| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > fnrel | Structured version Visualization version GIF version | ||
| Description: A function with domain is a relation. (Contributed by NM, 1-Aug-1994.) |
| Ref | Expression |
|---|---|
| fnrel | ⊢ (𝐹 Fn 𝐴 → Rel 𝐹) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fnfun 6618 | . 2 ⊢ (𝐹 Fn 𝐴 → Fun 𝐹) | |
| 2 | funrel 6533 | . 2 ⊢ (Fun 𝐹 → Rel 𝐹) | |
| 3 | 1, 2 | syl 17 | 1 ⊢ (𝐹 Fn 𝐴 → Rel 𝐹) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 Rel wrel 5643 Fun wfun 6505 Fn wfn 6506 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-fun 6513 df-fn 6514 |
| This theorem is referenced by: fnbr 6626 fnunres1 6630 fnresdm 6637 fn0 6649 frel 6693 fcoi2 6735 f1rel 6759 f1ocnv 6812 dffn5 6919 feqmptdf 6931 fconst5 7180 fnex 7191 fnexALT 7929 tz7.48-2 8410 resfnfinfin 9288 zorn2lem4 10452 imasvscafn 17500 2oppchomf 17685 opprabs 33453 bnj66 34850 tfsconcatb0 43333 tfsconcat0i 43334 tfsconcat0b 43335 tfsconcat00 43336 fnresdmss 45162 dfafn5a 47161 oppfvallem 49124 funcoppc3 49136 uptposlem 49186 |
| Copyright terms: Public domain | W3C validator |