![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > fnrel | Structured version Visualization version GIF version |
Description: A function with domain is a relation. (Contributed by NM, 1-Aug-1994.) |
Ref | Expression |
---|---|
fnrel | ⊢ (𝐹 Fn 𝐴 → Rel 𝐹) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fnfun 6668 | . 2 ⊢ (𝐹 Fn 𝐴 → Fun 𝐹) | |
2 | funrel 6584 | . 2 ⊢ (Fun 𝐹 → Rel 𝐹) | |
3 | 1, 2 | syl 17 | 1 ⊢ (𝐹 Fn 𝐴 → Rel 𝐹) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 Rel wrel 5693 Fun wfun 6556 Fn wfn 6557 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 207 df-an 396 df-fun 6564 df-fn 6565 |
This theorem is referenced by: fnbr 6676 fnunres1 6680 fnresdm 6687 fn0 6699 frel 6741 fcoi2 6783 f1rel 6807 f1ocnv 6860 dffn5 6966 feqmptdf 6978 fconst5 7225 fnex 7236 fnexALT 7973 tz7.48-2 8480 resfnfinfin 9374 zorn2lem4 10536 imasvscafn 17583 2oppchomf 17770 opprabs 33489 bnj66 34852 tfsconcatb0 43333 tfsconcat0i 43334 tfsconcat0b 43335 tfsconcat00 43336 fnresdmss 45110 dfafn5a 47109 |
Copyright terms: Public domain | W3C validator |