![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > fnrel | Structured version Visualization version GIF version |
Description: A function with domain is a relation. (Contributed by NM, 1-Aug-1994.) |
Ref | Expression |
---|---|
fnrel | ⊢ (𝐹 Fn 𝐴 → Rel 𝐹) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fnfun 6679 | . 2 ⊢ (𝐹 Fn 𝐴 → Fun 𝐹) | |
2 | funrel 6595 | . 2 ⊢ (Fun 𝐹 → Rel 𝐹) | |
3 | 1, 2 | syl 17 | 1 ⊢ (𝐹 Fn 𝐴 → Rel 𝐹) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 Rel wrel 5705 Fun wfun 6567 Fn wfn 6568 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 207 df-an 396 df-fun 6575 df-fn 6576 |
This theorem is referenced by: fnbr 6687 fnunres1 6691 fnresdm 6699 fn0 6711 frel 6752 fcoi2 6796 f1rel 6820 f1ocnv 6874 dffn5 6980 feqmptdf 6992 fconst5 7243 fnex 7254 fnexALT 7991 tz7.48-2 8498 resfnfinfin 9405 zorn2lem4 10568 imasvscafn 17597 2oppchomf 17784 opprabs 33475 bnj66 34836 tfsconcatb0 43306 tfsconcat0i 43307 tfsconcat0b 43308 tfsconcat00 43309 fnresdmss 45075 dfafn5a 47075 |
Copyright terms: Public domain | W3C validator |