![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > f1domfi | Structured version Visualization version GIF version |
Description: If the codomain of a one-to-one function is finite, then the function's domain is dominated by its codomain. This theorem is proved without using the Axiom of Replacement or the Axiom of Power Sets (unlike f1domg 8993). (Contributed by BTernaryTau, 25-Sep-2024.) |
Ref | Expression |
---|---|
f1domfi | ⊢ ((𝐵 ∈ Fin ∧ 𝐹:𝐴–1-1→𝐵) → 𝐴 ≼ 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | f1cnv 6862 | . . . 4 ⊢ (𝐹:𝐴–1-1→𝐵 → ◡𝐹:ran 𝐹–1-1-onto→𝐴) | |
2 | f1f 6793 | . . . . . 6 ⊢ (𝐹:𝐴–1-1→𝐵 → 𝐹:𝐴⟶𝐵) | |
3 | 2 | frnd 6731 | . . . . 5 ⊢ (𝐹:𝐴–1-1→𝐵 → ran 𝐹 ⊆ 𝐵) |
4 | ssfi 9198 | . . . . 5 ⊢ ((𝐵 ∈ Fin ∧ ran 𝐹 ⊆ 𝐵) → ran 𝐹 ∈ Fin) | |
5 | 3, 4 | sylan2 591 | . . . 4 ⊢ ((𝐵 ∈ Fin ∧ 𝐹:𝐴–1-1→𝐵) → ran 𝐹 ∈ Fin) |
6 | f1ofn 6839 | . . . . 5 ⊢ (◡𝐹:ran 𝐹–1-1-onto→𝐴 → ◡𝐹 Fn ran 𝐹) | |
7 | fnfi 9206 | . . . . 5 ⊢ ((◡𝐹 Fn ran 𝐹 ∧ ran 𝐹 ∈ Fin) → ◡𝐹 ∈ Fin) | |
8 | 6, 7 | sylan 578 | . . . 4 ⊢ ((◡𝐹:ran 𝐹–1-1-onto→𝐴 ∧ ran 𝐹 ∈ Fin) → ◡𝐹 ∈ Fin) |
9 | 1, 5, 8 | syl2an2 684 | . . 3 ⊢ ((𝐵 ∈ Fin ∧ 𝐹:𝐴–1-1→𝐵) → ◡𝐹 ∈ Fin) |
10 | cnvfi 9205 | . . . 4 ⊢ (◡𝐹 ∈ Fin → ◡◡𝐹 ∈ Fin) | |
11 | f1rel 6796 | . . . . . . 7 ⊢ (𝐹:𝐴–1-1→𝐵 → Rel 𝐹) | |
12 | dfrel2 6195 | . . . . . . 7 ⊢ (Rel 𝐹 ↔ ◡◡𝐹 = 𝐹) | |
13 | 11, 12 | sylib 217 | . . . . . 6 ⊢ (𝐹:𝐴–1-1→𝐵 → ◡◡𝐹 = 𝐹) |
14 | 13 | eleq1d 2810 | . . . . 5 ⊢ (𝐹:𝐴–1-1→𝐵 → (◡◡𝐹 ∈ Fin ↔ 𝐹 ∈ Fin)) |
15 | 14 | biimpac 477 | . . . 4 ⊢ ((◡◡𝐹 ∈ Fin ∧ 𝐹:𝐴–1-1→𝐵) → 𝐹 ∈ Fin) |
16 | 10, 15 | sylan 578 | . . 3 ⊢ ((◡𝐹 ∈ Fin ∧ 𝐹:𝐴–1-1→𝐵) → 𝐹 ∈ Fin) |
17 | 9, 16 | sylancom 586 | . 2 ⊢ ((𝐵 ∈ Fin ∧ 𝐹:𝐴–1-1→𝐵) → 𝐹 ∈ Fin) |
18 | f1dom3g 8988 | . . 3 ⊢ ((𝐹 ∈ Fin ∧ 𝐵 ∈ Fin ∧ 𝐹:𝐴–1-1→𝐵) → 𝐴 ≼ 𝐵) | |
19 | 18 | 3expib 1119 | . 2 ⊢ (𝐹 ∈ Fin → ((𝐵 ∈ Fin ∧ 𝐹:𝐴–1-1→𝐵) → 𝐴 ≼ 𝐵)) |
20 | 17, 19 | mpcom 38 | 1 ⊢ ((𝐵 ∈ Fin ∧ 𝐹:𝐴–1-1→𝐵) → 𝐴 ≼ 𝐵) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 394 = wceq 1533 ∈ wcel 2098 ⊆ wss 3944 class class class wbr 5149 ◡ccnv 5677 ran crn 5679 Rel wrel 5683 Fn wfn 6544 –1-1→wf1 6546 –1-1-onto→wf1o 6548 ≼ cdom 8962 Fincfn 8964 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2166 ax-ext 2696 ax-sep 5300 ax-nul 5307 ax-pr 5429 ax-un 7741 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3or 1085 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2528 df-eu 2557 df-clab 2703 df-cleq 2717 df-clel 2802 df-nfc 2877 df-ne 2930 df-ral 3051 df-rex 3060 df-reu 3364 df-rab 3419 df-v 3463 df-sbc 3774 df-dif 3947 df-un 3949 df-in 3951 df-ss 3961 df-pss 3964 df-nul 4323 df-if 4531 df-pw 4606 df-sn 4631 df-pr 4633 df-op 4637 df-uni 4910 df-br 5150 df-opab 5212 df-tr 5267 df-id 5576 df-eprel 5582 df-po 5590 df-so 5591 df-fr 5633 df-we 5635 df-xp 5684 df-rel 5685 df-cnv 5686 df-co 5687 df-dm 5688 df-rn 5689 df-res 5690 df-ima 5691 df-ord 6374 df-on 6375 df-lim 6376 df-suc 6377 df-iota 6501 df-fun 6551 df-fn 6552 df-f 6553 df-f1 6554 df-fo 6555 df-f1o 6556 df-fv 6557 df-om 7872 df-1o 8487 df-en 8965 df-dom 8966 df-fin 8968 |
This theorem is referenced by: ssdomfi 9224 |
Copyright terms: Public domain | W3C validator |