![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > exanali | Structured version Visualization version GIF version |
Description: A transformation of quantifiers and logical connectives. (Contributed by NM, 25-Mar-1996.) (Proof shortened by Wolf Lammen, 4-Sep-2014.) |
Ref | Expression |
---|---|
exanali | ⊢ (∃𝑥(𝜑 ∧ ¬ 𝜓) ↔ ¬ ∀𝑥(𝜑 → 𝜓)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | annim 403 | . . 3 ⊢ ((𝜑 ∧ ¬ 𝜓) ↔ ¬ (𝜑 → 𝜓)) | |
2 | 1 | exbii 1846 | . 2 ⊢ (∃𝑥(𝜑 ∧ ¬ 𝜓) ↔ ∃𝑥 ¬ (𝜑 → 𝜓)) |
3 | exnal 1825 | . 2 ⊢ (∃𝑥 ¬ (𝜑 → 𝜓) ↔ ¬ ∀𝑥(𝜑 → 𝜓)) | |
4 | 2, 3 | bitri 275 | 1 ⊢ (∃𝑥(𝜑 ∧ ¬ 𝜓) ↔ ¬ ∀𝑥(𝜑 → 𝜓)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 206 ∧ wa 395 ∀wal 1535 ∃wex 1777 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 |
This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1778 |
This theorem is referenced by: gencbval 3555 dfss6 3998 nss 4073 nssss 5475 brprcneu 6910 brprcneuALT 6911 marypha1lem 9502 reclem2pr 11117 dftr6 35713 brsset 35853 dfon3 35856 dffun10 35878 elfuns 35879 ecinn0 38309 ax12indn 38899 expandrexn 44260 vk15.4j 44499 vk15.4jVD 44885 |
Copyright terms: Public domain | W3C validator |