MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  f1domfi Structured version   Visualization version   GIF version

Theorem f1domfi 9145
Description: If the codomain of a one-to-one function is finite, then the function's domain is dominated by its codomain. This theorem is proved without using the Axiom of Replacement or the Axiom of Power Sets (unlike f1domg 8943). (Contributed by BTernaryTau, 25-Sep-2024.)
Assertion
Ref Expression
f1domfi ((𝐵 ∈ Fin ∧ 𝐹:𝐴1-1𝐵) → 𝐴𝐵)

Proof of Theorem f1domfi
StepHypRef Expression
1 f1cnv 6824 . . . 4 (𝐹:𝐴1-1𝐵𝐹:ran 𝐹1-1-onto𝐴)
2 f1f 6756 . . . . . 6 (𝐹:𝐴1-1𝐵𝐹:𝐴𝐵)
32frnd 6696 . . . . 5 (𝐹:𝐴1-1𝐵 → ran 𝐹𝐵)
4 ssfi 9137 . . . . 5 ((𝐵 ∈ Fin ∧ ran 𝐹𝐵) → ran 𝐹 ∈ Fin)
53, 4sylan2 593 . . . 4 ((𝐵 ∈ Fin ∧ 𝐹:𝐴1-1𝐵) → ran 𝐹 ∈ Fin)
6 f1ofn 6801 . . . . 5 (𝐹:ran 𝐹1-1-onto𝐴𝐹 Fn ran 𝐹)
7 fnfi 9142 . . . . 5 ((𝐹 Fn ran 𝐹 ∧ ran 𝐹 ∈ Fin) → 𝐹 ∈ Fin)
86, 7sylan 580 . . . 4 ((𝐹:ran 𝐹1-1-onto𝐴 ∧ ran 𝐹 ∈ Fin) → 𝐹 ∈ Fin)
91, 5, 8syl2an2 686 . . 3 ((𝐵 ∈ Fin ∧ 𝐹:𝐴1-1𝐵) → 𝐹 ∈ Fin)
10 cnvfi 9140 . . . 4 (𝐹 ∈ Fin → 𝐹 ∈ Fin)
11 f1rel 6759 . . . . . . 7 (𝐹:𝐴1-1𝐵 → Rel 𝐹)
12 dfrel2 6162 . . . . . . 7 (Rel 𝐹𝐹 = 𝐹)
1311, 12sylib 218 . . . . . 6 (𝐹:𝐴1-1𝐵𝐹 = 𝐹)
1413eleq1d 2813 . . . . 5 (𝐹:𝐴1-1𝐵 → (𝐹 ∈ Fin ↔ 𝐹 ∈ Fin))
1514biimpac 478 . . . 4 ((𝐹 ∈ Fin ∧ 𝐹:𝐴1-1𝐵) → 𝐹 ∈ Fin)
1610, 15sylan 580 . . 3 ((𝐹 ∈ Fin ∧ 𝐹:𝐴1-1𝐵) → 𝐹 ∈ Fin)
179, 16sylancom 588 . 2 ((𝐵 ∈ Fin ∧ 𝐹:𝐴1-1𝐵) → 𝐹 ∈ Fin)
18 f1dom3g 8939 . . 3 ((𝐹 ∈ Fin ∧ 𝐵 ∈ Fin ∧ 𝐹:𝐴1-1𝐵) → 𝐴𝐵)
19183expib 1122 . 2 (𝐹 ∈ Fin → ((𝐵 ∈ Fin ∧ 𝐹:𝐴1-1𝐵) → 𝐴𝐵))
2017, 19mpcom 38 1 ((𝐵 ∈ Fin ∧ 𝐹:𝐴1-1𝐵) → 𝐴𝐵)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2109  wss 3914   class class class wbr 5107  ccnv 5637  ran crn 5639  Rel wrel 5643   Fn wfn 6506  1-1wf1 6508  1-1-ontowf1o 6510  cdom 8916  Fincfn 8918
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5251  ax-nul 5261  ax-pr 5387  ax-un 7711
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-reu 3355  df-rab 3406  df-v 3449  df-sbc 3754  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-pss 3934  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-br 5108  df-opab 5170  df-tr 5215  df-id 5533  df-eprel 5538  df-po 5546  df-so 5547  df-fr 5591  df-we 5593  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-ord 6335  df-on 6336  df-lim 6337  df-suc 6338  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518  df-fv 6519  df-om 7843  df-1o 8434  df-en 8919  df-dom 8920  df-fin 8922
This theorem is referenced by:  ssdomfi  9160
  Copyright terms: Public domain W3C validator