| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > exanali | Structured version Visualization version GIF version | ||
| Description: A transformation of quantifiers and logical connectives. (Contributed by NM, 25-Mar-1996.) (Proof shortened by Wolf Lammen, 4-Sep-2014.) |
| Ref | Expression |
|---|---|
| exanali | ⊢ (∃𝑥(𝜑 ∧ ¬ 𝜓) ↔ ¬ ∀𝑥(𝜑 → 𝜓)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | annim 403 | . . 3 ⊢ ((𝜑 ∧ ¬ 𝜓) ↔ ¬ (𝜑 → 𝜓)) | |
| 2 | 1 | exbii 1848 | . 2 ⊢ (∃𝑥(𝜑 ∧ ¬ 𝜓) ↔ ∃𝑥 ¬ (𝜑 → 𝜓)) |
| 3 | exnal 1827 | . 2 ⊢ (∃𝑥 ¬ (𝜑 → 𝜓) ↔ ¬ ∀𝑥(𝜑 → 𝜓)) | |
| 4 | 2, 3 | bitri 275 | 1 ⊢ (∃𝑥(𝜑 ∧ ¬ 𝜓) ↔ ¬ ∀𝑥(𝜑 → 𝜓)) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ↔ wb 206 ∧ wa 395 ∀wal 1538 ∃wex 1779 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1780 |
| This theorem is referenced by: gencbval 3509 dfss6 3936 nss 4011 nssss 5415 brprcneu 6848 brprcneuALT 6849 marypha1lem 9384 reclem2pr 11001 dftr6 35738 brsset 35877 dfon3 35880 dffun10 35902 elfuns 35903 ecinn0 38335 ax12indn 38936 expandrexn 44280 vk15.4j 44518 vk15.4jVD 44903 |
| Copyright terms: Public domain | W3C validator |