MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  lcmfunsnlem2lem1 Structured version   Visualization version   GIF version

Theorem lcmfunsnlem2lem1 16080
Description: Lemma 1 for lcmfunsnlem2 16082. (Contributed by AV, 26-Aug-2020.)
Assertion
Ref Expression
lcmfunsnlem2lem1 (((0 ∉ 𝑦𝑧 ≠ 0 ∧ 𝑛 ≠ 0) ∧ (𝑛 ∈ ℤ ∧ ((𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin) ∧ (∀𝑘 ∈ ℤ (∀𝑚𝑦 𝑚𝑘 → (lcm𝑦) ∥ 𝑘) ∧ ∀𝑛 ∈ ℤ (lcm‘(𝑦 ∪ {𝑛})) = ((lcm𝑦) lcm 𝑛))))) → ∀𝑘 ∈ ℕ (∀𝑖 ∈ ((𝑦 ∪ {𝑧}) ∪ {𝑛})𝑖𝑘 → ((lcm‘(𝑦 ∪ {𝑧})) lcm 𝑛) ≤ 𝑘))
Distinct variable groups:   𝑦,𝑚,𝑧   𝑘,𝑛,𝑦,𝑧,𝑚,𝑖

Proof of Theorem lcmfunsnlem2lem1
Dummy variable 𝑙 is distinct from all other variables.
StepHypRef Expression
1 nfv 1920 . . 3 𝑘(0 ∉ 𝑦𝑧 ≠ 0 ∧ 𝑛 ≠ 0)
2 nfv 1920 . . . 4 𝑘 𝑛 ∈ ℤ
3 nfv 1920 . . . . 5 𝑘(𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin)
4 nfra1 3131 . . . . . 6 𝑘𝑘 ∈ ℤ (∀𝑚𝑦 𝑚𝑘 → (lcm𝑦) ∥ 𝑘)
5 nfv 1920 . . . . . 6 𝑘𝑛 ∈ ℤ (lcm‘(𝑦 ∪ {𝑛})) = ((lcm𝑦) lcm 𝑛)
64, 5nfan 1905 . . . . 5 𝑘(∀𝑘 ∈ ℤ (∀𝑚𝑦 𝑚𝑘 → (lcm𝑦) ∥ 𝑘) ∧ ∀𝑛 ∈ ℤ (lcm‘(𝑦 ∪ {𝑛})) = ((lcm𝑦) lcm 𝑛))
73, 6nfan 1905 . . . 4 𝑘((𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin) ∧ (∀𝑘 ∈ ℤ (∀𝑚𝑦 𝑚𝑘 → (lcm𝑦) ∥ 𝑘) ∧ ∀𝑛 ∈ ℤ (lcm‘(𝑦 ∪ {𝑛})) = ((lcm𝑦) lcm 𝑛)))
82, 7nfan 1905 . . 3 𝑘(𝑛 ∈ ℤ ∧ ((𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin) ∧ (∀𝑘 ∈ ℤ (∀𝑚𝑦 𝑚𝑘 → (lcm𝑦) ∥ 𝑘) ∧ ∀𝑛 ∈ ℤ (lcm‘(𝑦 ∪ {𝑛})) = ((lcm𝑦) lcm 𝑛))))
91, 8nfan 1905 . 2 𝑘((0 ∉ 𝑦𝑧 ≠ 0 ∧ 𝑛 ≠ 0) ∧ (𝑛 ∈ ℤ ∧ ((𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin) ∧ (∀𝑘 ∈ ℤ (∀𝑚𝑦 𝑚𝑘 → (lcm𝑦) ∥ 𝑘) ∧ ∀𝑛 ∈ ℤ (lcm‘(𝑦 ∪ {𝑛})) = ((lcm𝑦) lcm 𝑛)))))
10 simprr 773 . . . . . . . . . . . 12 ((((0 ∉ 𝑦𝑧 ≠ 0 ∧ 𝑛 ≠ 0) ∧ (𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin)) ∧ (𝑛 ∈ ℤ ∧ 𝑘 ∈ ℕ)) → 𝑘 ∈ ℕ)
11 simp2 1138 . . . . . . . . . . . . . . . . . 18 ((𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin) → 𝑦 ⊆ ℤ)
12 snssi 4697 . . . . . . . . . . . . . . . . . . 19 (𝑧 ∈ ℤ → {𝑧} ⊆ ℤ)
13123ad2ant1 1134 . . . . . . . . . . . . . . . . . 18 ((𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin) → {𝑧} ⊆ ℤ)
1411, 13unssd 4077 . . . . . . . . . . . . . . . . 17 ((𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin) → (𝑦 ∪ {𝑧}) ⊆ ℤ)
15 simp3 1139 . . . . . . . . . . . . . . . . . 18 ((𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin) → 𝑦 ∈ Fin)
16 snfi 8643 . . . . . . . . . . . . . . . . . 18 {𝑧} ∈ Fin
17 unfi 8772 . . . . . . . . . . . . . . . . . 18 ((𝑦 ∈ Fin ∧ {𝑧} ∈ Fin) → (𝑦 ∪ {𝑧}) ∈ Fin)
1815, 16, 17sylancl 589 . . . . . . . . . . . . . . . . 17 ((𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin) → (𝑦 ∪ {𝑧}) ∈ Fin)
1914, 18jca 515 . . . . . . . . . . . . . . . 16 ((𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin) → ((𝑦 ∪ {𝑧}) ⊆ ℤ ∧ (𝑦 ∪ {𝑧}) ∈ Fin))
20 lcmfcl 16070 . . . . . . . . . . . . . . . 16 (((𝑦 ∪ {𝑧}) ⊆ ℤ ∧ (𝑦 ∪ {𝑧}) ∈ Fin) → (lcm‘(𝑦 ∪ {𝑧})) ∈ ℕ0)
2119, 20syl 17 . . . . . . . . . . . . . . 15 ((𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin) → (lcm‘(𝑦 ∪ {𝑧})) ∈ ℕ0)
2221nn0zd 12167 . . . . . . . . . . . . . 14 ((𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin) → (lcm‘(𝑦 ∪ {𝑧})) ∈ ℤ)
2322adantl 485 . . . . . . . . . . . . 13 (((0 ∉ 𝑦𝑧 ≠ 0 ∧ 𝑛 ≠ 0) ∧ (𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin)) → (lcm‘(𝑦 ∪ {𝑧})) ∈ ℤ)
2423adantr 484 . . . . . . . . . . . 12 ((((0 ∉ 𝑦𝑧 ≠ 0 ∧ 𝑛 ≠ 0) ∧ (𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin)) ∧ (𝑛 ∈ ℤ ∧ 𝑘 ∈ ℕ)) → (lcm‘(𝑦 ∪ {𝑧})) ∈ ℤ)
25 simprl 771 . . . . . . . . . . . 12 ((((0 ∉ 𝑦𝑧 ≠ 0 ∧ 𝑛 ≠ 0) ∧ (𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin)) ∧ (𝑛 ∈ ℤ ∧ 𝑘 ∈ ℕ)) → 𝑛 ∈ ℤ)
2610, 24, 253jca 1129 . . . . . . . . . . 11 ((((0 ∉ 𝑦𝑧 ≠ 0 ∧ 𝑛 ≠ 0) ∧ (𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin)) ∧ (𝑛 ∈ ℤ ∧ 𝑘 ∈ ℕ)) → (𝑘 ∈ ℕ ∧ (lcm‘(𝑦 ∪ {𝑧})) ∈ ℤ ∧ 𝑛 ∈ ℤ))
2714adantl 485 . . . . . . . . . . . . . . . . . 18 (((0 ∉ 𝑦𝑧 ≠ 0 ∧ 𝑛 ≠ 0) ∧ (𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin)) → (𝑦 ∪ {𝑧}) ⊆ ℤ)
2818adantl 485 . . . . . . . . . . . . . . . . . 18 (((0 ∉ 𝑦𝑧 ≠ 0 ∧ 𝑛 ≠ 0) ∧ (𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin)) → (𝑦 ∪ {𝑧}) ∈ Fin)
29 df-nel 3039 . . . . . . . . . . . . . . . . . . . . . . 23 (0 ∉ 𝑦 ↔ ¬ 0 ∈ 𝑦)
3029biimpi 219 . . . . . . . . . . . . . . . . . . . . . 22 (0 ∉ 𝑦 → ¬ 0 ∈ 𝑦)
31 elsni 4534 . . . . . . . . . . . . . . . . . . . . . . . 24 (0 ∈ {𝑧} → 0 = 𝑧)
3231eqcomd 2744 . . . . . . . . . . . . . . . . . . . . . . 23 (0 ∈ {𝑧} → 𝑧 = 0)
3332necon3ai 2959 . . . . . . . . . . . . . . . . . . . . . 22 (𝑧 ≠ 0 → ¬ 0 ∈ {𝑧})
3430, 33anim12i 616 . . . . . . . . . . . . . . . . . . . . 21 ((0 ∉ 𝑦𝑧 ≠ 0) → (¬ 0 ∈ 𝑦 ∧ ¬ 0 ∈ {𝑧}))
35343adant3 1133 . . . . . . . . . . . . . . . . . . . 20 ((0 ∉ 𝑦𝑧 ≠ 0 ∧ 𝑛 ≠ 0) → (¬ 0 ∈ 𝑦 ∧ ¬ 0 ∈ {𝑧}))
36 df-nel 3039 . . . . . . . . . . . . . . . . . . . . 21 (0 ∉ (𝑦 ∪ {𝑧}) ↔ ¬ 0 ∈ (𝑦 ∪ {𝑧}))
37 ioran 983 . . . . . . . . . . . . . . . . . . . . . 22 (¬ (0 ∈ 𝑦 ∨ 0 ∈ {𝑧}) ↔ (¬ 0 ∈ 𝑦 ∧ ¬ 0 ∈ {𝑧}))
38 elun 4040 . . . . . . . . . . . . . . . . . . . . . 22 (0 ∈ (𝑦 ∪ {𝑧}) ↔ (0 ∈ 𝑦 ∨ 0 ∈ {𝑧}))
3937, 38xchnxbir 336 . . . . . . . . . . . . . . . . . . . . 21 (¬ 0 ∈ (𝑦 ∪ {𝑧}) ↔ (¬ 0 ∈ 𝑦 ∧ ¬ 0 ∈ {𝑧}))
4036, 39bitri 278 . . . . . . . . . . . . . . . . . . . 20 (0 ∉ (𝑦 ∪ {𝑧}) ↔ (¬ 0 ∈ 𝑦 ∧ ¬ 0 ∈ {𝑧}))
4135, 40sylibr 237 . . . . . . . . . . . . . . . . . . 19 ((0 ∉ 𝑦𝑧 ≠ 0 ∧ 𝑛 ≠ 0) → 0 ∉ (𝑦 ∪ {𝑧}))
4241adantr 484 . . . . . . . . . . . . . . . . . 18 (((0 ∉ 𝑦𝑧 ≠ 0 ∧ 𝑛 ≠ 0) ∧ (𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin)) → 0 ∉ (𝑦 ∪ {𝑧}))
4327, 28, 423jca 1129 . . . . . . . . . . . . . . . . 17 (((0 ∉ 𝑦𝑧 ≠ 0 ∧ 𝑛 ≠ 0) ∧ (𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin)) → ((𝑦 ∪ {𝑧}) ⊆ ℤ ∧ (𝑦 ∪ {𝑧}) ∈ Fin ∧ 0 ∉ (𝑦 ∪ {𝑧})))
4443adantr 484 . . . . . . . . . . . . . . . 16 ((((0 ∉ 𝑦𝑧 ≠ 0 ∧ 𝑛 ≠ 0) ∧ (𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin)) ∧ (𝑛 ∈ ℤ ∧ 𝑘 ∈ ℕ)) → ((𝑦 ∪ {𝑧}) ⊆ ℤ ∧ (𝑦 ∪ {𝑧}) ∈ Fin ∧ 0 ∉ (𝑦 ∪ {𝑧})))
45 lcmfn0cl 16068 . . . . . . . . . . . . . . . 16 (((𝑦 ∪ {𝑧}) ⊆ ℤ ∧ (𝑦 ∪ {𝑧}) ∈ Fin ∧ 0 ∉ (𝑦 ∪ {𝑧})) → (lcm‘(𝑦 ∪ {𝑧})) ∈ ℕ)
4644, 45syl 17 . . . . . . . . . . . . . . 15 ((((0 ∉ 𝑦𝑧 ≠ 0 ∧ 𝑛 ≠ 0) ∧ (𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin)) ∧ (𝑛 ∈ ℤ ∧ 𝑘 ∈ ℕ)) → (lcm‘(𝑦 ∪ {𝑧})) ∈ ℕ)
4746nnne0d 11767 . . . . . . . . . . . . . 14 ((((0 ∉ 𝑦𝑧 ≠ 0 ∧ 𝑛 ≠ 0) ∧ (𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin)) ∧ (𝑛 ∈ ℤ ∧ 𝑘 ∈ ℕ)) → (lcm‘(𝑦 ∪ {𝑧})) ≠ 0)
4847neneqd 2939 . . . . . . . . . . . . 13 ((((0 ∉ 𝑦𝑧 ≠ 0 ∧ 𝑛 ≠ 0) ∧ (𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin)) ∧ (𝑛 ∈ ℤ ∧ 𝑘 ∈ ℕ)) → ¬ (lcm‘(𝑦 ∪ {𝑧})) = 0)
49 neneq 2940 . . . . . . . . . . . . . . 15 (𝑛 ≠ 0 → ¬ 𝑛 = 0)
50493ad2ant3 1136 . . . . . . . . . . . . . 14 ((0 ∉ 𝑦𝑧 ≠ 0 ∧ 𝑛 ≠ 0) → ¬ 𝑛 = 0)
5150ad2antrr 726 . . . . . . . . . . . . 13 ((((0 ∉ 𝑦𝑧 ≠ 0 ∧ 𝑛 ≠ 0) ∧ (𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin)) ∧ (𝑛 ∈ ℤ ∧ 𝑘 ∈ ℕ)) → ¬ 𝑛 = 0)
5248, 51jca 515 . . . . . . . . . . . 12 ((((0 ∉ 𝑦𝑧 ≠ 0 ∧ 𝑛 ≠ 0) ∧ (𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin)) ∧ (𝑛 ∈ ℤ ∧ 𝑘 ∈ ℕ)) → (¬ (lcm‘(𝑦 ∪ {𝑧})) = 0 ∧ ¬ 𝑛 = 0))
53 ioran 983 . . . . . . . . . . . 12 (¬ ((lcm‘(𝑦 ∪ {𝑧})) = 0 ∨ 𝑛 = 0) ↔ (¬ (lcm‘(𝑦 ∪ {𝑧})) = 0 ∧ ¬ 𝑛 = 0))
5452, 53sylibr 237 . . . . . . . . . . 11 ((((0 ∉ 𝑦𝑧 ≠ 0 ∧ 𝑛 ≠ 0) ∧ (𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin)) ∧ (𝑛 ∈ ℤ ∧ 𝑘 ∈ ℕ)) → ¬ ((lcm‘(𝑦 ∪ {𝑧})) = 0 ∨ 𝑛 = 0))
5526, 54jca 515 . . . . . . . . . 10 ((((0 ∉ 𝑦𝑧 ≠ 0 ∧ 𝑛 ≠ 0) ∧ (𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin)) ∧ (𝑛 ∈ ℤ ∧ 𝑘 ∈ ℕ)) → ((𝑘 ∈ ℕ ∧ (lcm‘(𝑦 ∪ {𝑧})) ∈ ℤ ∧ 𝑛 ∈ ℤ) ∧ ¬ ((lcm‘(𝑦 ∪ {𝑧})) = 0 ∨ 𝑛 = 0)))
5655exp43 440 . . . . . . . . 9 ((0 ∉ 𝑦𝑧 ≠ 0 ∧ 𝑛 ≠ 0) → ((𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin) → (𝑛 ∈ ℤ → (𝑘 ∈ ℕ → ((𝑘 ∈ ℕ ∧ (lcm‘(𝑦 ∪ {𝑧})) ∈ ℤ ∧ 𝑛 ∈ ℤ) ∧ ¬ ((lcm‘(𝑦 ∪ {𝑧})) = 0 ∨ 𝑛 = 0))))))
5756adantrd 495 . . . . . . . 8 ((0 ∉ 𝑦𝑧 ≠ 0 ∧ 𝑛 ≠ 0) → (((𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin) ∧ (∀𝑘 ∈ ℤ (∀𝑚𝑦 𝑚𝑘 → (lcm𝑦) ∥ 𝑘) ∧ ∀𝑛 ∈ ℤ (lcm‘(𝑦 ∪ {𝑛})) = ((lcm𝑦) lcm 𝑛))) → (𝑛 ∈ ℤ → (𝑘 ∈ ℕ → ((𝑘 ∈ ℕ ∧ (lcm‘(𝑦 ∪ {𝑧})) ∈ ℤ ∧ 𝑛 ∈ ℤ) ∧ ¬ ((lcm‘(𝑦 ∪ {𝑧})) = 0 ∨ 𝑛 = 0))))))
5857com23 86 . . . . . . 7 ((0 ∉ 𝑦𝑧 ≠ 0 ∧ 𝑛 ≠ 0) → (𝑛 ∈ ℤ → (((𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin) ∧ (∀𝑘 ∈ ℤ (∀𝑚𝑦 𝑚𝑘 → (lcm𝑦) ∥ 𝑘) ∧ ∀𝑛 ∈ ℤ (lcm‘(𝑦 ∪ {𝑛})) = ((lcm𝑦) lcm 𝑛))) → (𝑘 ∈ ℕ → ((𝑘 ∈ ℕ ∧ (lcm‘(𝑦 ∪ {𝑧})) ∈ ℤ ∧ 𝑛 ∈ ℤ) ∧ ¬ ((lcm‘(𝑦 ∪ {𝑧})) = 0 ∨ 𝑛 = 0))))))
5958imp32 422 . . . . . 6 (((0 ∉ 𝑦𝑧 ≠ 0 ∧ 𝑛 ≠ 0) ∧ (𝑛 ∈ ℤ ∧ ((𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin) ∧ (∀𝑘 ∈ ℤ (∀𝑚𝑦 𝑚𝑘 → (lcm𝑦) ∥ 𝑘) ∧ ∀𝑛 ∈ ℤ (lcm‘(𝑦 ∪ {𝑛})) = ((lcm𝑦) lcm 𝑛))))) → (𝑘 ∈ ℕ → ((𝑘 ∈ ℕ ∧ (lcm‘(𝑦 ∪ {𝑧})) ∈ ℤ ∧ 𝑛 ∈ ℤ) ∧ ¬ ((lcm‘(𝑦 ∪ {𝑧})) = 0 ∨ 𝑛 = 0))))
6059imp 410 . . . . 5 ((((0 ∉ 𝑦𝑧 ≠ 0 ∧ 𝑛 ≠ 0) ∧ (𝑛 ∈ ℤ ∧ ((𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin) ∧ (∀𝑘 ∈ ℤ (∀𝑚𝑦 𝑚𝑘 → (lcm𝑦) ∥ 𝑘) ∧ ∀𝑛 ∈ ℤ (lcm‘(𝑦 ∪ {𝑛})) = ((lcm𝑦) lcm 𝑛))))) ∧ 𝑘 ∈ ℕ) → ((𝑘 ∈ ℕ ∧ (lcm‘(𝑦 ∪ {𝑧})) ∈ ℤ ∧ 𝑛 ∈ ℤ) ∧ ¬ ((lcm‘(𝑦 ∪ {𝑧})) = 0 ∨ 𝑛 = 0)))
6160adantr 484 . . . 4 (((((0 ∉ 𝑦𝑧 ≠ 0 ∧ 𝑛 ≠ 0) ∧ (𝑛 ∈ ℤ ∧ ((𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin) ∧ (∀𝑘 ∈ ℤ (∀𝑚𝑦 𝑚𝑘 → (lcm𝑦) ∥ 𝑘) ∧ ∀𝑛 ∈ ℤ (lcm‘(𝑦 ∪ {𝑛})) = ((lcm𝑦) lcm 𝑛))))) ∧ 𝑘 ∈ ℕ) ∧ ∀𝑖 ∈ ((𝑦 ∪ {𝑧}) ∪ {𝑛})𝑖𝑘) → ((𝑘 ∈ ℕ ∧ (lcm‘(𝑦 ∪ {𝑧})) ∈ ℤ ∧ 𝑛 ∈ ℤ) ∧ ¬ ((lcm‘(𝑦 ∪ {𝑧})) = 0 ∨ 𝑛 = 0)))
62 sneq 4527 . . . . . . . . . . . . . . . . . . . . 21 (𝑛 = 𝑧 → {𝑛} = {𝑧})
6362uneq2d 4054 . . . . . . . . . . . . . . . . . . . 20 (𝑛 = 𝑧 → (𝑦 ∪ {𝑛}) = (𝑦 ∪ {𝑧}))
6463fveq2d 6679 . . . . . . . . . . . . . . . . . . 19 (𝑛 = 𝑧 → (lcm‘(𝑦 ∪ {𝑛})) = (lcm‘(𝑦 ∪ {𝑧})))
65 oveq2 7179 . . . . . . . . . . . . . . . . . . 19 (𝑛 = 𝑧 → ((lcm𝑦) lcm 𝑛) = ((lcm𝑦) lcm 𝑧))
6664, 65eqeq12d 2754 . . . . . . . . . . . . . . . . . 18 (𝑛 = 𝑧 → ((lcm‘(𝑦 ∪ {𝑛})) = ((lcm𝑦) lcm 𝑛) ↔ (lcm‘(𝑦 ∪ {𝑧})) = ((lcm𝑦) lcm 𝑧)))
6766rspcv 3522 . . . . . . . . . . . . . . . . 17 (𝑧 ∈ ℤ → (∀𝑛 ∈ ℤ (lcm‘(𝑦 ∪ {𝑛})) = ((lcm𝑦) lcm 𝑛) → (lcm‘(𝑦 ∪ {𝑧})) = ((lcm𝑦) lcm 𝑧)))
68673ad2ant1 1134 . . . . . . . . . . . . . . . 16 ((𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin) → (∀𝑛 ∈ ℤ (lcm‘(𝑦 ∪ {𝑛})) = ((lcm𝑦) lcm 𝑛) → (lcm‘(𝑦 ∪ {𝑧})) = ((lcm𝑦) lcm 𝑧)))
69 nnz 12086 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑘 ∈ ℕ → 𝑘 ∈ ℤ)
7069adantl 485 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝑛 ∈ ℤ ∧ 𝑘 ∈ ℕ) → 𝑘 ∈ ℤ)
7170adantl 485 . . . . . . . . . . . . . . . . . . . . . . 23 ((((𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin) ∧ ∀𝑘 ∈ ℤ (∀𝑚𝑦 𝑚𝑘 → (lcm𝑦) ∥ 𝑘)) ∧ (𝑛 ∈ ℤ ∧ 𝑘 ∈ ℕ)) → 𝑘 ∈ ℤ)
72 lcmfcl 16070 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin) → (lcm𝑦) ∈ ℕ0)
7372nn0zd 12167 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin) → (lcm𝑦) ∈ ℤ)
74733adant1 1131 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin) → (lcm𝑦) ∈ ℤ)
7574ad2antrr 726 . . . . . . . . . . . . . . . . . . . . . . 23 ((((𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin) ∧ ∀𝑘 ∈ ℤ (∀𝑚𝑦 𝑚𝑘 → (lcm𝑦) ∥ 𝑘)) ∧ (𝑛 ∈ ℤ ∧ 𝑘 ∈ ℕ)) → (lcm𝑦) ∈ ℤ)
76 simpll1 1213 . . . . . . . . . . . . . . . . . . . . . . 23 ((((𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin) ∧ ∀𝑘 ∈ ℤ (∀𝑚𝑦 𝑚𝑘 → (lcm𝑦) ∥ 𝑘)) ∧ (𝑛 ∈ ℤ ∧ 𝑘 ∈ ℕ)) → 𝑧 ∈ ℤ)
7771, 75, 763jca 1129 . . . . . . . . . . . . . . . . . . . . . 22 ((((𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin) ∧ ∀𝑘 ∈ ℤ (∀𝑚𝑦 𝑚𝑘 → (lcm𝑦) ∥ 𝑘)) ∧ (𝑛 ∈ ℤ ∧ 𝑘 ∈ ℕ)) → (𝑘 ∈ ℤ ∧ (lcm𝑦) ∈ ℤ ∧ 𝑧 ∈ ℤ))
7877ad2antrr 726 . . . . . . . . . . . . . . . . . . . . 21 ((((((𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin) ∧ ∀𝑘 ∈ ℤ (∀𝑚𝑦 𝑚𝑘 → (lcm𝑦) ∥ 𝑘)) ∧ (𝑛 ∈ ℤ ∧ 𝑘 ∈ ℕ)) ∧ (0 ∉ 𝑦𝑧 ≠ 0 ∧ 𝑛 ≠ 0)) ∧ ∀𝑖 ∈ ((𝑦 ∪ {𝑧}) ∪ {𝑛})𝑖𝑘) → (𝑘 ∈ ℤ ∧ (lcm𝑦) ∈ ℤ ∧ 𝑧 ∈ ℤ))
79 elun1 4067 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 (𝑚𝑦𝑚 ∈ (𝑦 ∪ {𝑧}))
8079orcd 872 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 (𝑚𝑦 → (𝑚 ∈ (𝑦 ∪ {𝑧}) ∨ 𝑚 ∈ {𝑛}))
81 elun 4040 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 (𝑚 ∈ ((𝑦 ∪ {𝑧}) ∪ {𝑛}) ↔ (𝑚 ∈ (𝑦 ∪ {𝑧}) ∨ 𝑚 ∈ {𝑛}))
8280, 81sylibr 237 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 (𝑚𝑦𝑚 ∈ ((𝑦 ∪ {𝑧}) ∪ {𝑛}))
83 breq1 5034 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 (𝑖 = 𝑚 → (𝑖𝑘𝑚𝑘))
8483rspcv 3522 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 (𝑚 ∈ ((𝑦 ∪ {𝑧}) ∪ {𝑛}) → (∀𝑖 ∈ ((𝑦 ∪ {𝑧}) ∪ {𝑛})𝑖𝑘𝑚𝑘))
8582, 84syl 17 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 (𝑚𝑦 → (∀𝑖 ∈ ((𝑦 ∪ {𝑧}) ∪ {𝑛})𝑖𝑘𝑚𝑘))
8685com12 32 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 (∀𝑖 ∈ ((𝑦 ∪ {𝑧}) ∪ {𝑛})𝑖𝑘 → (𝑚𝑦𝑚𝑘))
8786adantl 485 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (((𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin) ∧ ∀𝑖 ∈ ((𝑦 ∪ {𝑧}) ∪ {𝑛})𝑖𝑘) → (𝑚𝑦𝑚𝑘))
8887ralrimiv 3095 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (((𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin) ∧ ∀𝑖 ∈ ((𝑦 ∪ {𝑧}) ∪ {𝑛})𝑖𝑘) → ∀𝑚𝑦 𝑚𝑘)
8988adantr 484 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((((𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin) ∧ ∀𝑖 ∈ ((𝑦 ∪ {𝑧}) ∪ {𝑛})𝑖𝑘) ∧ ((𝑛 ∈ ℤ ∧ 𝑘 ∈ ℕ) ∧ (0 ∉ 𝑦𝑧 ≠ 0 ∧ 𝑛 ≠ 0))) → ∀𝑚𝑦 𝑚𝑘)
90 breq2 5035 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 (𝑘 = 𝑙 → (𝑚𝑘𝑚𝑙))
9190ralbidv 3109 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 (𝑘 = 𝑙 → (∀𝑚𝑦 𝑚𝑘 ↔ ∀𝑚𝑦 𝑚𝑙))
92 breq2 5035 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 (𝑘 = 𝑙 → ((lcm𝑦) ∥ 𝑘 ↔ (lcm𝑦) ∥ 𝑙))
9391, 92imbi12d 348 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (𝑘 = 𝑙 → ((∀𝑚𝑦 𝑚𝑘 → (lcm𝑦) ∥ 𝑘) ↔ (∀𝑚𝑦 𝑚𝑙 → (lcm𝑦) ∥ 𝑙)))
9493cbvralvw 3349 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (∀𝑘 ∈ ℤ (∀𝑚𝑦 𝑚𝑘 → (lcm𝑦) ∥ 𝑘) ↔ ∀𝑙 ∈ ℤ (∀𝑚𝑦 𝑚𝑙 → (lcm𝑦) ∥ 𝑙))
9570adantr 484 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 (((𝑛 ∈ ℤ ∧ 𝑘 ∈ ℕ) ∧ (0 ∉ 𝑦𝑧 ≠ 0 ∧ 𝑛 ≠ 0)) → 𝑘 ∈ ℤ)
9695adantl 485 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 ((((𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin) ∧ ∀𝑖 ∈ ((𝑦 ∪ {𝑧}) ∪ {𝑛})𝑖𝑘) ∧ ((𝑛 ∈ ℤ ∧ 𝑘 ∈ ℕ) ∧ (0 ∉ 𝑦𝑧 ≠ 0 ∧ 𝑛 ≠ 0))) → 𝑘 ∈ ℤ)
97 breq2 5035 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 (𝑙 = 𝑘 → (𝑚𝑙𝑚𝑘))
9897ralbidv 3109 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 (𝑙 = 𝑘 → (∀𝑚𝑦 𝑚𝑙 ↔ ∀𝑚𝑦 𝑚𝑘))
99 breq2 5035 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 (𝑙 = 𝑘 → ((lcm𝑦) ∥ 𝑙 ↔ (lcm𝑦) ∥ 𝑘))
10098, 99imbi12d 348 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 (𝑙 = 𝑘 → ((∀𝑚𝑦 𝑚𝑙 → (lcm𝑦) ∥ 𝑙) ↔ (∀𝑚𝑦 𝑚𝑘 → (lcm𝑦) ∥ 𝑘)))
101100rspcv 3522 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (𝑘 ∈ ℤ → (∀𝑙 ∈ ℤ (∀𝑚𝑦 𝑚𝑙 → (lcm𝑦) ∥ 𝑙) → (∀𝑚𝑦 𝑚𝑘 → (lcm𝑦) ∥ 𝑘)))
10296, 101syl 17 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 ((((𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin) ∧ ∀𝑖 ∈ ((𝑦 ∪ {𝑧}) ∪ {𝑛})𝑖𝑘) ∧ ((𝑛 ∈ ℤ ∧ 𝑘 ∈ ℕ) ∧ (0 ∉ 𝑦𝑧 ≠ 0 ∧ 𝑛 ≠ 0))) → (∀𝑙 ∈ ℤ (∀𝑚𝑦 𝑚𝑙 → (lcm𝑦) ∥ 𝑙) → (∀𝑚𝑦 𝑚𝑘 → (lcm𝑦) ∥ 𝑘)))
10394, 102syl5bi 245 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((((𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin) ∧ ∀𝑖 ∈ ((𝑦 ∪ {𝑧}) ∪ {𝑛})𝑖𝑘) ∧ ((𝑛 ∈ ℤ ∧ 𝑘 ∈ ℕ) ∧ (0 ∉ 𝑦𝑧 ≠ 0 ∧ 𝑛 ≠ 0))) → (∀𝑘 ∈ ℤ (∀𝑚𝑦 𝑚𝑘 → (lcm𝑦) ∥ 𝑘) → (∀𝑚𝑦 𝑚𝑘 → (lcm𝑦) ∥ 𝑘)))
10489, 103mpid 44 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((((𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin) ∧ ∀𝑖 ∈ ((𝑦 ∪ {𝑧}) ∪ {𝑛})𝑖𝑘) ∧ ((𝑛 ∈ ℤ ∧ 𝑘 ∈ ℕ) ∧ (0 ∉ 𝑦𝑧 ≠ 0 ∧ 𝑛 ≠ 0))) → (∀𝑘 ∈ ℤ (∀𝑚𝑦 𝑚𝑘 → (lcm𝑦) ∥ 𝑘) → (lcm𝑦) ∥ 𝑘))
105104exp31 423 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin) → (∀𝑖 ∈ ((𝑦 ∪ {𝑧}) ∪ {𝑛})𝑖𝑘 → (((𝑛 ∈ ℤ ∧ 𝑘 ∈ ℕ) ∧ (0 ∉ 𝑦𝑧 ≠ 0 ∧ 𝑛 ≠ 0)) → (∀𝑘 ∈ ℤ (∀𝑚𝑦 𝑚𝑘 → (lcm𝑦) ∥ 𝑘) → (lcm𝑦) ∥ 𝑘))))
106105com24 95 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin) → (∀𝑘 ∈ ℤ (∀𝑚𝑦 𝑚𝑘 → (lcm𝑦) ∥ 𝑘) → (((𝑛 ∈ ℤ ∧ 𝑘 ∈ ℕ) ∧ (0 ∉ 𝑦𝑧 ≠ 0 ∧ 𝑛 ≠ 0)) → (∀𝑖 ∈ ((𝑦 ∪ {𝑧}) ∪ {𝑛})𝑖𝑘 → (lcm𝑦) ∥ 𝑘))))
107106imp 410 . . . . . . . . . . . . . . . . . . . . . . . 24 (((𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin) ∧ ∀𝑘 ∈ ℤ (∀𝑚𝑦 𝑚𝑘 → (lcm𝑦) ∥ 𝑘)) → (((𝑛 ∈ ℤ ∧ 𝑘 ∈ ℕ) ∧ (0 ∉ 𝑦𝑧 ≠ 0 ∧ 𝑛 ≠ 0)) → (∀𝑖 ∈ ((𝑦 ∪ {𝑧}) ∪ {𝑛})𝑖𝑘 → (lcm𝑦) ∥ 𝑘)))
108107impl 459 . . . . . . . . . . . . . . . . . . . . . . 23 (((((𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin) ∧ ∀𝑘 ∈ ℤ (∀𝑚𝑦 𝑚𝑘 → (lcm𝑦) ∥ 𝑘)) ∧ (𝑛 ∈ ℤ ∧ 𝑘 ∈ ℕ)) ∧ (0 ∉ 𝑦𝑧 ≠ 0 ∧ 𝑛 ≠ 0)) → (∀𝑖 ∈ ((𝑦 ∪ {𝑧}) ∪ {𝑛})𝑖𝑘 → (lcm𝑦) ∥ 𝑘))
109108imp 410 . . . . . . . . . . . . . . . . . . . . . 22 ((((((𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin) ∧ ∀𝑘 ∈ ℤ (∀𝑚𝑦 𝑚𝑘 → (lcm𝑦) ∥ 𝑘)) ∧ (𝑛 ∈ ℤ ∧ 𝑘 ∈ ℕ)) ∧ (0 ∉ 𝑦𝑧 ≠ 0 ∧ 𝑛 ≠ 0)) ∧ ∀𝑖 ∈ ((𝑦 ∪ {𝑧}) ∪ {𝑛})𝑖𝑘) → (lcm𝑦) ∥ 𝑘)
110 vsnid 4554 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 𝑧 ∈ {𝑧}
111110olci 865 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (𝑧𝑦𝑧 ∈ {𝑧})
112 elun 4040 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (𝑧 ∈ (𝑦 ∪ {𝑧}) ↔ (𝑧𝑦𝑧 ∈ {𝑧}))
113111, 112mpbir 234 . . . . . . . . . . . . . . . . . . . . . . . . . 26 𝑧 ∈ (𝑦 ∪ {𝑧})
114113orci 864 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑧 ∈ (𝑦 ∪ {𝑧}) ∨ 𝑧 ∈ {𝑛})
115 elun 4040 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑧 ∈ ((𝑦 ∪ {𝑧}) ∪ {𝑛}) ↔ (𝑧 ∈ (𝑦 ∪ {𝑧}) ∨ 𝑧 ∈ {𝑛}))
116114, 115mpbir 234 . . . . . . . . . . . . . . . . . . . . . . . 24 𝑧 ∈ ((𝑦 ∪ {𝑧}) ∪ {𝑛})
117 breq1 5034 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑖 = 𝑧 → (𝑖𝑘𝑧𝑘))
118117rspcv 3522 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑧 ∈ ((𝑦 ∪ {𝑧}) ∪ {𝑛}) → (∀𝑖 ∈ ((𝑦 ∪ {𝑧}) ∪ {𝑛})𝑖𝑘𝑧𝑘))
119116, 118mp1i 13 . . . . . . . . . . . . . . . . . . . . . . 23 (((((𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin) ∧ ∀𝑘 ∈ ℤ (∀𝑚𝑦 𝑚𝑘 → (lcm𝑦) ∥ 𝑘)) ∧ (𝑛 ∈ ℤ ∧ 𝑘 ∈ ℕ)) ∧ (0 ∉ 𝑦𝑧 ≠ 0 ∧ 𝑛 ≠ 0)) → (∀𝑖 ∈ ((𝑦 ∪ {𝑧}) ∪ {𝑛})𝑖𝑘𝑧𝑘))
120119imp 410 . . . . . . . . . . . . . . . . . . . . . 22 ((((((𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin) ∧ ∀𝑘 ∈ ℤ (∀𝑚𝑦 𝑚𝑘 → (lcm𝑦) ∥ 𝑘)) ∧ (𝑛 ∈ ℤ ∧ 𝑘 ∈ ℕ)) ∧ (0 ∉ 𝑦𝑧 ≠ 0 ∧ 𝑛 ≠ 0)) ∧ ∀𝑖 ∈ ((𝑦 ∪ {𝑧}) ∪ {𝑛})𝑖𝑘) → 𝑧𝑘)
121109, 120jca 515 . . . . . . . . . . . . . . . . . . . . 21 ((((((𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin) ∧ ∀𝑘 ∈ ℤ (∀𝑚𝑦 𝑚𝑘 → (lcm𝑦) ∥ 𝑘)) ∧ (𝑛 ∈ ℤ ∧ 𝑘 ∈ ℕ)) ∧ (0 ∉ 𝑦𝑧 ≠ 0 ∧ 𝑛 ≠ 0)) ∧ ∀𝑖 ∈ ((𝑦 ∪ {𝑧}) ∪ {𝑛})𝑖𝑘) → ((lcm𝑦) ∥ 𝑘𝑧𝑘))
122 lcmdvds 16050 . . . . . . . . . . . . . . . . . . . . 21 ((𝑘 ∈ ℤ ∧ (lcm𝑦) ∈ ℤ ∧ 𝑧 ∈ ℤ) → (((lcm𝑦) ∥ 𝑘𝑧𝑘) → ((lcm𝑦) lcm 𝑧) ∥ 𝑘))
12378, 121, 122sylc 65 . . . . . . . . . . . . . . . . . . . 20 ((((((𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin) ∧ ∀𝑘 ∈ ℤ (∀𝑚𝑦 𝑚𝑘 → (lcm𝑦) ∥ 𝑘)) ∧ (𝑛 ∈ ℤ ∧ 𝑘 ∈ ℕ)) ∧ (0 ∉ 𝑦𝑧 ≠ 0 ∧ 𝑛 ≠ 0)) ∧ ∀𝑖 ∈ ((𝑦 ∪ {𝑧}) ∪ {𝑛})𝑖𝑘) → ((lcm𝑦) lcm 𝑧) ∥ 𝑘)
124 breq1 5034 . . . . . . . . . . . . . . . . . . . 20 ((lcm‘(𝑦 ∪ {𝑧})) = ((lcm𝑦) lcm 𝑧) → ((lcm‘(𝑦 ∪ {𝑧})) ∥ 𝑘 ↔ ((lcm𝑦) lcm 𝑧) ∥ 𝑘))
125123, 124syl5ibr 249 . . . . . . . . . . . . . . . . . . 19 ((lcm‘(𝑦 ∪ {𝑧})) = ((lcm𝑦) lcm 𝑧) → ((((((𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin) ∧ ∀𝑘 ∈ ℤ (∀𝑚𝑦 𝑚𝑘 → (lcm𝑦) ∥ 𝑘)) ∧ (𝑛 ∈ ℤ ∧ 𝑘 ∈ ℕ)) ∧ (0 ∉ 𝑦𝑧 ≠ 0 ∧ 𝑛 ≠ 0)) ∧ ∀𝑖 ∈ ((𝑦 ∪ {𝑧}) ∪ {𝑛})𝑖𝑘) → (lcm‘(𝑦 ∪ {𝑧})) ∥ 𝑘))
126125expd 419 . . . . . . . . . . . . . . . . . 18 ((lcm‘(𝑦 ∪ {𝑧})) = ((lcm𝑦) lcm 𝑧) → (((((𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin) ∧ ∀𝑘 ∈ ℤ (∀𝑚𝑦 𝑚𝑘 → (lcm𝑦) ∥ 𝑘)) ∧ (𝑛 ∈ ℤ ∧ 𝑘 ∈ ℕ)) ∧ (0 ∉ 𝑦𝑧 ≠ 0 ∧ 𝑛 ≠ 0)) → (∀𝑖 ∈ ((𝑦 ∪ {𝑧}) ∪ {𝑛})𝑖𝑘 → (lcm‘(𝑦 ∪ {𝑧})) ∥ 𝑘)))
127126exp5j 449 . . . . . . . . . . . . . . . . 17 ((lcm‘(𝑦 ∪ {𝑧})) = ((lcm𝑦) lcm 𝑧) → ((𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin) → (∀𝑘 ∈ ℤ (∀𝑚𝑦 𝑚𝑘 → (lcm𝑦) ∥ 𝑘) → ((𝑛 ∈ ℤ ∧ 𝑘 ∈ ℕ) → ((0 ∉ 𝑦𝑧 ≠ 0 ∧ 𝑛 ≠ 0) → (∀𝑖 ∈ ((𝑦 ∪ {𝑧}) ∪ {𝑛})𝑖𝑘 → (lcm‘(𝑦 ∪ {𝑧})) ∥ 𝑘))))))
128127com12 32 . . . . . . . . . . . . . . . 16 ((𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin) → ((lcm‘(𝑦 ∪ {𝑧})) = ((lcm𝑦) lcm 𝑧) → (∀𝑘 ∈ ℤ (∀𝑚𝑦 𝑚𝑘 → (lcm𝑦) ∥ 𝑘) → ((𝑛 ∈ ℤ ∧ 𝑘 ∈ ℕ) → ((0 ∉ 𝑦𝑧 ≠ 0 ∧ 𝑛 ≠ 0) → (∀𝑖 ∈ ((𝑦 ∪ {𝑧}) ∪ {𝑛})𝑖𝑘 → (lcm‘(𝑦 ∪ {𝑧})) ∥ 𝑘))))))
12968, 128syld 47 . . . . . . . . . . . . . . 15 ((𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin) → (∀𝑛 ∈ ℤ (lcm‘(𝑦 ∪ {𝑛})) = ((lcm𝑦) lcm 𝑛) → (∀𝑘 ∈ ℤ (∀𝑚𝑦 𝑚𝑘 → (lcm𝑦) ∥ 𝑘) → ((𝑛 ∈ ℤ ∧ 𝑘 ∈ ℕ) → ((0 ∉ 𝑦𝑧 ≠ 0 ∧ 𝑛 ≠ 0) → (∀𝑖 ∈ ((𝑦 ∪ {𝑧}) ∪ {𝑛})𝑖𝑘 → (lcm‘(𝑦 ∪ {𝑧})) ∥ 𝑘))))))
130129com23 86 . . . . . . . . . . . . . 14 ((𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin) → (∀𝑘 ∈ ℤ (∀𝑚𝑦 𝑚𝑘 → (lcm𝑦) ∥ 𝑘) → (∀𝑛 ∈ ℤ (lcm‘(𝑦 ∪ {𝑛})) = ((lcm𝑦) lcm 𝑛) → ((𝑛 ∈ ℤ ∧ 𝑘 ∈ ℕ) → ((0 ∉ 𝑦𝑧 ≠ 0 ∧ 𝑛 ≠ 0) → (∀𝑖 ∈ ((𝑦 ∪ {𝑧}) ∪ {𝑛})𝑖𝑘 → (lcm‘(𝑦 ∪ {𝑧})) ∥ 𝑘))))))
131130imp32 422 . . . . . . . . . . . . 13 (((𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin) ∧ (∀𝑘 ∈ ℤ (∀𝑚𝑦 𝑚𝑘 → (lcm𝑦) ∥ 𝑘) ∧ ∀𝑛 ∈ ℤ (lcm‘(𝑦 ∪ {𝑛})) = ((lcm𝑦) lcm 𝑛))) → ((𝑛 ∈ ℤ ∧ 𝑘 ∈ ℕ) → ((0 ∉ 𝑦𝑧 ≠ 0 ∧ 𝑛 ≠ 0) → (∀𝑖 ∈ ((𝑦 ∪ {𝑧}) ∪ {𝑛})𝑖𝑘 → (lcm‘(𝑦 ∪ {𝑧})) ∥ 𝑘))))
132131expd 419 . . . . . . . . . . . 12 (((𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin) ∧ (∀𝑘 ∈ ℤ (∀𝑚𝑦 𝑚𝑘 → (lcm𝑦) ∥ 𝑘) ∧ ∀𝑛 ∈ ℤ (lcm‘(𝑦 ∪ {𝑛})) = ((lcm𝑦) lcm 𝑛))) → (𝑛 ∈ ℤ → (𝑘 ∈ ℕ → ((0 ∉ 𝑦𝑧 ≠ 0 ∧ 𝑛 ≠ 0) → (∀𝑖 ∈ ((𝑦 ∪ {𝑧}) ∪ {𝑛})𝑖𝑘 → (lcm‘(𝑦 ∪ {𝑧})) ∥ 𝑘)))))
133132com34 91 . . . . . . . . . . 11 (((𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin) ∧ (∀𝑘 ∈ ℤ (∀𝑚𝑦 𝑚𝑘 → (lcm𝑦) ∥ 𝑘) ∧ ∀𝑛 ∈ ℤ (lcm‘(𝑦 ∪ {𝑛})) = ((lcm𝑦) lcm 𝑛))) → (𝑛 ∈ ℤ → ((0 ∉ 𝑦𝑧 ≠ 0 ∧ 𝑛 ≠ 0) → (𝑘 ∈ ℕ → (∀𝑖 ∈ ((𝑦 ∪ {𝑧}) ∪ {𝑛})𝑖𝑘 → (lcm‘(𝑦 ∪ {𝑧})) ∥ 𝑘)))))
134133com12 32 . . . . . . . . . 10 (𝑛 ∈ ℤ → (((𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin) ∧ (∀𝑘 ∈ ℤ (∀𝑚𝑦 𝑚𝑘 → (lcm𝑦) ∥ 𝑘) ∧ ∀𝑛 ∈ ℤ (lcm‘(𝑦 ∪ {𝑛})) = ((lcm𝑦) lcm 𝑛))) → ((0 ∉ 𝑦𝑧 ≠ 0 ∧ 𝑛 ≠ 0) → (𝑘 ∈ ℕ → (∀𝑖 ∈ ((𝑦 ∪ {𝑧}) ∪ {𝑛})𝑖𝑘 → (lcm‘(𝑦 ∪ {𝑧})) ∥ 𝑘)))))
135134imp 410 . . . . . . . . 9 ((𝑛 ∈ ℤ ∧ ((𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin) ∧ (∀𝑘 ∈ ℤ (∀𝑚𝑦 𝑚𝑘 → (lcm𝑦) ∥ 𝑘) ∧ ∀𝑛 ∈ ℤ (lcm‘(𝑦 ∪ {𝑛})) = ((lcm𝑦) lcm 𝑛)))) → ((0 ∉ 𝑦𝑧 ≠ 0 ∧ 𝑛 ≠ 0) → (𝑘 ∈ ℕ → (∀𝑖 ∈ ((𝑦 ∪ {𝑧}) ∪ {𝑛})𝑖𝑘 → (lcm‘(𝑦 ∪ {𝑧})) ∥ 𝑘))))
136135com12 32 . . . . . . . 8 ((0 ∉ 𝑦𝑧 ≠ 0 ∧ 𝑛 ≠ 0) → ((𝑛 ∈ ℤ ∧ ((𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin) ∧ (∀𝑘 ∈ ℤ (∀𝑚𝑦 𝑚𝑘 → (lcm𝑦) ∥ 𝑘) ∧ ∀𝑛 ∈ ℤ (lcm‘(𝑦 ∪ {𝑛})) = ((lcm𝑦) lcm 𝑛)))) → (𝑘 ∈ ℕ → (∀𝑖 ∈ ((𝑦 ∪ {𝑧}) ∪ {𝑛})𝑖𝑘 → (lcm‘(𝑦 ∪ {𝑧})) ∥ 𝑘))))
137136imp 410 . . . . . . 7 (((0 ∉ 𝑦𝑧 ≠ 0 ∧ 𝑛 ≠ 0) ∧ (𝑛 ∈ ℤ ∧ ((𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin) ∧ (∀𝑘 ∈ ℤ (∀𝑚𝑦 𝑚𝑘 → (lcm𝑦) ∥ 𝑘) ∧ ∀𝑛 ∈ ℤ (lcm‘(𝑦 ∪ {𝑛})) = ((lcm𝑦) lcm 𝑛))))) → (𝑘 ∈ ℕ → (∀𝑖 ∈ ((𝑦 ∪ {𝑧}) ∪ {𝑛})𝑖𝑘 → (lcm‘(𝑦 ∪ {𝑧})) ∥ 𝑘)))
138137imp 410 . . . . . 6 ((((0 ∉ 𝑦𝑧 ≠ 0 ∧ 𝑛 ≠ 0) ∧ (𝑛 ∈ ℤ ∧ ((𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin) ∧ (∀𝑘 ∈ ℤ (∀𝑚𝑦 𝑚𝑘 → (lcm𝑦) ∥ 𝑘) ∧ ∀𝑛 ∈ ℤ (lcm‘(𝑦 ∪ {𝑛})) = ((lcm𝑦) lcm 𝑛))))) ∧ 𝑘 ∈ ℕ) → (∀𝑖 ∈ ((𝑦 ∪ {𝑧}) ∪ {𝑛})𝑖𝑘 → (lcm‘(𝑦 ∪ {𝑧})) ∥ 𝑘))
139138imp 410 . . . . 5 (((((0 ∉ 𝑦𝑧 ≠ 0 ∧ 𝑛 ≠ 0) ∧ (𝑛 ∈ ℤ ∧ ((𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin) ∧ (∀𝑘 ∈ ℤ (∀𝑚𝑦 𝑚𝑘 → (lcm𝑦) ∥ 𝑘) ∧ ∀𝑛 ∈ ℤ (lcm‘(𝑦 ∪ {𝑛})) = ((lcm𝑦) lcm 𝑛))))) ∧ 𝑘 ∈ ℕ) ∧ ∀𝑖 ∈ ((𝑦 ∪ {𝑧}) ∪ {𝑛})𝑖𝑘) → (lcm‘(𝑦 ∪ {𝑧})) ∥ 𝑘)
140 vsnid 4554 . . . . . . . . 9 𝑛 ∈ {𝑛}
141140olci 865 . . . . . . . 8 (𝑛 ∈ (𝑦 ∪ {𝑧}) ∨ 𝑛 ∈ {𝑛})
142 elun 4040 . . . . . . . 8 (𝑛 ∈ ((𝑦 ∪ {𝑧}) ∪ {𝑛}) ↔ (𝑛 ∈ (𝑦 ∪ {𝑧}) ∨ 𝑛 ∈ {𝑛}))
143141, 142mpbir 234 . . . . . . 7 𝑛 ∈ ((𝑦 ∪ {𝑧}) ∪ {𝑛})
144 breq1 5034 . . . . . . . 8 (𝑖 = 𝑛 → (𝑖𝑘𝑛𝑘))
145144rspcv 3522 . . . . . . 7 (𝑛 ∈ ((𝑦 ∪ {𝑧}) ∪ {𝑛}) → (∀𝑖 ∈ ((𝑦 ∪ {𝑧}) ∪ {𝑛})𝑖𝑘𝑛𝑘))
146143, 145mp1i 13 . . . . . 6 ((((0 ∉ 𝑦𝑧 ≠ 0 ∧ 𝑛 ≠ 0) ∧ (𝑛 ∈ ℤ ∧ ((𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin) ∧ (∀𝑘 ∈ ℤ (∀𝑚𝑦 𝑚𝑘 → (lcm𝑦) ∥ 𝑘) ∧ ∀𝑛 ∈ ℤ (lcm‘(𝑦 ∪ {𝑛})) = ((lcm𝑦) lcm 𝑛))))) ∧ 𝑘 ∈ ℕ) → (∀𝑖 ∈ ((𝑦 ∪ {𝑧}) ∪ {𝑛})𝑖𝑘𝑛𝑘))
147146imp 410 . . . . 5 (((((0 ∉ 𝑦𝑧 ≠ 0 ∧ 𝑛 ≠ 0) ∧ (𝑛 ∈ ℤ ∧ ((𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin) ∧ (∀𝑘 ∈ ℤ (∀𝑚𝑦 𝑚𝑘 → (lcm𝑦) ∥ 𝑘) ∧ ∀𝑛 ∈ ℤ (lcm‘(𝑦 ∪ {𝑛})) = ((lcm𝑦) lcm 𝑛))))) ∧ 𝑘 ∈ ℕ) ∧ ∀𝑖 ∈ ((𝑦 ∪ {𝑧}) ∪ {𝑛})𝑖𝑘) → 𝑛𝑘)
148139, 147jca 515 . . . 4 (((((0 ∉ 𝑦𝑧 ≠ 0 ∧ 𝑛 ≠ 0) ∧ (𝑛 ∈ ℤ ∧ ((𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin) ∧ (∀𝑘 ∈ ℤ (∀𝑚𝑦 𝑚𝑘 → (lcm𝑦) ∥ 𝑘) ∧ ∀𝑛 ∈ ℤ (lcm‘(𝑦 ∪ {𝑛})) = ((lcm𝑦) lcm 𝑛))))) ∧ 𝑘 ∈ ℕ) ∧ ∀𝑖 ∈ ((𝑦 ∪ {𝑧}) ∪ {𝑛})𝑖𝑘) → ((lcm‘(𝑦 ∪ {𝑧})) ∥ 𝑘𝑛𝑘))
149 lcmledvds 16041 . . . 4 (((𝑘 ∈ ℕ ∧ (lcm‘(𝑦 ∪ {𝑧})) ∈ ℤ ∧ 𝑛 ∈ ℤ) ∧ ¬ ((lcm‘(𝑦 ∪ {𝑧})) = 0 ∨ 𝑛 = 0)) → (((lcm‘(𝑦 ∪ {𝑧})) ∥ 𝑘𝑛𝑘) → ((lcm‘(𝑦 ∪ {𝑧})) lcm 𝑛) ≤ 𝑘))
15061, 148, 149sylc 65 . . 3 (((((0 ∉ 𝑦𝑧 ≠ 0 ∧ 𝑛 ≠ 0) ∧ (𝑛 ∈ ℤ ∧ ((𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin) ∧ (∀𝑘 ∈ ℤ (∀𝑚𝑦 𝑚𝑘 → (lcm𝑦) ∥ 𝑘) ∧ ∀𝑛 ∈ ℤ (lcm‘(𝑦 ∪ {𝑛})) = ((lcm𝑦) lcm 𝑛))))) ∧ 𝑘 ∈ ℕ) ∧ ∀𝑖 ∈ ((𝑦 ∪ {𝑧}) ∪ {𝑛})𝑖𝑘) → ((lcm‘(𝑦 ∪ {𝑧})) lcm 𝑛) ≤ 𝑘)
151150exp31 423 . 2 (((0 ∉ 𝑦𝑧 ≠ 0 ∧ 𝑛 ≠ 0) ∧ (𝑛 ∈ ℤ ∧ ((𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin) ∧ (∀𝑘 ∈ ℤ (∀𝑚𝑦 𝑚𝑘 → (lcm𝑦) ∥ 𝑘) ∧ ∀𝑛 ∈ ℤ (lcm‘(𝑦 ∪ {𝑛})) = ((lcm𝑦) lcm 𝑛))))) → (𝑘 ∈ ℕ → (∀𝑖 ∈ ((𝑦 ∪ {𝑧}) ∪ {𝑛})𝑖𝑘 → ((lcm‘(𝑦 ∪ {𝑧})) lcm 𝑛) ≤ 𝑘)))
1529, 151ralrimi 3128 1 (((0 ∉ 𝑦𝑧 ≠ 0 ∧ 𝑛 ≠ 0) ∧ (𝑛 ∈ ℤ ∧ ((𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin) ∧ (∀𝑘 ∈ ℤ (∀𝑚𝑦 𝑚𝑘 → (lcm𝑦) ∥ 𝑘) ∧ ∀𝑛 ∈ ℤ (lcm‘(𝑦 ∪ {𝑛})) = ((lcm𝑦) lcm 𝑛))))) → ∀𝑘 ∈ ℕ (∀𝑖 ∈ ((𝑦 ∪ {𝑧}) ∪ {𝑛})𝑖𝑘 → ((lcm‘(𝑦 ∪ {𝑧})) lcm 𝑛) ≤ 𝑘))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 399  wo 846  w3a 1088   = wceq 1542  wcel 2113  wne 2934  wnel 3038  wral 3053  cun 3842  wss 3844  {csn 4517   class class class wbr 5031  cfv 6340  (class class class)co 7171  Fincfn 8556  0cc0 10616  cle 10755  cn 11717  0cn0 11977  cz 12063  cdvds 15700   lcm clcm 16030  lcmclcmf 16031
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1802  ax-4 1816  ax-5 1916  ax-6 1974  ax-7 2019  ax-8 2115  ax-9 2123  ax-10 2144  ax-11 2161  ax-12 2178  ax-ext 2710  ax-rep 5155  ax-sep 5168  ax-nul 5175  ax-pow 5233  ax-pr 5297  ax-un 7480  ax-inf2 9178  ax-cnex 10672  ax-resscn 10673  ax-1cn 10674  ax-icn 10675  ax-addcl 10676  ax-addrcl 10677  ax-mulcl 10678  ax-mulrcl 10679  ax-mulcom 10680  ax-addass 10681  ax-mulass 10682  ax-distr 10683  ax-i2m1 10684  ax-1ne0 10685  ax-1rid 10686  ax-rnegex 10687  ax-rrecex 10688  ax-cnre 10689  ax-pre-lttri 10690  ax-pre-lttrn 10691  ax-pre-ltadd 10692  ax-pre-mulgt0 10693  ax-pre-sup 10694
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 847  df-3or 1089  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1787  df-nf 1791  df-sb 2074  df-mo 2540  df-eu 2570  df-clab 2717  df-cleq 2730  df-clel 2811  df-nfc 2881  df-ne 2935  df-nel 3039  df-ral 3058  df-rex 3059  df-reu 3060  df-rmo 3061  df-rab 3062  df-v 3400  df-sbc 3683  df-csb 3792  df-dif 3847  df-un 3849  df-in 3851  df-ss 3861  df-pss 3863  df-nul 4213  df-if 4416  df-pw 4491  df-sn 4518  df-pr 4520  df-tp 4522  df-op 4524  df-uni 4798  df-int 4838  df-iun 4884  df-br 5032  df-opab 5094  df-mpt 5112  df-tr 5138  df-id 5430  df-eprel 5435  df-po 5443  df-so 5444  df-fr 5484  df-se 5485  df-we 5486  df-xp 5532  df-rel 5533  df-cnv 5534  df-co 5535  df-dm 5536  df-rn 5537  df-res 5538  df-ima 5539  df-pred 6130  df-ord 6176  df-on 6177  df-lim 6178  df-suc 6179  df-iota 6298  df-fun 6342  df-fn 6343  df-f 6344  df-f1 6345  df-fo 6346  df-f1o 6347  df-fv 6348  df-isom 6349  df-riota 7128  df-ov 7174  df-oprab 7175  df-mpo 7176  df-om 7601  df-1st 7715  df-2nd 7716  df-wrecs 7977  df-recs 8038  df-rdg 8076  df-1o 8132  df-er 8321  df-en 8557  df-dom 8558  df-sdom 8559  df-fin 8560  df-sup 8980  df-inf 8981  df-oi 9048  df-card 9442  df-pnf 10756  df-mnf 10757  df-xr 10758  df-ltxr 10759  df-le 10760  df-sub 10951  df-neg 10952  df-div 11377  df-nn 11718  df-2 11780  df-3 11781  df-n0 11978  df-z 12064  df-uz 12326  df-rp 12474  df-fz 12983  df-fzo 13126  df-fl 13254  df-mod 13330  df-seq 13462  df-exp 13523  df-hash 13784  df-cj 14549  df-re 14550  df-im 14551  df-sqrt 14685  df-abs 14686  df-clim 14936  df-prod 15353  df-dvds 15701  df-gcd 15939  df-lcm 16032  df-lcmf 16033
This theorem is referenced by:  lcmfunsnlem2lem2  16081
  Copyright terms: Public domain W3C validator