![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > f1dm | Structured version Visualization version GIF version |
Description: The domain of a one-to-one mapping. (Contributed by NM, 8-Mar-2014.) (Proof shortened by Wolf Lammen, 29-May-2024.) |
Ref | Expression |
---|---|
f1dm | ⊢ (𝐹:𝐴–1-1→𝐵 → dom 𝐹 = 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | f1fn 6785 | . 2 ⊢ (𝐹:𝐴–1-1→𝐵 → 𝐹 Fn 𝐴) | |
2 | 1 | fndmd 6651 | 1 ⊢ (𝐹:𝐴–1-1→𝐵 → dom 𝐹 = 𝐴) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1541 dom cdm 5675 –1-1→wf1 6537 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 df-an 397 df-fn 6543 df-f 6544 df-f1 6545 |
This theorem is referenced by: f1iun 7926 fnwelem 8113 tposf12 8232 fodomr 9124 domssex 9134 f1dmvrnfibi 9332 f1vrnfibi 9333 acndom 10042 acndom2 10045 ackbij1b 10230 fin1a2lem6 10396 hashf1dmrn 14399 cnt0 22841 cnt1 22845 cnhaus 22849 hmeoimaf1o 23265 uspgr1e 28490 s2f1 32098 lindflbs 32483 rankeq1o 35131 hfninf 35146 eldioph2lem2 41484 |
Copyright terms: Public domain | W3C validator |