MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fnrel Structured version   Visualization version   GIF version

Theorem fnrel 6640
Description: A function with domain is a relation. (Contributed by NM, 1-Aug-1994.)
Assertion
Ref Expression
fnrel (𝐹 Fn 𝐴 → Rel 𝐹)

Proof of Theorem fnrel
StepHypRef Expression
1 fnfun 6638 . 2 (𝐹 Fn 𝐴 → Fun 𝐹)
2 funrel 6553 . 2 (Fun 𝐹 → Rel 𝐹)
31, 2syl 17 1 (𝐹 Fn 𝐴 → Rel 𝐹)
Colors of variables: wff setvar class
Syntax hints:  wi 4  Rel wrel 5659  Fun wfun 6525   Fn wfn 6526
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 207  df-an 396  df-fun 6533  df-fn 6534
This theorem is referenced by:  fnbr  6646  fnunres1  6650  fnresdm  6657  fn0  6669  frel  6711  fcoi2  6753  f1rel  6777  f1ocnv  6830  dffn5  6937  feqmptdf  6949  fconst5  7198  fnex  7209  fnexALT  7949  tz7.48-2  8456  resfnfinfin  9349  zorn2lem4  10513  imasvscafn  17551  2oppchomf  17736  opprabs  33497  bnj66  34891  tfsconcatb0  43368  tfsconcat0i  43369  tfsconcat0b  43370  tfsconcat00  43371  fnresdmss  45192  dfafn5a  47189  oppfvallem  49081  funcoppc3  49090  uptposlem  49130
  Copyright terms: Public domain W3C validator