| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > exanali | Structured version Visualization version GIF version | ||
| Description: A transformation of quantifiers and logical connectives. (Contributed by NM, 25-Mar-1996.) (Proof shortened by Wolf Lammen, 4-Sep-2014.) |
| Ref | Expression |
|---|---|
| exanali | ⊢ (∃𝑥(𝜑 ∧ ¬ 𝜓) ↔ ¬ ∀𝑥(𝜑 → 𝜓)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | annim 403 | . . 3 ⊢ ((𝜑 ∧ ¬ 𝜓) ↔ ¬ (𝜑 → 𝜓)) | |
| 2 | 1 | exbii 1848 | . 2 ⊢ (∃𝑥(𝜑 ∧ ¬ 𝜓) ↔ ∃𝑥 ¬ (𝜑 → 𝜓)) |
| 3 | exnal 1827 | . 2 ⊢ (∃𝑥 ¬ (𝜑 → 𝜓) ↔ ¬ ∀𝑥(𝜑 → 𝜓)) | |
| 4 | 2, 3 | bitri 275 | 1 ⊢ (∃𝑥(𝜑 ∧ ¬ 𝜓) ↔ ¬ ∀𝑥(𝜑 → 𝜓)) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ↔ wb 206 ∧ wa 395 ∀wal 1538 ∃wex 1779 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1780 |
| This theorem is referenced by: gencbval 3498 dfss6 3925 nss 4000 nssss 5398 brprcneu 6812 brprcneuALT 6813 marypha1lem 9323 reclem2pr 10942 dftr6 35728 brsset 35867 dfon3 35870 dffun10 35892 elfuns 35893 ecinn0 38325 ax12indn 38926 expandrexn 44268 vk15.4j 44506 vk15.4jVD 44891 |
| Copyright terms: Public domain | W3C validator |