| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > f1domfi | Structured version Visualization version GIF version | ||
| Description: If the codomain of a one-to-one function is finite, then the function's domain is dominated by its codomain. This theorem is proved without using the Axiom of Replacement or the Axiom of Power Sets (unlike f1domg 8991). (Contributed by BTernaryTau, 25-Sep-2024.) |
| Ref | Expression |
|---|---|
| f1domfi | ⊢ ((𝐵 ∈ Fin ∧ 𝐹:𝐴–1-1→𝐵) → 𝐴 ≼ 𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | f1cnv 6847 | . . . 4 ⊢ (𝐹:𝐴–1-1→𝐵 → ◡𝐹:ran 𝐹–1-1-onto→𝐴) | |
| 2 | f1f 6779 | . . . . . 6 ⊢ (𝐹:𝐴–1-1→𝐵 → 𝐹:𝐴⟶𝐵) | |
| 3 | 2 | frnd 6719 | . . . . 5 ⊢ (𝐹:𝐴–1-1→𝐵 → ran 𝐹 ⊆ 𝐵) |
| 4 | ssfi 9192 | . . . . 5 ⊢ ((𝐵 ∈ Fin ∧ ran 𝐹 ⊆ 𝐵) → ran 𝐹 ∈ Fin) | |
| 5 | 3, 4 | sylan2 593 | . . . 4 ⊢ ((𝐵 ∈ Fin ∧ 𝐹:𝐴–1-1→𝐵) → ran 𝐹 ∈ Fin) |
| 6 | f1ofn 6824 | . . . . 5 ⊢ (◡𝐹:ran 𝐹–1-1-onto→𝐴 → ◡𝐹 Fn ran 𝐹) | |
| 7 | fnfi 9197 | . . . . 5 ⊢ ((◡𝐹 Fn ran 𝐹 ∧ ran 𝐹 ∈ Fin) → ◡𝐹 ∈ Fin) | |
| 8 | 6, 7 | sylan 580 | . . . 4 ⊢ ((◡𝐹:ran 𝐹–1-1-onto→𝐴 ∧ ran 𝐹 ∈ Fin) → ◡𝐹 ∈ Fin) |
| 9 | 1, 5, 8 | syl2an2 686 | . . 3 ⊢ ((𝐵 ∈ Fin ∧ 𝐹:𝐴–1-1→𝐵) → ◡𝐹 ∈ Fin) |
| 10 | cnvfi 9195 | . . . 4 ⊢ (◡𝐹 ∈ Fin → ◡◡𝐹 ∈ Fin) | |
| 11 | f1rel 6782 | . . . . . . 7 ⊢ (𝐹:𝐴–1-1→𝐵 → Rel 𝐹) | |
| 12 | dfrel2 6183 | . . . . . . 7 ⊢ (Rel 𝐹 ↔ ◡◡𝐹 = 𝐹) | |
| 13 | 11, 12 | sylib 218 | . . . . . 6 ⊢ (𝐹:𝐴–1-1→𝐵 → ◡◡𝐹 = 𝐹) |
| 14 | 13 | eleq1d 2820 | . . . . 5 ⊢ (𝐹:𝐴–1-1→𝐵 → (◡◡𝐹 ∈ Fin ↔ 𝐹 ∈ Fin)) |
| 15 | 14 | biimpac 478 | . . . 4 ⊢ ((◡◡𝐹 ∈ Fin ∧ 𝐹:𝐴–1-1→𝐵) → 𝐹 ∈ Fin) |
| 16 | 10, 15 | sylan 580 | . . 3 ⊢ ((◡𝐹 ∈ Fin ∧ 𝐹:𝐴–1-1→𝐵) → 𝐹 ∈ Fin) |
| 17 | 9, 16 | sylancom 588 | . 2 ⊢ ((𝐵 ∈ Fin ∧ 𝐹:𝐴–1-1→𝐵) → 𝐹 ∈ Fin) |
| 18 | f1dom3g 8987 | . . 3 ⊢ ((𝐹 ∈ Fin ∧ 𝐵 ∈ Fin ∧ 𝐹:𝐴–1-1→𝐵) → 𝐴 ≼ 𝐵) | |
| 19 | 18 | 3expib 1122 | . 2 ⊢ (𝐹 ∈ Fin → ((𝐵 ∈ Fin ∧ 𝐹:𝐴–1-1→𝐵) → 𝐴 ≼ 𝐵)) |
| 20 | 17, 19 | mpcom 38 | 1 ⊢ ((𝐵 ∈ Fin ∧ 𝐹:𝐴–1-1→𝐵) → 𝐴 ≼ 𝐵) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ⊆ wss 3931 class class class wbr 5124 ◡ccnv 5658 ran crn 5660 Rel wrel 5664 Fn wfn 6531 –1-1→wf1 6533 –1-1-onto→wf1o 6535 ≼ cdom 8962 Fincfn 8964 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2708 ax-sep 5271 ax-nul 5281 ax-pr 5407 ax-un 7734 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2728 df-clel 2810 df-nfc 2886 df-ne 2934 df-ral 3053 df-rex 3062 df-reu 3365 df-rab 3421 df-v 3466 df-sbc 3771 df-dif 3934 df-un 3936 df-in 3938 df-ss 3948 df-pss 3951 df-nul 4314 df-if 4506 df-pw 4582 df-sn 4607 df-pr 4609 df-op 4613 df-uni 4889 df-br 5125 df-opab 5187 df-tr 5235 df-id 5553 df-eprel 5558 df-po 5566 df-so 5567 df-fr 5611 df-we 5613 df-xp 5665 df-rel 5666 df-cnv 5667 df-co 5668 df-dm 5669 df-rn 5670 df-res 5671 df-ima 5672 df-ord 6360 df-on 6361 df-lim 6362 df-suc 6363 df-iota 6489 df-fun 6538 df-fn 6539 df-f 6540 df-f1 6541 df-fo 6542 df-f1o 6543 df-fv 6544 df-om 7867 df-1o 8485 df-en 8965 df-dom 8966 df-fin 8968 |
| This theorem is referenced by: ssdomfi 9215 |
| Copyright terms: Public domain | W3C validator |