MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  f1domfi Structured version   Visualization version   GIF version

Theorem f1domfi 8928
Description: If the codomain of a one-to-one function is finite, then the function's domain is dominated by its codomain. This theorem is proved without using the Axiom of Replacement or the Axiom of Power Sets (unlike f1domg 8715). (Contributed by BTernaryTau, 25-Sep-2024.)
Assertion
Ref Expression
f1domfi ((𝐵 ∈ Fin ∧ 𝐹:𝐴1-1𝐵) → 𝐴𝐵)

Proof of Theorem f1domfi
StepHypRef Expression
1 f1cnv 6723 . . . 4 (𝐹:𝐴1-1𝐵𝐹:ran 𝐹1-1-onto𝐴)
2 f1f 6654 . . . . . 6 (𝐹:𝐴1-1𝐵𝐹:𝐴𝐵)
32frnd 6592 . . . . 5 (𝐹:𝐴1-1𝐵 → ran 𝐹𝐵)
4 ssfi 8918 . . . . 5 ((𝐵 ∈ Fin ∧ ran 𝐹𝐵) → ran 𝐹 ∈ Fin)
53, 4sylan2 592 . . . 4 ((𝐵 ∈ Fin ∧ 𝐹:𝐴1-1𝐵) → ran 𝐹 ∈ Fin)
6 f1ofn 6701 . . . . 5 (𝐹:ran 𝐹1-1-onto𝐴𝐹 Fn ran 𝐹)
7 fnfi 8925 . . . . 5 ((𝐹 Fn ran 𝐹 ∧ ran 𝐹 ∈ Fin) → 𝐹 ∈ Fin)
86, 7sylan 579 . . . 4 ((𝐹:ran 𝐹1-1-onto𝐴 ∧ ran 𝐹 ∈ Fin) → 𝐹 ∈ Fin)
91, 5, 8syl2an2 682 . . 3 ((𝐵 ∈ Fin ∧ 𝐹:𝐴1-1𝐵) → 𝐹 ∈ Fin)
10 cnvfi 8924 . . . 4 (𝐹 ∈ Fin → 𝐹 ∈ Fin)
11 f1rel 6657 . . . . . . 7 (𝐹:𝐴1-1𝐵 → Rel 𝐹)
12 dfrel2 6081 . . . . . . 7 (Rel 𝐹𝐹 = 𝐹)
1311, 12sylib 217 . . . . . 6 (𝐹:𝐴1-1𝐵𝐹 = 𝐹)
1413eleq1d 2823 . . . . 5 (𝐹:𝐴1-1𝐵 → (𝐹 ∈ Fin ↔ 𝐹 ∈ Fin))
1514biimpac 478 . . . 4 ((𝐹 ∈ Fin ∧ 𝐹:𝐴1-1𝐵) → 𝐹 ∈ Fin)
1610, 15sylan 579 . . 3 ((𝐹 ∈ Fin ∧ 𝐹:𝐴1-1𝐵) → 𝐹 ∈ Fin)
179, 16sylancom 587 . 2 ((𝐵 ∈ Fin ∧ 𝐹:𝐴1-1𝐵) → 𝐹 ∈ Fin)
18 f1dom3g 8710 . . 3 ((𝐹 ∈ Fin ∧ 𝐵 ∈ Fin ∧ 𝐹:𝐴1-1𝐵) → 𝐴𝐵)
19183expib 1120 . 2 (𝐹 ∈ Fin → ((𝐵 ∈ Fin ∧ 𝐹:𝐴1-1𝐵) → 𝐴𝐵))
2017, 19mpcom 38 1 ((𝐵 ∈ Fin ∧ 𝐹:𝐴1-1𝐵) → 𝐴𝐵)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1539  wcel 2108  wss 3883   class class class wbr 5070  ccnv 5579  ran crn 5581  Rel wrel 5585   Fn wfn 6413  1-1wf1 6415  1-1-ontowf1o 6417  cdom 8689  Fincfn 8691
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-sep 5218  ax-nul 5225  ax-pr 5347  ax-un 7566
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-ral 3068  df-rex 3069  df-reu 3070  df-rab 3072  df-v 3424  df-sbc 3712  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-pss 3902  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-tp 4563  df-op 4565  df-uni 4837  df-br 5071  df-opab 5133  df-tr 5188  df-id 5480  df-eprel 5486  df-po 5494  df-so 5495  df-fr 5535  df-we 5537  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-ord 6254  df-on 6255  df-lim 6256  df-suc 6257  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-om 7688  df-1o 8267  df-en 8692  df-dom 8693  df-fin 8695
This theorem is referenced by:  domtrfi  8938  ssdomfi  8940
  Copyright terms: Public domain W3C validator