| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > f1dm | Structured version Visualization version GIF version | ||
| Description: The domain of a one-to-one mapping. (Contributed by NM, 8-Mar-2014.) (Proof shortened by Wolf Lammen, 29-May-2024.) |
| Ref | Expression |
|---|---|
| f1dm | ⊢ (𝐹:𝐴–1-1→𝐵 → dom 𝐹 = 𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | f1fn 6757 | . 2 ⊢ (𝐹:𝐴–1-1→𝐵 → 𝐹 Fn 𝐴) | |
| 2 | 1 | fndmd 6623 | 1 ⊢ (𝐹:𝐴–1-1→𝐵 → dom 𝐹 = 𝐴) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 dom cdm 5638 –1-1→wf1 6508 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-fn 6514 df-f 6515 df-f1 6516 |
| This theorem is referenced by: f1iun 7922 fnwelem 8110 tposf12 8230 fodomr 9092 domssex 9102 fodomfir 9279 f1dmvrnfibi 9292 f1vrnfibi 9293 acndom 10004 acndom2 10007 ackbij1b 10191 fin1a2lem6 10358 hashf1dmrn 14408 cnt0 23233 cnt1 23237 cnhaus 23241 hmeoimaf1o 23657 uspgr1e 29171 s2f1 32866 lindflbs 33350 rankeq1o 36159 hfninf 36174 eldioph2lem2 42749 |
| Copyright terms: Public domain | W3C validator |