MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fnrel Structured version   Visualization version   GIF version

Theorem fnrel 6648
Description: A function with domain is a relation. (Contributed by NM, 1-Aug-1994.)
Assertion
Ref Expression
fnrel (𝐹 Fn 𝐴 → Rel 𝐹)

Proof of Theorem fnrel
StepHypRef Expression
1 fnfun 6646 . 2 (𝐹 Fn 𝐴 → Fun 𝐹)
2 funrel 6562 . 2 (Fun 𝐹 → Rel 𝐹)
31, 2syl 17 1 (𝐹 Fn 𝐴 → Rel 𝐹)
Colors of variables: wff setvar class
Syntax hints:  wi 4  Rel wrel 5680  Fun wfun 6534   Fn wfn 6535
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 206  df-an 397  df-fun 6542  df-fn 6543
This theorem is referenced by:  fnbr  6654  fnunres1  6658  fnresdm  6666  fn0  6678  frel  6719  fcoi2  6763  f1rel  6787  f1ocnv  6842  dffn5  6947  feqmptdf  6959  fnsnfvOLD  6968  fconst5  7203  fnex  7215  fnexALT  7933  tz7.48-2  8438  resfnfinfin  9328  zorn2lem4  10490  imasvscafn  17479  2oppchomf  17666  opprabs  32584  bnj66  33859  tfsconcatb0  42079  tfsconcat0i  42080  tfsconcat0b  42081  tfsconcat00  42082  fnresdmss  43849  dfafn5a  45854
  Copyright terms: Public domain W3C validator