MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  exanali Structured version   Visualization version   GIF version

Theorem exanali 1860
Description: A transformation of quantifiers and logical connectives. (Contributed by NM, 25-Mar-1996.) (Proof shortened by Wolf Lammen, 4-Sep-2014.)
Assertion
Ref Expression
exanali (∃𝑥(𝜑 ∧ ¬ 𝜓) ↔ ¬ ∀𝑥(𝜑𝜓))

Proof of Theorem exanali
StepHypRef Expression
1 annim 405 . . 3 ((𝜑 ∧ ¬ 𝜓) ↔ ¬ (𝜑𝜓))
21exbii 1848 . 2 (∃𝑥(𝜑 ∧ ¬ 𝜓) ↔ ∃𝑥 ¬ (𝜑𝜓))
3 exnal 1827 . 2 (∃𝑥 ¬ (𝜑𝜓) ↔ ¬ ∀𝑥(𝜑𝜓))
42, 3bitri 275 1 (∃𝑥(𝜑 ∧ ¬ 𝜓) ↔ ¬ ∀𝑥(𝜑𝜓))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 397  wal 1537  wex 1779
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809
This theorem depends on definitions:  df-bi 206  df-an 398  df-ex 1780
This theorem is referenced by:  gencbval  3495  dfss6  3915  nss  3988  nssss  5384  brprcneu  6794  brprcneuALT  6795  marypha1lem  9240  reclem2pr  10854  dftr6  33767  brsset  34240  dfon3  34243  dffun10  34265  elfuns  34266  ecinn0  36566  ax12indn  37157  expandrexn  42122  vk15.4j  42361  vk15.4jVD  42747
  Copyright terms: Public domain W3C validator