| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > f1dm | Structured version Visualization version GIF version | ||
| Description: The domain of a one-to-one mapping. (Contributed by NM, 8-Mar-2014.) (Proof shortened by Wolf Lammen, 29-May-2024.) |
| Ref | Expression |
|---|---|
| f1dm | ⊢ (𝐹:𝐴–1-1→𝐵 → dom 𝐹 = 𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | f1fn 6726 | . 2 ⊢ (𝐹:𝐴–1-1→𝐵 → 𝐹 Fn 𝐴) | |
| 2 | 1 | fndmd 6592 | 1 ⊢ (𝐹:𝐴–1-1→𝐵 → dom 𝐹 = 𝐴) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1541 dom cdm 5619 –1-1→wf1 6484 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-fn 6490 df-f 6491 df-f1 6492 |
| This theorem is referenced by: f1iun 7882 fnwelem 8067 tposf12 8187 fodomr 9047 domssex 9057 fodomfir 9218 f1dmvrnfibi 9231 f1vrnfibi 9232 acndom 9948 acndom2 9951 ackbij1b 10135 fin1a2lem6 10302 hashf1dmrn 14356 cnt0 23267 cnt1 23271 cnhaus 23275 hmeoimaf1o 23691 uspgr1e 29229 s2f1 32933 lindflbs 33351 rankeq1o 36222 hfninf 36237 eldioph2lem2 42859 |
| Copyright terms: Public domain | W3C validator |