![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > f1dm | Structured version Visualization version GIF version |
Description: The domain of a one-to-one mapping. (Contributed by NM, 8-Mar-2014.) |
Ref | Expression |
---|---|
f1dm | ⊢ (𝐹:𝐴–1-1→𝐵 → dom 𝐹 = 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | f1fn 6318 | . 2 ⊢ (𝐹:𝐴–1-1→𝐵 → 𝐹 Fn 𝐴) | |
2 | fndm 6202 | . 2 ⊢ (𝐹 Fn 𝐴 → dom 𝐹 = 𝐴) | |
3 | 1, 2 | syl 17 | 1 ⊢ (𝐹:𝐴–1-1→𝐵 → dom 𝐹 = 𝐴) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1653 dom cdm 5313 Fn wfn 6097 –1-1→wf1 6099 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 199 df-an 386 df-fn 6105 df-f 6106 df-f1 6107 |
This theorem is referenced by: fun11iun 7362 fnwelem 7530 tposf12 7616 ctex 8211 fodomr 8354 domssex 8364 f1dmvrnfibi 8493 f1vrnfibi 8494 acndom 9161 acndom2 9164 ackbij1b 9350 fin1a2lem6 9516 cnt0 21478 cnt1 21482 cnhaus 21486 hmeoimaf1o 21901 uspgr1e 26477 rankeq1o 32790 hfninf 32805 eldioph2lem2 38105 |
Copyright terms: Public domain | W3C validator |