MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  f1dm Structured version   Visualization version   GIF version

Theorem f1dm 6742
Description: The domain of a one-to-one mapping. (Contributed by NM, 8-Mar-2014.) (Proof shortened by Wolf Lammen, 29-May-2024.)
Assertion
Ref Expression
f1dm (𝐹:𝐴1-1𝐵 → dom 𝐹 = 𝐴)

Proof of Theorem f1dm
StepHypRef Expression
1 f1fn 6739 . 2 (𝐹:𝐴1-1𝐵𝐹 Fn 𝐴)
21fndmd 6605 1 (𝐹:𝐴1-1𝐵 → dom 𝐹 = 𝐴)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1540  dom cdm 5631  1-1wf1 6496
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 207  df-an 396  df-fn 6502  df-f 6503  df-f1 6504
This theorem is referenced by:  f1iun  7902  fnwelem  8087  tposf12  8207  fodomr  9069  domssex  9079  fodomfir  9255  f1dmvrnfibi  9268  f1vrnfibi  9269  acndom  9982  acndom2  9985  ackbij1b  10169  fin1a2lem6  10336  hashf1dmrn  14386  cnt0  23267  cnt1  23271  cnhaus  23275  hmeoimaf1o  23691  uspgr1e  29225  s2f1  32917  lindflbs  33344  rankeq1o  36153  hfninf  36168  eldioph2lem2  42743
  Copyright terms: Public domain W3C validator