| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > exanali | Structured version Visualization version GIF version | ||
| Description: A transformation of quantifiers and logical connectives. (Contributed by NM, 25-Mar-1996.) (Proof shortened by Wolf Lammen, 4-Sep-2014.) |
| Ref | Expression |
|---|---|
| exanali | ⊢ (∃𝑥(𝜑 ∧ ¬ 𝜓) ↔ ¬ ∀𝑥(𝜑 → 𝜓)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | annim 403 | . . 3 ⊢ ((𝜑 ∧ ¬ 𝜓) ↔ ¬ (𝜑 → 𝜓)) | |
| 2 | 1 | exbii 1848 | . 2 ⊢ (∃𝑥(𝜑 ∧ ¬ 𝜓) ↔ ∃𝑥 ¬ (𝜑 → 𝜓)) |
| 3 | exnal 1827 | . 2 ⊢ (∃𝑥 ¬ (𝜑 → 𝜓) ↔ ¬ ∀𝑥(𝜑 → 𝜓)) | |
| 4 | 2, 3 | bitri 275 | 1 ⊢ (∃𝑥(𝜑 ∧ ¬ 𝜓) ↔ ¬ ∀𝑥(𝜑 → 𝜓)) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ↔ wb 206 ∧ wa 395 ∀wal 1538 ∃wex 1779 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1780 |
| This theorem is referenced by: gencbval 3527 dfss6 3953 nss 4028 nssss 5435 brprcneu 6871 brprcneuALT 6872 marypha1lem 9450 reclem2pr 11067 dftr6 35773 brsset 35912 dfon3 35915 dffun10 35937 elfuns 35938 ecinn0 38376 ax12indn 38966 expandrexn 44282 vk15.4j 44520 vk15.4jVD 44905 |
| Copyright terms: Public domain | W3C validator |