MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  f1dm Structured version   Visualization version   GIF version

Theorem f1dm 6809
Description: The domain of a one-to-one mapping. (Contributed by NM, 8-Mar-2014.) (Proof shortened by Wolf Lammen, 29-May-2024.)
Assertion
Ref Expression
f1dm (𝐹:𝐴1-1𝐵 → dom 𝐹 = 𝐴)

Proof of Theorem f1dm
StepHypRef Expression
1 f1fn 6806 . 2 (𝐹:𝐴1-1𝐵𝐹 Fn 𝐴)
21fndmd 6674 1 (𝐹:𝐴1-1𝐵 → dom 𝐹 = 𝐴)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1537  dom cdm 5689  1-1wf1 6560
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 207  df-an 396  df-fn 6566  df-f 6567  df-f1 6568
This theorem is referenced by:  f1iun  7967  fnwelem  8155  tposf12  8275  fodomr  9167  domssex  9177  fodomfir  9366  f1dmvrnfibi  9379  f1vrnfibi  9380  acndom  10089  acndom2  10092  ackbij1b  10276  fin1a2lem6  10443  hashf1dmrn  14479  cnt0  23370  cnt1  23374  cnhaus  23378  hmeoimaf1o  23794  uspgr1e  29276  s2f1  32914  lindflbs  33387  rankeq1o  36153  hfninf  36168  eldioph2lem2  42749
  Copyright terms: Public domain W3C validator