| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > fnrel | Structured version Visualization version GIF version | ||
| Description: A function with domain is a relation. (Contributed by NM, 1-Aug-1994.) |
| Ref | Expression |
|---|---|
| fnrel | ⊢ (𝐹 Fn 𝐴 → Rel 𝐹) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fnfun 6577 | . 2 ⊢ (𝐹 Fn 𝐴 → Fun 𝐹) | |
| 2 | funrel 6494 | . 2 ⊢ (Fun 𝐹 → Rel 𝐹) | |
| 3 | 1, 2 | syl 17 | 1 ⊢ (𝐹 Fn 𝐴 → Rel 𝐹) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 Rel wrel 5619 Fun wfun 6471 Fn wfn 6472 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-fun 6479 df-fn 6480 |
| This theorem is referenced by: fnbr 6585 fnunres1 6589 fnresdm 6596 fn0 6608 frel 6652 fcoi2 6694 f1rel 6718 f1ocnv 6771 dffn5 6875 feqmptdf 6887 fconst5 7135 fnex 7146 fnexALT 7878 tz7.48-2 8356 resfnfinfin 9216 zorn2lem4 10382 imasvscafn 17433 2oppchomf 17622 opprabs 33437 bnj66 34862 tfsconcatb0 43356 tfsconcat0i 43357 tfsconcat0b 43358 tfsconcat00 43359 fnresdmss 45184 dfafn5a 47170 oppfvallem 49146 funcoppc3 49158 uptposlem 49208 |
| Copyright terms: Public domain | W3C validator |