![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > f1dm | Structured version Visualization version GIF version |
Description: The domain of a one-to-one mapping. (Contributed by NM, 8-Mar-2014.) (Proof shortened by Wolf Lammen, 29-May-2024.) |
Ref | Expression |
---|---|
f1dm | ⊢ (𝐹:𝐴–1-1→𝐵 → dom 𝐹 = 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | f1fn 6818 | . 2 ⊢ (𝐹:𝐴–1-1→𝐵 → 𝐹 Fn 𝐴) | |
2 | 1 | fndmd 6684 | 1 ⊢ (𝐹:𝐴–1-1→𝐵 → dom 𝐹 = 𝐴) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1537 dom cdm 5700 –1-1→wf1 6570 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 207 df-an 396 df-fn 6576 df-f 6577 df-f1 6578 |
This theorem is referenced by: f1iun 7984 fnwelem 8172 tposf12 8292 fodomr 9194 domssex 9204 fodomfir 9396 f1dmvrnfibi 9409 f1vrnfibi 9410 acndom 10120 acndom2 10123 ackbij1b 10307 fin1a2lem6 10474 hashf1dmrn 14492 cnt0 23375 cnt1 23379 cnhaus 23383 hmeoimaf1o 23799 uspgr1e 29279 s2f1 32911 lindflbs 33372 rankeq1o 36135 hfninf 36150 eldioph2lem2 42717 |
Copyright terms: Public domain | W3C validator |