| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > f1dm | Structured version Visualization version GIF version | ||
| Description: The domain of a one-to-one mapping. (Contributed by NM, 8-Mar-2014.) (Proof shortened by Wolf Lammen, 29-May-2024.) |
| Ref | Expression |
|---|---|
| f1dm | ⊢ (𝐹:𝐴–1-1→𝐵 → dom 𝐹 = 𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | f1fn 6739 | . 2 ⊢ (𝐹:𝐴–1-1→𝐵 → 𝐹 Fn 𝐴) | |
| 2 | 1 | fndmd 6605 | 1 ⊢ (𝐹:𝐴–1-1→𝐵 → dom 𝐹 = 𝐴) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 dom cdm 5631 –1-1→wf1 6496 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-fn 6502 df-f 6503 df-f1 6504 |
| This theorem is referenced by: f1iun 7902 fnwelem 8087 tposf12 8207 fodomr 9069 domssex 9079 fodomfir 9255 f1dmvrnfibi 9268 f1vrnfibi 9269 acndom 9980 acndom2 9983 ackbij1b 10167 fin1a2lem6 10334 hashf1dmrn 14384 cnt0 23266 cnt1 23270 cnhaus 23274 hmeoimaf1o 23690 uspgr1e 29224 s2f1 32916 lindflbs 33343 rankeq1o 36152 hfninf 36167 eldioph2lem2 42742 |
| Copyright terms: Public domain | W3C validator |