| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > f1dm | Structured version Visualization version GIF version | ||
| Description: The domain of a one-to-one mapping. (Contributed by NM, 8-Mar-2014.) (Proof shortened by Wolf Lammen, 29-May-2024.) |
| Ref | Expression |
|---|---|
| f1dm | ⊢ (𝐹:𝐴–1-1→𝐵 → dom 𝐹 = 𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | f1fn 6775 | . 2 ⊢ (𝐹:𝐴–1-1→𝐵 → 𝐹 Fn 𝐴) | |
| 2 | 1 | fndmd 6643 | 1 ⊢ (𝐹:𝐴–1-1→𝐵 → dom 𝐹 = 𝐴) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 dom cdm 5654 –1-1→wf1 6528 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-fn 6534 df-f 6535 df-f1 6536 |
| This theorem is referenced by: f1iun 7942 fnwelem 8130 tposf12 8250 fodomr 9142 domssex 9152 fodomfir 9340 f1dmvrnfibi 9353 f1vrnfibi 9354 acndom 10065 acndom2 10068 ackbij1b 10252 fin1a2lem6 10419 hashf1dmrn 14461 cnt0 23284 cnt1 23288 cnhaus 23292 hmeoimaf1o 23708 uspgr1e 29223 s2f1 32920 lindflbs 33394 rankeq1o 36189 hfninf 36204 eldioph2lem2 42784 |
| Copyright terms: Public domain | W3C validator |