Users' Mathboxes Mathbox for Rohan Ridenour < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  expandrex Structured version   Visualization version   GIF version

Theorem expandrex 41863
Description: Expand a restricted existential quantifier to primitives. (Contributed by Rohan Ridenour, 13-Aug-2023.)
Hypothesis
Ref Expression
expandrex.1 (𝜑𝜓)
Assertion
Ref Expression
expandrex (∃𝑥𝐴 𝜑 ↔ ¬ ∀𝑥(𝑥𝐴 → ¬ 𝜓))

Proof of Theorem expandrex
StepHypRef Expression
1 expandrex.1 . . 3 (𝜑𝜓)
2 notnotb 314 . . 3 (𝜓 ↔ ¬ ¬ 𝜓)
31, 2bitri 274 . 2 (𝜑 ↔ ¬ ¬ 𝜓)
43expandrexn 41862 1 (∃𝑥𝐴 𝜑 ↔ ¬ ∀𝑥(𝑥𝐴 → ¬ 𝜓))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wal 1539  wcel 2109  wrex 3066
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1801  ax-4 1815
This theorem depends on definitions:  df-bi 206  df-an 396  df-ex 1786  df-rex 3071
This theorem is referenced by:  ismnuprim  41865
  Copyright terms: Public domain W3C validator