MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  f1domfi Structured version   Visualization version   GIF version

Theorem f1domfi 9184
Description: If the codomain of a one-to-one function is finite, then the function's domain is dominated by its codomain. This theorem is proved without using the Axiom of Replacement or the Axiom of Power Sets (unlike f1domg 8968). (Contributed by BTernaryTau, 25-Sep-2024.)
Assertion
Ref Expression
f1domfi ((𝐵 ∈ Fin ∧ 𝐹:𝐴1-1𝐵) → 𝐴𝐵)

Proof of Theorem f1domfi
StepHypRef Expression
1 f1cnv 6858 . . . 4 (𝐹:𝐴1-1𝐵𝐹:ran 𝐹1-1-onto𝐴)
2 f1f 6788 . . . . . 6 (𝐹:𝐴1-1𝐵𝐹:𝐴𝐵)
32frnd 6726 . . . . 5 (𝐹:𝐴1-1𝐵 → ran 𝐹𝐵)
4 ssfi 9173 . . . . 5 ((𝐵 ∈ Fin ∧ ran 𝐹𝐵) → ran 𝐹 ∈ Fin)
53, 4sylan2 594 . . . 4 ((𝐵 ∈ Fin ∧ 𝐹:𝐴1-1𝐵) → ran 𝐹 ∈ Fin)
6 f1ofn 6835 . . . . 5 (𝐹:ran 𝐹1-1-onto𝐴𝐹 Fn ran 𝐹)
7 fnfi 9181 . . . . 5 ((𝐹 Fn ran 𝐹 ∧ ran 𝐹 ∈ Fin) → 𝐹 ∈ Fin)
86, 7sylan 581 . . . 4 ((𝐹:ran 𝐹1-1-onto𝐴 ∧ ran 𝐹 ∈ Fin) → 𝐹 ∈ Fin)
91, 5, 8syl2an2 685 . . 3 ((𝐵 ∈ Fin ∧ 𝐹:𝐴1-1𝐵) → 𝐹 ∈ Fin)
10 cnvfi 9180 . . . 4 (𝐹 ∈ Fin → 𝐹 ∈ Fin)
11 f1rel 6791 . . . . . . 7 (𝐹:𝐴1-1𝐵 → Rel 𝐹)
12 dfrel2 6189 . . . . . . 7 (Rel 𝐹𝐹 = 𝐹)
1311, 12sylib 217 . . . . . 6 (𝐹:𝐴1-1𝐵𝐹 = 𝐹)
1413eleq1d 2819 . . . . 5 (𝐹:𝐴1-1𝐵 → (𝐹 ∈ Fin ↔ 𝐹 ∈ Fin))
1514biimpac 480 . . . 4 ((𝐹 ∈ Fin ∧ 𝐹:𝐴1-1𝐵) → 𝐹 ∈ Fin)
1610, 15sylan 581 . . 3 ((𝐹 ∈ Fin ∧ 𝐹:𝐴1-1𝐵) → 𝐹 ∈ Fin)
179, 16sylancom 589 . 2 ((𝐵 ∈ Fin ∧ 𝐹:𝐴1-1𝐵) → 𝐹 ∈ Fin)
18 f1dom3g 8963 . . 3 ((𝐹 ∈ Fin ∧ 𝐵 ∈ Fin ∧ 𝐹:𝐴1-1𝐵) → 𝐴𝐵)
19183expib 1123 . 2 (𝐹 ∈ Fin → ((𝐵 ∈ Fin ∧ 𝐹:𝐴1-1𝐵) → 𝐴𝐵))
2017, 19mpcom 38 1 ((𝐵 ∈ Fin ∧ 𝐹:𝐴1-1𝐵) → 𝐴𝐵)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 397   = wceq 1542  wcel 2107  wss 3949   class class class wbr 5149  ccnv 5676  ran crn 5678  Rel wrel 5682   Fn wfn 6539  1-1wf1 6541  1-1-ontowf1o 6543  cdom 8937  Fincfn 8939
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2155  ax-12 2172  ax-ext 2704  ax-sep 5300  ax-nul 5307  ax-pr 5428  ax-un 7725
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3or 1089  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-nf 1787  df-sb 2069  df-mo 2535  df-eu 2564  df-clab 2711  df-cleq 2725  df-clel 2811  df-nfc 2886  df-ne 2942  df-ral 3063  df-rex 3072  df-reu 3378  df-rab 3434  df-v 3477  df-sbc 3779  df-dif 3952  df-un 3954  df-in 3956  df-ss 3966  df-pss 3968  df-nul 4324  df-if 4530  df-pw 4605  df-sn 4630  df-pr 4632  df-op 4636  df-uni 4910  df-br 5150  df-opab 5212  df-tr 5267  df-id 5575  df-eprel 5581  df-po 5589  df-so 5590  df-fr 5632  df-we 5634  df-xp 5683  df-rel 5684  df-cnv 5685  df-co 5686  df-dm 5687  df-rn 5688  df-res 5689  df-ima 5690  df-ord 6368  df-on 6369  df-lim 6370  df-suc 6371  df-iota 6496  df-fun 6546  df-fn 6547  df-f 6548  df-f1 6549  df-fo 6550  df-f1o 6551  df-fv 6552  df-om 7856  df-1o 8466  df-en 8940  df-dom 8941  df-fin 8943
This theorem is referenced by:  ssdomfi  9199
  Copyright terms: Public domain W3C validator