Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > f1dm | Structured version Visualization version GIF version |
Description: The domain of a one-to-one mapping. (Contributed by NM, 8-Mar-2014.) (Proof shortened by Wolf Lammen, 29-May-2024.) |
Ref | Expression |
---|---|
f1dm | ⊢ (𝐹:𝐴–1-1→𝐵 → dom 𝐹 = 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | f1fn 6655 | . 2 ⊢ (𝐹:𝐴–1-1→𝐵 → 𝐹 Fn 𝐴) | |
2 | 1 | fndmd 6522 | 1 ⊢ (𝐹:𝐴–1-1→𝐵 → dom 𝐹 = 𝐴) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1539 dom cdm 5580 –1-1→wf1 6415 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 df-an 396 df-fn 6421 df-f 6422 df-f1 6423 |
This theorem is referenced by: f1iun 7760 fnwelem 7943 tposf12 8038 fodomr 8864 domssex 8874 f1dmvrnfibi 9033 f1vrnfibi 9034 acndom 9738 acndom2 9741 ackbij1b 9926 fin1a2lem6 10092 cnt0 22405 cnt1 22409 cnhaus 22413 hmeoimaf1o 22829 uspgr1e 27514 s2f1 31121 lindflbs 31476 hashf1dmrn 32975 rankeq1o 34400 hfninf 34415 eldioph2lem2 40499 |
Copyright terms: Public domain | W3C validator |