| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > fnrel | Structured version Visualization version GIF version | ||
| Description: A function with domain is a relation. (Contributed by NM, 1-Aug-1994.) |
| Ref | Expression |
|---|---|
| fnrel | ⊢ (𝐹 Fn 𝐴 → Rel 𝐹) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fnfun 6621 | . 2 ⊢ (𝐹 Fn 𝐴 → Fun 𝐹) | |
| 2 | funrel 6536 | . 2 ⊢ (Fun 𝐹 → Rel 𝐹) | |
| 3 | 1, 2 | syl 17 | 1 ⊢ (𝐹 Fn 𝐴 → Rel 𝐹) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 Rel wrel 5646 Fun wfun 6508 Fn wfn 6509 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-fun 6516 df-fn 6517 |
| This theorem is referenced by: fnbr 6629 fnunres1 6633 fnresdm 6640 fn0 6652 frel 6696 fcoi2 6738 f1rel 6762 f1ocnv 6815 dffn5 6922 feqmptdf 6934 fconst5 7183 fnex 7194 fnexALT 7932 tz7.48-2 8413 resfnfinfin 9295 zorn2lem4 10459 imasvscafn 17507 2oppchomf 17692 opprabs 33460 bnj66 34857 tfsconcatb0 43340 tfsconcat0i 43341 tfsconcat0b 43342 tfsconcat00 43343 fnresdmss 45169 dfafn5a 47165 oppfvallem 49128 funcoppc3 49140 uptposlem 49190 |
| Copyright terms: Public domain | W3C validator |