| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > f1dm | Structured version Visualization version GIF version | ||
| Description: The domain of a one-to-one mapping. (Contributed by NM, 8-Mar-2014.) (Proof shortened by Wolf Lammen, 29-May-2024.) |
| Ref | Expression |
|---|---|
| f1dm | ⊢ (𝐹:𝐴–1-1→𝐵 → dom 𝐹 = 𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | f1fn 6740 | . 2 ⊢ (𝐹:𝐴–1-1→𝐵 → 𝐹 Fn 𝐴) | |
| 2 | 1 | fndmd 6606 | 1 ⊢ (𝐹:𝐴–1-1→𝐵 → dom 𝐹 = 𝐴) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 dom cdm 5631 –1-1→wf1 6497 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-fn 6503 df-f 6504 df-f1 6505 |
| This theorem is referenced by: f1iun 7903 fnwelem 8088 tposf12 8208 fodomr 9070 domssex 9080 fodomfir 9256 f1dmvrnfibi 9269 f1vrnfibi 9270 acndom 9983 acndom2 9986 ackbij1b 10170 fin1a2lem6 10337 hashf1dmrn 14387 cnt0 23268 cnt1 23272 cnhaus 23276 hmeoimaf1o 23692 uspgr1e 29226 s2f1 32918 lindflbs 33345 rankeq1o 36154 hfninf 36169 eldioph2lem2 42744 |
| Copyright terms: Public domain | W3C validator |