| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > f1dm | Structured version Visualization version GIF version | ||
| Description: The domain of a one-to-one mapping. (Contributed by NM, 8-Mar-2014.) (Proof shortened by Wolf Lammen, 29-May-2024.) |
| Ref | Expression |
|---|---|
| f1dm | ⊢ (𝐹:𝐴–1-1→𝐵 → dom 𝐹 = 𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | f1fn 6739 | . 2 ⊢ (𝐹:𝐴–1-1→𝐵 → 𝐹 Fn 𝐴) | |
| 2 | 1 | fndmd 6605 | 1 ⊢ (𝐹:𝐴–1-1→𝐵 → dom 𝐹 = 𝐴) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 dom cdm 5631 –1-1→wf1 6496 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-fn 6502 df-f 6503 df-f1 6504 |
| This theorem is referenced by: f1iun 7902 fnwelem 8087 tposf12 8207 fodomr 9069 domssex 9079 fodomfir 9255 f1dmvrnfibi 9268 f1vrnfibi 9269 acndom 9982 acndom2 9985 ackbij1b 10169 fin1a2lem6 10336 hashf1dmrn 14386 cnt0 23267 cnt1 23271 cnhaus 23275 hmeoimaf1o 23691 uspgr1e 29225 s2f1 32917 lindflbs 33344 rankeq1o 36153 hfninf 36168 eldioph2lem2 42743 |
| Copyright terms: Public domain | W3C validator |