| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > f1dm | Structured version Visualization version GIF version | ||
| Description: The domain of a one-to-one mapping. (Contributed by NM, 8-Mar-2014.) (Proof shortened by Wolf Lammen, 29-May-2024.) |
| Ref | Expression |
|---|---|
| f1dm | ⊢ (𝐹:𝐴–1-1→𝐵 → dom 𝐹 = 𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | f1fn 6760 | . 2 ⊢ (𝐹:𝐴–1-1→𝐵 → 𝐹 Fn 𝐴) | |
| 2 | 1 | fndmd 6626 | 1 ⊢ (𝐹:𝐴–1-1→𝐵 → dom 𝐹 = 𝐴) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 dom cdm 5641 –1-1→wf1 6511 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-fn 6517 df-f 6518 df-f1 6519 |
| This theorem is referenced by: f1iun 7925 fnwelem 8113 tposf12 8233 fodomr 9098 domssex 9108 fodomfir 9286 f1dmvrnfibi 9299 f1vrnfibi 9300 acndom 10011 acndom2 10014 ackbij1b 10198 fin1a2lem6 10365 hashf1dmrn 14415 cnt0 23240 cnt1 23244 cnhaus 23248 hmeoimaf1o 23664 uspgr1e 29178 s2f1 32873 lindflbs 33357 rankeq1o 36166 hfninf 36181 eldioph2lem2 42756 |
| Copyright terms: Public domain | W3C validator |