| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > f1dm | Structured version Visualization version GIF version | ||
| Description: The domain of a one-to-one mapping. (Contributed by NM, 8-Mar-2014.) (Proof shortened by Wolf Lammen, 29-May-2024.) |
| Ref | Expression |
|---|---|
| f1dm | ⊢ (𝐹:𝐴–1-1→𝐵 → dom 𝐹 = 𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | f1fn 6721 | . 2 ⊢ (𝐹:𝐴–1-1→𝐵 → 𝐹 Fn 𝐴) | |
| 2 | 1 | fndmd 6587 | 1 ⊢ (𝐹:𝐴–1-1→𝐵 → dom 𝐹 = 𝐴) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 dom cdm 5619 –1-1→wf1 6479 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-fn 6485 df-f 6486 df-f1 6487 |
| This theorem is referenced by: f1iun 7879 fnwelem 8064 tposf12 8184 fodomr 9045 domssex 9055 fodomfir 9218 f1dmvrnfibi 9231 f1vrnfibi 9232 acndom 9945 acndom2 9948 ackbij1b 10132 fin1a2lem6 10299 hashf1dmrn 14350 cnt0 23231 cnt1 23235 cnhaus 23239 hmeoimaf1o 23655 uspgr1e 29193 s2f1 32895 lindflbs 33325 rankeq1o 36165 hfninf 36180 eldioph2lem2 42754 |
| Copyright terms: Public domain | W3C validator |