MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  f1dm Structured version   Visualization version   GIF version

Theorem f1dm 6792
Description: The domain of a one-to-one mapping. (Contributed by NM, 8-Mar-2014.) (Proof shortened by Wolf Lammen, 29-May-2024.)
Assertion
Ref Expression
f1dm (𝐹:𝐴1-1𝐵 → dom 𝐹 = 𝐴)

Proof of Theorem f1dm
StepHypRef Expression
1 f1fn 6789 . 2 (𝐹:𝐴1-1𝐵𝐹 Fn 𝐴)
21fndmd 6655 1 (𝐹:𝐴1-1𝐵 → dom 𝐹 = 𝐴)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1542  dom cdm 5677  1-1wf1 6541
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 206  df-an 398  df-fn 6547  df-f 6548  df-f1 6549
This theorem is referenced by:  f1iun  7930  fnwelem  8117  tposf12  8236  fodomr  9128  domssex  9138  f1dmvrnfibi  9336  f1vrnfibi  9337  acndom  10046  acndom2  10049  ackbij1b  10234  fin1a2lem6  10400  hashf1dmrn  14403  cnt0  22850  cnt1  22854  cnhaus  22858  hmeoimaf1o  23274  uspgr1e  28501  s2f1  32111  lindflbs  32495  rankeq1o  35143  hfninf  35158  eldioph2lem2  41499
  Copyright terms: Public domain W3C validator