MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fnrel Structured version   Visualization version   GIF version

Theorem fnrel 6535
Description: A function with domain is a relation. (Contributed by NM, 1-Aug-1994.)
Assertion
Ref Expression
fnrel (𝐹 Fn 𝐴 → Rel 𝐹)

Proof of Theorem fnrel
StepHypRef Expression
1 fnfun 6533 . 2 (𝐹 Fn 𝐴 → Fun 𝐹)
2 funrel 6451 . 2 (Fun 𝐹 → Rel 𝐹)
31, 2syl 17 1 (𝐹 Fn 𝐴 → Rel 𝐹)
Colors of variables: wff setvar class
Syntax hints:  wi 4  Rel wrel 5594  Fun wfun 6427   Fn wfn 6428
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 206  df-an 397  df-fun 6435  df-fn 6436
This theorem is referenced by:  fnbr  6541  fnresdm  6551  fn0  6564  frel  6605  fcoi2  6649  f1rel  6673  f1ocnv  6728  dffn5  6828  feqmptdf  6839  fnsnfvOLD  6848  fconst5  7081  fnex  7093  fnexALT  7793  tz7.48-2  8273  resfnfinfin  9099  zorn2lem4  10255  imasvscafn  17248  2oppchomf  17435  fnunres1  30945  bnj66  32840  fnresdmss  42704  dfafn5a  44652
  Copyright terms: Public domain W3C validator