![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > f1dm | Structured version Visualization version GIF version |
Description: The domain of a one-to-one mapping. (Contributed by NM, 8-Mar-2014.) (Proof shortened by Wolf Lammen, 29-May-2024.) |
Ref | Expression |
---|---|
f1dm | ⊢ (𝐹:𝐴–1-1→𝐵 → dom 𝐹 = 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | f1fn 6788 | . 2 ⊢ (𝐹:𝐴–1-1→𝐵 → 𝐹 Fn 𝐴) | |
2 | 1 | fndmd 6653 | 1 ⊢ (𝐹:𝐴–1-1→𝐵 → dom 𝐹 = 𝐴) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1534 dom cdm 5672 –1-1→wf1 6539 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 df-an 396 df-fn 6545 df-f 6546 df-f1 6547 |
This theorem is referenced by: f1iun 7941 fnwelem 8130 tposf12 8250 fodomr 9144 domssex 9154 f1dmvrnfibi 9352 f1vrnfibi 9353 acndom 10066 acndom2 10069 ackbij1b 10254 fin1a2lem6 10420 hashf1dmrn 14426 cnt0 23237 cnt1 23241 cnhaus 23245 hmeoimaf1o 23661 uspgr1e 29044 s2f1 32650 lindflbs 33034 rankeq1o 35703 hfninf 35718 eldioph2lem2 42103 |
Copyright terms: Public domain | W3C validator |