑦) ∥ 𝑘)))
10394, 102syl5bi 233 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((((𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin) ∧ ∀𝑖 ∈ ((𝑦 ∪ {𝑧}) ∪ {𝑛})𝑖𝑘) ∧ ((𝑛 ∈ ℤ ∧ 𝑘 ∈ ℕ) ∧ (0 ∉ 𝑦𝑧 ≠ 0 ∧ 𝑛 ≠ 0))) → (∀𝑘 ∈ ℤ (∀𝑚𝑦 𝑚𝑘 → (lcm𝑦) ∥ 𝑘) → (∀𝑚𝑦 𝑚𝑘 → (lcm𝑦) ∥ 𝑘)))
10489, 103mpid 44 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((((𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin) ∧ ∀𝑖 ∈ ((𝑦 ∪ {𝑧}) ∪ {𝑛})𝑖𝑘) ∧ ((𝑛 ∈ ℤ ∧ 𝑘 ∈ ℕ) ∧ (0 ∉ 𝑦𝑧 ≠ 0 ∧ 𝑛 ≠ 0))) → (∀𝑘 ∈ ℤ (∀𝑚𝑦 𝑚𝑘 → (lcm𝑦) ∥ 𝑘) → (lcm𝑦) ∥ 𝑘))
105104exp31 410 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin) → (∀𝑖 ∈ ((𝑦 ∪ {𝑧}) ∪ {𝑛})𝑖𝑘 → (((𝑛 ∈ ℤ ∧ 𝑘 ∈ ℕ) ∧ (0 ∉ 𝑦𝑧 ≠ 0 ∧ 𝑛 ≠ 0)) → (∀𝑘 ∈ ℤ (∀𝑚𝑦 𝑚𝑘 → (lcm𝑦) ∥ 𝑘) → (lcm𝑦) ∥ 𝑘))))
106105com24 95 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin) → (∀𝑘 ∈ ℤ (∀𝑚𝑦 𝑚𝑘 → (lcm𝑦) ∥ 𝑘) → (((𝑛 ∈ ℤ ∧ 𝑘 ∈ ℕ) ∧ (0 ∉ 𝑦𝑧 ≠ 0 ∧ 𝑛 ≠ 0)) → (∀𝑖 ∈ ((𝑦 ∪ {𝑧}) ∪ {𝑛})𝑖𝑘 → (lcm𝑦) ∥ 𝑘))))
107106imp 395 . . . . . . . . . . . . . . . . . . . . . . . 24 (((𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin) ∧ ∀𝑘 ∈ ℤ (∀𝑚𝑦 𝑚𝑘 → (lcm𝑦) ∥ 𝑘)) → (((𝑛 ∈ ℤ ∧ 𝑘 ∈ ℕ) ∧ (0 ∉ 𝑦𝑧 ≠ 0 ∧ 𝑛 ≠ 0)) → (∀𝑖 ∈ ((𝑦 ∪ {𝑧}) ∪ {𝑛})𝑖𝑘 → (lcm𝑦) ∥ 𝑘)))
108107impl 447 . . . . . . . . . . . . . . . . . . . . . . 23 (((((𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin) ∧ ∀𝑘 ∈ ℤ (∀𝑚𝑦 𝑚𝑘 → (lcm𝑦) ∥ 𝑘)) ∧ (𝑛 ∈ ℤ ∧ 𝑘 ∈ ℕ)) ∧ (0 ∉ 𝑦𝑧 ≠ 0 ∧ 𝑛 ≠ 0)) → (∀𝑖 ∈ ((𝑦 ∪ {𝑧}) ∪ {𝑛})𝑖𝑘 → (lcm𝑦) ∥ 𝑘))
109108imp 395 . . . . . . . . . . . . . . . . . . . . . 22 ((((((𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin) ∧ ∀𝑘 ∈ ℤ (∀𝑚𝑦 𝑚𝑘 → (lcm𝑦) ∥ 𝑘)) ∧ (𝑛 ∈ ℤ ∧ 𝑘 ∈ ℕ)) ∧ (0 ∉ 𝑦𝑧 ≠ 0 ∧ 𝑛 ≠ 0)) ∧ ∀𝑖 ∈ ((𝑦 ∪ {𝑧}) ∪ {𝑛})𝑖𝑘) → (lcm𝑦) ∥ 𝑘)
110 vsnid 4366 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 𝑧 ∈ {𝑧}
111110olci 892 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (𝑧𝑦𝑧 ∈ {𝑧})
112 elun 3914 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (𝑧 ∈ (𝑦 ∪ {𝑧}) ↔ (𝑧𝑦𝑧 ∈ {𝑧}))
113111, 112mpbir 222 . . . . . . . . . . . . . . . . . . . . . . . . . 26 𝑧 ∈ (𝑦 ∪ {𝑧})
114113orci 891 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑧 ∈ (𝑦 ∪ {𝑧}) ∨ 𝑧 ∈ {𝑛})
115 elun 3914 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑧 ∈ ((𝑦 ∪ {𝑧}) ∪ {𝑛}) ↔ (𝑧 ∈ (𝑦 ∪ {𝑧}) ∨ 𝑧 ∈ {𝑛}))
116114, 115mpbir 222 . . . . . . . . . . . . . . . . . . . . . . . 24 𝑧 ∈ ((𝑦 ∪ {𝑧}) ∪ {𝑛})
117 breq1 4811 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑖 = 𝑧 → (𝑖𝑘𝑧𝑘))
118117rspcv 3456 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑧 ∈ ((𝑦 ∪ {𝑧}) ∪ {𝑛}) → (∀𝑖 ∈ ((𝑦 ∪ {𝑧}) ∪ {𝑛})𝑖𝑘𝑧𝑘))
119116, 118mp1i 13 . . . . . . . . . . . . . . . . . . . . . . 23 (((((𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin) ∧ ∀𝑘 ∈ ℤ (∀𝑚𝑦 𝑚𝑘 → (lcm𝑦) ∥ 𝑘)) ∧ (𝑛 ∈ ℤ ∧ 𝑘 ∈ ℕ)) ∧ (0 ∉ 𝑦𝑧 ≠ 0 ∧ 𝑛 ≠ 0)) → (∀𝑖 ∈ ((𝑦 ∪ {𝑧}) ∪ {𝑛})𝑖𝑘𝑧𝑘))
120119imp 395 . . . . . . . . . . . . . . . . . . . . . 22 ((((((𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin) ∧ ∀𝑘 ∈ ℤ (∀𝑚𝑦 𝑚𝑘 → (lcm𝑦) ∥ 𝑘)) ∧ (𝑛 ∈ ℤ ∧ 𝑘 ∈ ℕ)) ∧ (0 ∉ 𝑦𝑧 ≠ 0 ∧ 𝑛 ≠ 0)) ∧ ∀𝑖 ∈ ((𝑦 ∪ {𝑧}) ∪ {𝑛})𝑖𝑘) → 𝑧𝑘)
121109, 120jca 507 . . . . . . . . . . . . . . . . . . . . 21 ((((((𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin) ∧ ∀𝑘 ∈ ℤ (∀𝑚𝑦 𝑚𝑘 → (lcm𝑦) ∥ 𝑘)) ∧ (𝑛 ∈ ℤ ∧ 𝑘 ∈ ℕ)) ∧ (0 ∉ 𝑦𝑧 ≠ 0 ∧ 𝑛 ≠ 0)) ∧ ∀𝑖 ∈ ((𝑦 ∪ {𝑧}) ∪ {𝑛})𝑖𝑘) → ((lcm𝑦) ∥ 𝑘𝑧𝑘))
122 lcmdvds 15603 . . . . . . . . . . . . . . . . . . . . 21 ((𝑘 ∈ ℤ ∧ (lcm𝑦) ∈ ℤ ∧ 𝑧 ∈ ℤ) → (((lcm𝑦) ∥ 𝑘𝑧𝑘) → ((lcm𝑦) lcm 𝑧) ∥ 𝑘))
12378, 121, 122sylc 65 . . . . . . . . . . . . . . . . . . . 20 ((((((𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin) ∧ ∀𝑘 ∈ ℤ (∀𝑚𝑦 𝑚𝑘 → (lcm𝑦) ∥ 𝑘)) ∧ (𝑛 ∈ ℤ ∧ 𝑘 ∈ ℕ)) ∧ (0 ∉ 𝑦𝑧 ≠ 0 ∧ 𝑛 ≠ 0)) ∧ ∀𝑖 ∈ ((𝑦 ∪ {𝑧}) ∪ {𝑛})𝑖𝑘) → ((lcm𝑦) lcm 𝑧) ∥ 𝑘)
124 breq1 4811 . . . . . . . . . . . . . . . . . . . 20 ((lcm‘(𝑦 ∪ {𝑧})) = ((lcm𝑦) lcm 𝑧) → ((lcm‘(𝑦 ∪ {𝑧})) ∥ 𝑘 ↔ ((lcm𝑦) lcm 𝑧) ∥ 𝑘))
125123, 124syl5ibr 237 . . . . . . . . . . . . . . . . . . 19 ((lcm‘(𝑦 ∪ {𝑧})) = ((lcm𝑦) lcm 𝑧) → ((((((𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin) ∧ ∀𝑘 ∈ ℤ (∀𝑚𝑦 𝑚𝑘 → (lcm𝑦) ∥ 𝑘)) ∧ (𝑛 ∈ ℤ ∧ 𝑘 ∈ ℕ)) ∧ (0 ∉ 𝑦𝑧 ≠ 0 ∧ 𝑛 ≠ 0)) ∧ ∀𝑖 ∈ ((𝑦 ∪ {𝑧}) ∪ {𝑛})𝑖𝑘) → (lcm‘(𝑦 ∪ {𝑧})) ∥ 𝑘))
126125expd 404 . . . . . . . . . . . . . . . . . 18 ((lcm‘(𝑦 ∪ {𝑧})) = ((lcm𝑦) lcm 𝑧) → (((((𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin) ∧ ∀𝑘 ∈ ℤ (∀𝑚𝑦 𝑚𝑘 → (lcm𝑦) ∥ 𝑘)) ∧ (𝑛 ∈ ℤ ∧ 𝑘 ∈ ℕ)) ∧ (0 ∉ 𝑦𝑧 ≠ 0 ∧ 𝑛 ≠ 0)) → (∀𝑖 ∈ ((𝑦 ∪ {𝑧}) ∪ {𝑛})𝑖𝑘 → (lcm‘(𝑦 ∪ {𝑧})) ∥ 𝑘)))
127126exp5j 436 . . . . . . . . . . . . . . . . 17 ((lcm‘(𝑦 ∪ {𝑧})) = ((lcm𝑦) lcm 𝑧) → ((𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin) → (∀𝑘 ∈ ℤ (∀𝑚𝑦 𝑚𝑘 → (lcm𝑦) ∥ 𝑘) → ((𝑛 ∈ ℤ ∧ 𝑘 ∈ ℕ) → ((0 ∉ 𝑦𝑧 ≠ 0 ∧ 𝑛 ≠ 0) → (∀𝑖 ∈ ((𝑦 ∪ {𝑧}) ∪ {𝑛})𝑖𝑘 → (lcm‘(𝑦 ∪ {𝑧})) ∥ 𝑘))))))
128127com12 32 . . . . . . . . . . . . . . . 16 ((𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin) → ((lcm‘(𝑦 ∪ {𝑧})) = ((lcm𝑦) lcm 𝑧) → (∀𝑘 ∈ ℤ (∀𝑚𝑦 𝑚𝑘 → (lcm𝑦) ∥ 𝑘) → ((𝑛 ∈ ℤ ∧ 𝑘 ∈ ℕ) → ((0 ∉ 𝑦𝑧 ≠ 0 ∧ 𝑛 ≠ 0) → (∀𝑖 ∈ ((𝑦 ∪ {𝑧}) ∪ {𝑛})𝑖𝑘 → (lcm‘(𝑦 ∪ {𝑧})) ∥ 𝑘))))))
12968, 128syld 47 . . . . . . . . . . . . . . 15 ((𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin) → (∀𝑛 ∈ ℤ (lcm‘(𝑦 ∪ {𝑛})) = ((lcm𝑦) lcm 𝑛) → (∀𝑘 ∈ ℤ (∀𝑚𝑦 𝑚𝑘 → (lcm𝑦) ∥ 𝑘) → ((𝑛 ∈ ℤ ∧ 𝑘 ∈ ℕ) → ((0 ∉ 𝑦𝑧 ≠ 0 ∧ 𝑛 ≠ 0) → (∀𝑖 ∈ ((𝑦 ∪ {𝑧}) ∪ {𝑛})𝑖𝑘 → (lcm‘(𝑦 ∪ {𝑧})) ∥ 𝑘))))))
130129com23 86 . . . . . . . . . . . . . 14 ((𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin) → (∀𝑘 ∈ ℤ (∀𝑚𝑦 𝑚𝑘 → (lcm𝑦) ∥ 𝑘) → (∀𝑛 ∈ ℤ (lcm‘(𝑦 ∪ {𝑛})) = ((lcm𝑦) lcm 𝑛) → ((𝑛 ∈ ℤ ∧ 𝑘 ∈ ℕ) → ((0 ∉ 𝑦𝑧 ≠ 0 ∧ 𝑛 ≠ 0) → (∀𝑖 ∈ ((𝑦 ∪ {𝑧}) ∪ {𝑛})𝑖𝑘 → (lcm‘(𝑦 ∪ {𝑧})) ∥ 𝑘))))))
131130imp32 409 . . . . . . . . . . . . 13 (((𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin) ∧ (∀𝑘 ∈ ℤ (∀𝑚𝑦 𝑚𝑘 → (lcm𝑦) ∥ 𝑘) ∧ ∀𝑛 ∈ ℤ (lcm‘(𝑦 ∪ {𝑛})) = ((lcm𝑦) lcm 𝑛))) → ((𝑛 ∈ ℤ ∧ 𝑘 ∈ ℕ) → ((0 ∉ 𝑦𝑧 ≠ 0 ∧ 𝑛 ≠ 0) → (∀𝑖 ∈ ((𝑦 ∪ {𝑧}) ∪ {𝑛})𝑖𝑘 → (lcm‘(𝑦 ∪ {𝑧})) ∥ 𝑘))))
132131expd 404 . . . . . . . . . . . 12 (((𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin) ∧ (∀𝑘 ∈ ℤ (∀𝑚𝑦 𝑚𝑘 → (lcm𝑦) ∥ 𝑘) ∧ ∀𝑛 ∈ ℤ (lcm‘(𝑦 ∪ {𝑛})) = ((lcm𝑦) lcm 𝑛))) → (𝑛 ∈ ℤ → (𝑘 ∈ ℕ → ((0 ∉ 𝑦𝑧 ≠ 0 ∧ 𝑛 ≠ 0) → (∀𝑖 ∈ ((𝑦 ∪ {𝑧}) ∪ {𝑛})𝑖𝑘 → (lcm‘(𝑦 ∪ {𝑧})) ∥ 𝑘)))))
133132com34 91 . . . . . . . . . . 11 (((𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin) ∧ (∀𝑘 ∈ ℤ (∀𝑚𝑦 𝑚𝑘 → (lcm𝑦) ∥ 𝑘) ∧ ∀𝑛 ∈ ℤ (lcm‘(𝑦 ∪ {𝑛})) = ((lcm𝑦) lcm 𝑛))) → (𝑛 ∈ ℤ → ((0 ∉ 𝑦𝑧 ≠ 0 ∧ 𝑛 ≠ 0) → (𝑘 ∈ ℕ → (∀𝑖 ∈ ((𝑦 ∪ {𝑧}) ∪ {𝑛})𝑖𝑘 → (lcm‘(𝑦 ∪ {𝑧})) ∥ 𝑘)))))
134133com12 32 . . . . . . . . . 10 (𝑛 ∈ ℤ → (((𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin) ∧ (∀𝑘 ∈ ℤ (∀𝑚𝑦 𝑚𝑘 → (lcm𝑦) ∥ 𝑘) ∧ ∀𝑛 ∈ ℤ (lcm‘(𝑦 ∪ {𝑛})) = ((lcm𝑦) lcm 𝑛))) → ((0 ∉ 𝑦𝑧 ≠ 0 ∧ 𝑛 ≠ 0) → (𝑘 ∈ ℕ → (∀𝑖 ∈ ((𝑦 ∪ {𝑧}) ∪ {𝑛})𝑖𝑘 → (lcm‘(𝑦 ∪ {𝑧})) ∥ 𝑘)))))
135134imp 395 . . . . . . . . 9 ((𝑛 ∈ ℤ ∧ ((𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin) ∧ (∀𝑘 ∈ ℤ (∀𝑚𝑦 𝑚𝑘 → (lcm𝑦) ∥ 𝑘) ∧ ∀𝑛 ∈ ℤ (lcm‘(𝑦 ∪ {𝑛})) = ((lcm𝑦) lcm 𝑛)))) → ((0 ∉ 𝑦𝑧 ≠ 0 ∧ 𝑛 ≠ 0) → (𝑘 ∈ ℕ → (∀𝑖 ∈ ((𝑦 ∪ {𝑧}) ∪ {𝑛})𝑖𝑘 → (lcm‘(𝑦 ∪ {𝑧})) ∥ 𝑘))))
136135com12 32 . . . . . . . 8 ((0 ∉ 𝑦𝑧 ≠ 0 ∧ 𝑛 ≠ 0) → ((𝑛 ∈ ℤ ∧ ((𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin) ∧ (∀𝑘 ∈ ℤ (∀𝑚𝑦 𝑚𝑘 → (lcm𝑦) ∥ 𝑘) ∧ ∀𝑛 ∈ ℤ (lcm‘(𝑦 ∪ {𝑛})) = ((lcm𝑦) lcm 𝑛)))) → (𝑘 ∈ ℕ → (∀𝑖 ∈ ((𝑦 ∪ {𝑧}) ∪ {𝑛})𝑖𝑘 → (lcm‘(𝑦 ∪ {𝑧})) ∥ 𝑘))))
137136imp 395 . . . . . . 7 (((0 ∉ 𝑦𝑧 ≠ 0 ∧ 𝑛 ≠ 0) ∧ (𝑛 ∈ ℤ ∧ ((𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin) ∧ (∀𝑘 ∈ ℤ (∀𝑚𝑦 𝑚𝑘 → (lcm𝑦) ∥ 𝑘) ∧ ∀𝑛 ∈ ℤ (lcm‘(𝑦 ∪ {𝑛})) = ((lcm𝑦) lcm 𝑛))))) → (𝑘 ∈ ℕ → (∀𝑖 ∈ ((𝑦 ∪ {𝑧}) ∪ {𝑛})𝑖𝑘 → (lcm‘(𝑦 ∪ {𝑧})) ∥ 𝑘)))
138137imp 395 . . . . . 6 ((((0 ∉ 𝑦𝑧 ≠ 0 ∧ 𝑛 ≠ 0) ∧ (𝑛 ∈ ℤ ∧ ((𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin) ∧ (∀𝑘 ∈ ℤ (∀𝑚𝑦 𝑚𝑘 → (lcm𝑦) ∥ 𝑘) ∧ ∀𝑛 ∈ ℤ (lcm‘(𝑦 ∪ {𝑛})) = ((lcm𝑦) lcm 𝑛))))) ∧ 𝑘 ∈ ℕ) → (∀𝑖 ∈ ((𝑦 ∪ {𝑧}) ∪ {𝑛})𝑖𝑘 → (lcm‘(𝑦 ∪ {𝑧})) ∥ 𝑘))
139138imp 395 . . . . 5 (((((0 ∉ 𝑦𝑧 ≠ 0 ∧ 𝑛 ≠ 0) ∧ (𝑛 ∈ ℤ ∧ ((𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin) ∧ (∀𝑘 ∈ ℤ (∀𝑚𝑦 𝑚𝑘 → (lcm𝑦) ∥ 𝑘) ∧ ∀𝑛 ∈ ℤ (lcm‘(𝑦 ∪ {𝑛})) = ((lcm𝑦) lcm 𝑛))))) ∧ 𝑘 ∈ ℕ) ∧ ∀𝑖 ∈ ((𝑦 ∪ {𝑧}) ∪ {𝑛})𝑖𝑘) → (lcm‘(𝑦 ∪ {𝑧})) ∥ 𝑘)
140 vsnid 4366 . . . . . . . . 9 𝑛 ∈ {𝑛}
141140olci 892 . . . . . . . 8 (𝑛 ∈ (𝑦 ∪ {𝑧}) ∨ 𝑛 ∈ {𝑛})
142 elun 3914 . . . . . . . 8 (𝑛 ∈ ((𝑦 ∪ {𝑧}) ∪ {𝑛}) ↔ (𝑛 ∈ (𝑦 ∪ {𝑧}) ∨ 𝑛 ∈ {𝑛}))
143141, 142mpbir 222 . . . . . . 7 𝑛 ∈ ((𝑦 ∪ {𝑧}) ∪ {𝑛})
144 breq1 4811 . . . . . . . 8 (𝑖 = 𝑛 → (𝑖𝑘𝑛𝑘))
145144rspcv 3456 . . . . . . 7 (𝑛 ∈ ((𝑦 ∪ {𝑧}) ∪ {𝑛}) → (∀𝑖 ∈ ((𝑦 ∪ {𝑧}) ∪ {𝑛})𝑖𝑘𝑛𝑘))
146143, 145mp1i 13 . . . . . 6 ((((0 ∉ 𝑦𝑧 ≠ 0 ∧ 𝑛 ≠ 0) ∧ (𝑛 ∈ ℤ ∧ ((𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin) ∧ (∀𝑘 ∈ ℤ (∀𝑚𝑦 𝑚𝑘 → (lcm𝑦) ∥ 𝑘) ∧ ∀𝑛 ∈ ℤ (lcm‘(𝑦 ∪ {𝑛})) = ((lcm𝑦) lcm 𝑛))))) ∧ 𝑘 ∈ ℕ) → (∀𝑖 ∈ ((𝑦 ∪ {𝑧}) ∪ {𝑛})𝑖𝑘𝑛𝑘))
147146imp 395 . . . . 5 (((((0 ∉ 𝑦𝑧 ≠ 0 ∧ 𝑛 ≠ 0) ∧ (𝑛 ∈ ℤ ∧ ((𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin) ∧ (∀𝑘 ∈ ℤ (∀𝑚𝑦 𝑚𝑘 → (lcm𝑦) ∥ 𝑘) ∧ ∀𝑛 ∈ ℤ (lcm‘(𝑦 ∪ {𝑛})) = ((lcm𝑦) lcm 𝑛))))) ∧ 𝑘 ∈ ℕ) ∧ ∀𝑖 ∈ ((𝑦 ∪ {𝑧}) ∪ {𝑛})𝑖𝑘) → 𝑛𝑘)
148139, 147jca 507 . . . 4 (((((0 ∉ 𝑦𝑧 ≠ 0 ∧ 𝑛 ≠ 0) ∧ (𝑛 ∈ ℤ ∧ ((𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin) ∧ (∀𝑘 ∈ ℤ (∀𝑚𝑦 𝑚𝑘 → (lcm𝑦) ∥ 𝑘) ∧ ∀𝑛 ∈ ℤ (lcm‘(𝑦 ∪ {𝑛})) = ((lcm𝑦) lcm 𝑛))))) ∧ 𝑘 ∈ ℕ) ∧ ∀𝑖 ∈ ((𝑦 ∪ {𝑧}) ∪ {𝑛})𝑖𝑘) → ((lcm‘(𝑦 ∪ {𝑧})) ∥ 𝑘𝑛𝑘))
149 lcmledvds 15594 . . . 4 (((𝑘 ∈ ℕ ∧ (lcm‘(𝑦 ∪ {𝑧})) ∈ ℤ ∧ 𝑛 ∈ ℤ) ∧ ¬ ((lcm‘(𝑦 ∪ {𝑧})) = 0 ∨ 𝑛 = 0)) → (((lcm‘(𝑦 ∪ {𝑧})) ∥ 𝑘𝑛𝑘) → ((lcm‘(𝑦 ∪ {𝑧})) lcm 𝑛) ≤ 𝑘))
15061, 148, 149sylc 65 . . 3 (((((0 ∉ 𝑦𝑧 ≠ 0 ∧ 𝑛 ≠ 0) ∧ (𝑛 ∈ ℤ ∧ ((𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin) ∧ (∀𝑘 ∈ ℤ (∀𝑚𝑦 𝑚𝑘 → (lcm𝑦) ∥ 𝑘) ∧ ∀𝑛 ∈ ℤ (lcm‘(𝑦 ∪ {𝑛})) = ((lcm𝑦) lcm 𝑛))))) ∧ 𝑘 ∈ ℕ) ∧ ∀𝑖 ∈ ((𝑦 ∪ {𝑧}) ∪ {𝑛})𝑖𝑘) → ((lcm‘(𝑦 ∪ {𝑧})) lcm 𝑛) ≤ 𝑘)
151150exp31 410 . 2 (((0 ∉ 𝑦𝑧 ≠ 0 ∧ 𝑛 ≠ 0) ∧ (𝑛 ∈ ℤ ∧ ((𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin) ∧ (∀𝑘 ∈ ℤ (∀𝑚𝑦 𝑚𝑘 → (lcm𝑦) ∥ 𝑘) ∧ ∀𝑛 ∈ ℤ (lcm‘(𝑦 ∪ {𝑛})) = ((lcm𝑦) lcm 𝑛))))) → (𝑘 ∈ ℕ → (∀𝑖 ∈ ((𝑦 ∪ {𝑧}) ∪ {𝑛})𝑖𝑘 → ((lcm‘(𝑦 ∪ {𝑧})) lcm 𝑛) ≤ 𝑘)))
1529, 151ralrimi 3103 1 (((0 ∉ 𝑦𝑧 ≠ 0 ∧ 𝑛 ≠ 0) ∧ (𝑛 ∈ ℤ ∧ ((𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin) ∧ (∀𝑘 ∈ ℤ (∀𝑚𝑦 𝑚𝑘 → (lcm𝑦) ∥ 𝑘) ∧ ∀𝑛 ∈ ℤ (lcm‘(𝑦 ∪ {𝑛})) = ((lcm𝑦) lcm 𝑛))))) → ∀𝑘 ∈ ℕ (∀𝑖 ∈ ((𝑦 ∪ {𝑧}) ∪ {𝑛})𝑖𝑘 → ((lcm‘(𝑦 ∪ {𝑧})) lcm 𝑛) ≤ 𝑘))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 384  wo 873  w3a 1107   = wceq 1652  wcel 2155  wne 2936  wnel 3039  wral 3054  cun 3729  wss 3731  {csn 4333   class class class wbr 4808  cfv 6067  (class class class)co 6841  Fincfn 8159  0cc0 10188  cle 10328  cn 11273  0cn0 11537  cz 11623  cdvds 15266   lcm clcm 15583  lcmclcmf 15584
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1890  ax-4 1904  ax-5 2005  ax-6 2069  ax-7 2105  ax-8 2157  ax-9 2164  ax-10 2183  ax-11 2198  ax-12 2211  ax-13 2349  ax-ext 2742  ax-rep 4929  ax-sep 4940  ax-nul 4948  ax-pow 5000  ax-pr 5061  ax-un 7146  ax-inf2 8752  ax-cnex 10244  ax-resscn 10245  ax-1cn 10246  ax-icn 10247  ax-addcl 10248  ax-addrcl 10249  ax-mulcl 10250  ax-mulrcl 10251  ax-mulcom 10252  ax-addass 10253  ax-mulass 10254  ax-distr 10255  ax-i2m1 10256  ax-1ne0 10257  ax-1rid 10258  ax-rnegex 10259  ax-rrecex 10260  ax-cnre 10261  ax-pre-lttri 10262  ax-pre-lttrn 10263  ax-pre-ltadd 10264  ax-pre-mulgt0 10265  ax-pre-sup 10266
This theorem depends on definitions:  df-bi 198  df-an 385  df-or 874  df-3or 1108  df-3an 1109  df-tru 1656  df-fal 1666  df-ex 1875  df-nf 1879  df-sb 2062  df-mo 2564  df-eu 2581  df-clab 2751  df-cleq 2757  df-clel 2760  df-nfc 2895  df-ne 2937  df-nel 3040  df-ral 3059  df-rex 3060  df-reu 3061  df-rmo 3062  df-rab 3063  df-v 3351  df-sbc 3596  df-csb 3691  df-dif 3734  df-un 3736  df-in 3738  df-ss 3745  df-pss 3747  df-nul 4079  df-if 4243  df-pw 4316  df-sn 4334  df-pr 4336  df-tp 4338  df-op 4340  df-uni 4594  df-int 4633  df-iun 4677  df-br 4809  df-opab 4871  df-mpt 4888  df-tr 4911  df-id 5184  df-eprel 5189  df-po 5197  df-so 5198  df-fr 5235  df-se 5236  df-we 5237  df-xp 5282  df-rel 5283  df-cnv 5284  df-co 5285  df-dm 5286  df-rn 5287  df-res 5288  df-ima 5289  df-pred 5864  df-ord 5910  df-on 5911  df-lim 5912  df-suc 5913  df-iota 6030  df-fun 6069  df-fn 6070  df-f 6071  df-f1 6072  df-fo 6073  df-f1o 6074  df-fv 6075  df-isom 6076  df-riota 6802  df-ov 6844  df-oprab 6845  df-mpt2 6846  df-om 7263  df-1st 7365  df-2nd 7366  df-wrecs 7609  df-recs 7671  df-rdg 7709  df-1o 7763  df-oadd 7767  df-er 7946  df-en 8160  df-dom 8161  df-sdom 8162  df-fin 8163  df-sup 8554  df-inf 8555  df-oi 8621  df-card 9015  df-pnf 10329  df-mnf 10330  df-xr 10331  df-ltxr 10332  df-le 10333  df-sub 10521  df-neg 10522  df-div 10938  df-nn 11274  df-2 11334  df-3 11335  df-n0 11538  df-z 11624  df-uz 11886  df-rp 12028  df-fz 12533  df-fzo 12673  df-fl 12800  df-mod 12876  df-seq 13008  df-exp 13067  df-hash 13321  df-cj 14125  df-re 14126  df-im 14127  df-sqrt 14261  df-abs 14262  df-clim 14505  df-prod 14920  df-dvds 15267  df-gcd 15499  df-lcm 15585  df-lcmf 15586
This theorem is referenced by:  lcmfunsnlem2lem2  15634
  Copyright terms: Public domain W3C validator