Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > f1dm | Structured version Visualization version GIF version |
Description: The domain of a one-to-one mapping. (Contributed by NM, 8-Mar-2014.) (Proof shortened by Wolf Lammen, 29-May-2024.) |
Ref | Expression |
---|---|
f1dm | ⊢ (𝐹:𝐴–1-1→𝐵 → dom 𝐹 = 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | f1fn 6671 | . 2 ⊢ (𝐹:𝐴–1-1→𝐵 → 𝐹 Fn 𝐴) | |
2 | 1 | fndmd 6538 | 1 ⊢ (𝐹:𝐴–1-1→𝐵 → dom 𝐹 = 𝐴) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1539 dom cdm 5589 –1-1→wf1 6430 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 df-an 397 df-fn 6436 df-f 6437 df-f1 6438 |
This theorem is referenced by: f1iun 7786 fnwelem 7972 tposf12 8067 fodomr 8915 domssex 8925 f1dmvrnfibi 9103 f1vrnfibi 9104 acndom 9807 acndom2 9810 ackbij1b 9995 fin1a2lem6 10161 cnt0 22497 cnt1 22501 cnhaus 22505 hmeoimaf1o 22921 uspgr1e 27611 s2f1 31219 lindflbs 31574 hashf1dmrn 33075 rankeq1o 34473 hfninf 34488 eldioph2lem2 40583 |
Copyright terms: Public domain | W3C validator |