MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  f1dm Structured version   Visualization version   GIF version

Theorem f1dm 6724
Description: The domain of a one-to-one mapping. (Contributed by NM, 8-Mar-2014.) (Proof shortened by Wolf Lammen, 29-May-2024.)
Assertion
Ref Expression
f1dm (𝐹:𝐴1-1𝐵 → dom 𝐹 = 𝐴)

Proof of Theorem f1dm
StepHypRef Expression
1 f1fn 6721 . 2 (𝐹:𝐴1-1𝐵𝐹 Fn 𝐴)
21fndmd 6587 1 (𝐹:𝐴1-1𝐵 → dom 𝐹 = 𝐴)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1540  dom cdm 5619  1-1wf1 6479
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 207  df-an 396  df-fn 6485  df-f 6486  df-f1 6487
This theorem is referenced by:  f1iun  7879  fnwelem  8064  tposf12  8184  fodomr  9045  domssex  9055  fodomfir  9218  f1dmvrnfibi  9231  f1vrnfibi  9232  acndom  9945  acndom2  9948  ackbij1b  10132  fin1a2lem6  10299  hashf1dmrn  14350  cnt0  23231  cnt1  23235  cnhaus  23239  hmeoimaf1o  23655  uspgr1e  29193  s2f1  32895  lindflbs  33325  rankeq1o  36165  hfninf  36180  eldioph2lem2  42754
  Copyright terms: Public domain W3C validator