MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  f1dm Structured version   Visualization version   GIF version

Theorem f1dm 6788
Description: The domain of a one-to-one mapping. (Contributed by NM, 8-Mar-2014.) (Proof shortened by Wolf Lammen, 29-May-2024.)
Assertion
Ref Expression
f1dm (𝐹:𝐴1-1𝐵 → dom 𝐹 = 𝐴)

Proof of Theorem f1dm
StepHypRef Expression
1 f1fn 6785 . 2 (𝐹:𝐴1-1𝐵𝐹 Fn 𝐴)
21fndmd 6651 1 (𝐹:𝐴1-1𝐵 → dom 𝐹 = 𝐴)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1541  dom cdm 5675  1-1wf1 6537
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 206  df-an 397  df-fn 6543  df-f 6544  df-f1 6545
This theorem is referenced by:  f1iun  7926  fnwelem  8113  tposf12  8232  fodomr  9124  domssex  9134  f1dmvrnfibi  9332  f1vrnfibi  9333  acndom  10042  acndom2  10045  ackbij1b  10230  fin1a2lem6  10396  hashf1dmrn  14399  cnt0  22841  cnt1  22845  cnhaus  22849  hmeoimaf1o  23265  uspgr1e  28490  s2f1  32098  lindflbs  32483  rankeq1o  35131  hfninf  35146  eldioph2lem2  41484
  Copyright terms: Public domain W3C validator