Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > exanali | Structured version Visualization version GIF version |
Description: A transformation of quantifiers and logical connectives. (Contributed by NM, 25-Mar-1996.) (Proof shortened by Wolf Lammen, 4-Sep-2014.) |
Ref | Expression |
---|---|
exanali | ⊢ (∃𝑥(𝜑 ∧ ¬ 𝜓) ↔ ¬ ∀𝑥(𝜑 → 𝜓)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | annim 403 | . . 3 ⊢ ((𝜑 ∧ ¬ 𝜓) ↔ ¬ (𝜑 → 𝜓)) | |
2 | 1 | exbii 1853 | . 2 ⊢ (∃𝑥(𝜑 ∧ ¬ 𝜓) ↔ ∃𝑥 ¬ (𝜑 → 𝜓)) |
3 | exnal 1832 | . 2 ⊢ (∃𝑥 ¬ (𝜑 → 𝜓) ↔ ¬ ∀𝑥(𝜑 → 𝜓)) | |
4 | 2, 3 | bitri 274 | 1 ⊢ (∃𝑥(𝜑 ∧ ¬ 𝜓) ↔ ¬ ∀𝑥(𝜑 → 𝜓)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 205 ∧ wa 395 ∀wal 1539 ∃wex 1785 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1801 ax-4 1815 |
This theorem depends on definitions: df-bi 206 df-an 396 df-ex 1786 |
This theorem is referenced by: gencbval 3488 dfss6 3914 nss 3987 nssss 5373 brprcneu 6759 fvprc 6760 marypha1lem 9153 reclem2pr 10788 dftr6 33697 brsset 34170 dfon3 34173 dffun10 34195 elfuns 34196 ecinn0 36464 ax12indn 36936 expandrexn 41862 vk15.4j 42101 vk15.4jVD 42487 |
Copyright terms: Public domain | W3C validator |