![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > f1dm | Structured version Visualization version GIF version |
Description: The domain of a one-to-one mapping. (Contributed by NM, 8-Mar-2014.) (Proof shortened by Wolf Lammen, 29-May-2024.) |
Ref | Expression |
---|---|
f1dm | ⊢ (𝐹:𝐴–1-1→𝐵 → dom 𝐹 = 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | f1fn 6806 | . 2 ⊢ (𝐹:𝐴–1-1→𝐵 → 𝐹 Fn 𝐴) | |
2 | 1 | fndmd 6674 | 1 ⊢ (𝐹:𝐴–1-1→𝐵 → dom 𝐹 = 𝐴) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1537 dom cdm 5689 –1-1→wf1 6560 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 207 df-an 396 df-fn 6566 df-f 6567 df-f1 6568 |
This theorem is referenced by: f1iun 7967 fnwelem 8155 tposf12 8275 fodomr 9167 domssex 9177 fodomfir 9366 f1dmvrnfibi 9379 f1vrnfibi 9380 acndom 10089 acndom2 10092 ackbij1b 10276 fin1a2lem6 10443 hashf1dmrn 14479 cnt0 23370 cnt1 23374 cnhaus 23378 hmeoimaf1o 23794 uspgr1e 29276 s2f1 32914 lindflbs 33387 rankeq1o 36153 hfninf 36168 eldioph2lem2 42749 |
Copyright terms: Public domain | W3C validator |