MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  f1dm Structured version   Visualization version   GIF version

Theorem f1dm 6760
Description: The domain of a one-to-one mapping. (Contributed by NM, 8-Mar-2014.) (Proof shortened by Wolf Lammen, 29-May-2024.)
Assertion
Ref Expression
f1dm (𝐹:𝐴1-1𝐵 → dom 𝐹 = 𝐴)

Proof of Theorem f1dm
StepHypRef Expression
1 f1fn 6757 . 2 (𝐹:𝐴1-1𝐵𝐹 Fn 𝐴)
21fndmd 6623 1 (𝐹:𝐴1-1𝐵 → dom 𝐹 = 𝐴)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1540  dom cdm 5638  1-1wf1 6508
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 207  df-an 396  df-fn 6514  df-f 6515  df-f1 6516
This theorem is referenced by:  f1iun  7922  fnwelem  8110  tposf12  8230  fodomr  9092  domssex  9102  fodomfir  9279  f1dmvrnfibi  9292  f1vrnfibi  9293  acndom  10004  acndom2  10007  ackbij1b  10191  fin1a2lem6  10358  hashf1dmrn  14408  cnt0  23233  cnt1  23237  cnhaus  23241  hmeoimaf1o  23657  uspgr1e  29171  s2f1  32866  lindflbs  33350  rankeq1o  36159  hfninf  36174  eldioph2lem2  42749
  Copyright terms: Public domain W3C validator