| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > fnrel | Structured version Visualization version GIF version | ||
| Description: A function with domain is a relation. (Contributed by NM, 1-Aug-1994.) |
| Ref | Expression |
|---|---|
| fnrel | ⊢ (𝐹 Fn 𝐴 → Rel 𝐹) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fnfun 6638 | . 2 ⊢ (𝐹 Fn 𝐴 → Fun 𝐹) | |
| 2 | funrel 6553 | . 2 ⊢ (Fun 𝐹 → Rel 𝐹) | |
| 3 | 1, 2 | syl 17 | 1 ⊢ (𝐹 Fn 𝐴 → Rel 𝐹) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 Rel wrel 5659 Fun wfun 6525 Fn wfn 6526 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-fun 6533 df-fn 6534 |
| This theorem is referenced by: fnbr 6646 fnunres1 6650 fnresdm 6657 fn0 6669 frel 6711 fcoi2 6753 f1rel 6777 f1ocnv 6830 dffn5 6937 feqmptdf 6949 fconst5 7198 fnex 7209 fnexALT 7949 tz7.48-2 8456 resfnfinfin 9349 zorn2lem4 10513 imasvscafn 17551 2oppchomf 17736 opprabs 33497 bnj66 34891 tfsconcatb0 43368 tfsconcat0i 43369 tfsconcat0b 43370 tfsconcat00 43371 fnresdmss 45192 dfafn5a 47189 oppfvallem 49081 funcoppc3 49090 uptposlem 49130 |
| Copyright terms: Public domain | W3C validator |