![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > f1dm | Structured version Visualization version GIF version |
Description: The domain of a one-to-one mapping. (Contributed by NM, 8-Mar-2014.) (Proof shortened by Wolf Lammen, 29-May-2024.) |
Ref | Expression |
---|---|
f1dm | ⊢ (𝐹:𝐴–1-1→𝐵 → dom 𝐹 = 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | f1fn 6789 | . 2 ⊢ (𝐹:𝐴–1-1→𝐵 → 𝐹 Fn 𝐴) | |
2 | 1 | fndmd 6655 | 1 ⊢ (𝐹:𝐴–1-1→𝐵 → dom 𝐹 = 𝐴) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1542 dom cdm 5677 –1-1→wf1 6541 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 df-an 398 df-fn 6547 df-f 6548 df-f1 6549 |
This theorem is referenced by: f1iun 7930 fnwelem 8117 tposf12 8236 fodomr 9128 domssex 9138 f1dmvrnfibi 9336 f1vrnfibi 9337 acndom 10046 acndom2 10049 ackbij1b 10234 fin1a2lem6 10400 hashf1dmrn 14403 cnt0 22850 cnt1 22854 cnhaus 22858 hmeoimaf1o 23274 uspgr1e 28501 s2f1 32111 lindflbs 32495 rankeq1o 35143 hfninf 35158 eldioph2lem2 41499 |
Copyright terms: Public domain | W3C validator |