MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fnrel Structured version   Visualization version   GIF version

Theorem fnrel 6519
Description: A function with domain is a relation. (Contributed by NM, 1-Aug-1994.)
Assertion
Ref Expression
fnrel (𝐹 Fn 𝐴 → Rel 𝐹)

Proof of Theorem fnrel
StepHypRef Expression
1 fnfun 6517 . 2 (𝐹 Fn 𝐴 → Fun 𝐹)
2 funrel 6435 . 2 (Fun 𝐹 → Rel 𝐹)
31, 2syl 17 1 (𝐹 Fn 𝐴 → Rel 𝐹)
Colors of variables: wff setvar class
Syntax hints:  wi 4  Rel wrel 5585  Fun wfun 6412   Fn wfn 6413
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 206  df-an 396  df-fun 6420  df-fn 6421
This theorem is referenced by:  fnbr  6525  fnresdm  6535  fn0  6548  frel  6589  fcoi2  6633  f1rel  6657  f1ocnv  6712  dffn5  6810  feqmptdf  6821  fnsnfvOLD  6830  fconst5  7063  fnex  7075  fnexALT  7767  tz7.48-2  8243  resfnfinfin  9029  zorn2lem4  10186  imasvscafn  17165  2oppchomf  17352  fnunres1  30846  bnj66  32740  fnresdmss  42593  dfafn5a  44539
  Copyright terms: Public domain W3C validator