MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  f1domfi Structured version   Visualization version   GIF version

Theorem f1domfi 9026
Description: If the codomain of a one-to-one function is finite, then the function's domain is dominated by its codomain. This theorem is proved without using the Axiom of Replacement or the Axiom of Power Sets (unlike f1domg 8810). (Contributed by BTernaryTau, 25-Sep-2024.)
Assertion
Ref Expression
f1domfi ((𝐵 ∈ Fin ∧ 𝐹:𝐴1-1𝐵) → 𝐴𝐵)

Proof of Theorem f1domfi
StepHypRef Expression
1 f1cnv 6777 . . . 4 (𝐹:𝐴1-1𝐵𝐹:ran 𝐹1-1-onto𝐴)
2 f1f 6707 . . . . . 6 (𝐹:𝐴1-1𝐵𝐹:𝐴𝐵)
32frnd 6645 . . . . 5 (𝐹:𝐴1-1𝐵 → ran 𝐹𝐵)
4 ssfi 9015 . . . . 5 ((𝐵 ∈ Fin ∧ ran 𝐹𝐵) → ran 𝐹 ∈ Fin)
53, 4sylan2 593 . . . 4 ((𝐵 ∈ Fin ∧ 𝐹:𝐴1-1𝐵) → ran 𝐹 ∈ Fin)
6 f1ofn 6754 . . . . 5 (𝐹:ran 𝐹1-1-onto𝐴𝐹 Fn ran 𝐹)
7 fnfi 9023 . . . . 5 ((𝐹 Fn ran 𝐹 ∧ ran 𝐹 ∈ Fin) → 𝐹 ∈ Fin)
86, 7sylan 580 . . . 4 ((𝐹:ran 𝐹1-1-onto𝐴 ∧ ran 𝐹 ∈ Fin) → 𝐹 ∈ Fin)
91, 5, 8syl2an2 683 . . 3 ((𝐵 ∈ Fin ∧ 𝐹:𝐴1-1𝐵) → 𝐹 ∈ Fin)
10 cnvfi 9022 . . . 4 (𝐹 ∈ Fin → 𝐹 ∈ Fin)
11 f1rel 6710 . . . . . . 7 (𝐹:𝐴1-1𝐵 → Rel 𝐹)
12 dfrel2 6114 . . . . . . 7 (Rel 𝐹𝐹 = 𝐹)
1311, 12sylib 217 . . . . . 6 (𝐹:𝐴1-1𝐵𝐹 = 𝐹)
1413eleq1d 2822 . . . . 5 (𝐹:𝐴1-1𝐵 → (𝐹 ∈ Fin ↔ 𝐹 ∈ Fin))
1514biimpac 479 . . . 4 ((𝐹 ∈ Fin ∧ 𝐹:𝐴1-1𝐵) → 𝐹 ∈ Fin)
1610, 15sylan 580 . . 3 ((𝐹 ∈ Fin ∧ 𝐹:𝐴1-1𝐵) → 𝐹 ∈ Fin)
179, 16sylancom 588 . 2 ((𝐵 ∈ Fin ∧ 𝐹:𝐴1-1𝐵) → 𝐹 ∈ Fin)
18 f1dom3g 8805 . . 3 ((𝐹 ∈ Fin ∧ 𝐵 ∈ Fin ∧ 𝐹:𝐴1-1𝐵) → 𝐴𝐵)
19183expib 1121 . 2 (𝐹 ∈ Fin → ((𝐵 ∈ Fin ∧ 𝐹:𝐴1-1𝐵) → 𝐴𝐵))
2017, 19mpcom 38 1 ((𝐵 ∈ Fin ∧ 𝐹:𝐴1-1𝐵) → 𝐴𝐵)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396   = wceq 1540  wcel 2105  wss 3897   class class class wbr 5087  ccnv 5606  ran crn 5608  Rel wrel 5612   Fn wfn 6460  1-1wf1 6462  1-1-ontowf1o 6464  cdom 8779  Fincfn 8781
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1912  ax-6 1970  ax-7 2010  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2153  ax-12 2170  ax-ext 2708  ax-sep 5238  ax-nul 5245  ax-pr 5367  ax-un 7628
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1781  df-nf 1785  df-sb 2067  df-mo 2539  df-eu 2568  df-clab 2715  df-cleq 2729  df-clel 2815  df-nfc 2887  df-ne 2942  df-ral 3063  df-rex 3072  df-reu 3351  df-rab 3405  df-v 3443  df-sbc 3727  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-pss 3916  df-nul 4268  df-if 4472  df-pw 4547  df-sn 4572  df-pr 4574  df-op 4578  df-uni 4851  df-br 5088  df-opab 5150  df-tr 5205  df-id 5507  df-eprel 5513  df-po 5521  df-so 5522  df-fr 5562  df-we 5564  df-xp 5613  df-rel 5614  df-cnv 5615  df-co 5616  df-dm 5617  df-rn 5618  df-res 5619  df-ima 5620  df-ord 6291  df-on 6292  df-lim 6293  df-suc 6294  df-iota 6417  df-fun 6467  df-fn 6468  df-f 6469  df-f1 6470  df-fo 6471  df-f1o 6472  df-fv 6473  df-om 7758  df-1o 8344  df-en 8782  df-dom 8783  df-fin 8785
This theorem is referenced by:  ssdomfi  9041
  Copyright terms: Public domain W3C validator