MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fnrel Structured version   Visualization version   GIF version

Theorem fnrel 6681
Description: A function with domain is a relation. (Contributed by NM, 1-Aug-1994.)
Assertion
Ref Expression
fnrel (𝐹 Fn 𝐴 → Rel 𝐹)

Proof of Theorem fnrel
StepHypRef Expression
1 fnfun 6679 . 2 (𝐹 Fn 𝐴 → Fun 𝐹)
2 funrel 6595 . 2 (Fun 𝐹 → Rel 𝐹)
31, 2syl 17 1 (𝐹 Fn 𝐴 → Rel 𝐹)
Colors of variables: wff setvar class
Syntax hints:  wi 4  Rel wrel 5705  Fun wfun 6567   Fn wfn 6568
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 207  df-an 396  df-fun 6575  df-fn 6576
This theorem is referenced by:  fnbr  6687  fnunres1  6691  fnresdm  6699  fn0  6711  frel  6752  fcoi2  6796  f1rel  6820  f1ocnv  6874  dffn5  6980  feqmptdf  6992  fconst5  7243  fnex  7254  fnexALT  7991  tz7.48-2  8498  resfnfinfin  9405  zorn2lem4  10568  imasvscafn  17597  2oppchomf  17784  opprabs  33475  bnj66  34836  tfsconcatb0  43306  tfsconcat0i  43307  tfsconcat0b  43308  tfsconcat00  43309  fnresdmss  45075  dfafn5a  47075
  Copyright terms: Public domain W3C validator