MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  f1rel Structured version   Visualization version   GIF version

Theorem f1rel 6673
Description: A one-to-one onto mapping is a relation. (Contributed by NM, 8-Mar-2014.)
Assertion
Ref Expression
f1rel (𝐹:𝐴1-1𝐵 → Rel 𝐹)

Proof of Theorem f1rel
StepHypRef Expression
1 f1fn 6671 . 2 (𝐹:𝐴1-1𝐵𝐹 Fn 𝐴)
2 fnrel 6535 . 2 (𝐹 Fn 𝐴 → Rel 𝐹)
31, 2syl 17 1 (𝐹:𝐴1-1𝐵 → Rel 𝐹)
Colors of variables: wff setvar class
Syntax hints:  wi 4  Rel wrel 5594   Fn wfn 6428  1-1wf1 6430
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 206  df-an 397  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438
This theorem is referenced by:  f1domfi  8967
  Copyright terms: Public domain W3C validator