Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > fnrel | Structured version Visualization version GIF version |
Description: A function with domain is a relation. (Contributed by NM, 1-Aug-1994.) |
Ref | Expression |
---|---|
fnrel | ⊢ (𝐹 Fn 𝐴 → Rel 𝐹) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fnfun 6533 | . 2 ⊢ (𝐹 Fn 𝐴 → Fun 𝐹) | |
2 | funrel 6451 | . 2 ⊢ (Fun 𝐹 → Rel 𝐹) | |
3 | 1, 2 | syl 17 | 1 ⊢ (𝐹 Fn 𝐴 → Rel 𝐹) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 Rel wrel 5594 Fun wfun 6427 Fn wfn 6428 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 df-an 397 df-fun 6435 df-fn 6436 |
This theorem is referenced by: fnbr 6541 fnresdm 6551 fn0 6564 frel 6605 fcoi2 6649 f1rel 6673 f1ocnv 6728 dffn5 6828 feqmptdf 6839 fnsnfvOLD 6848 fconst5 7081 fnex 7093 fnexALT 7793 tz7.48-2 8273 resfnfinfin 9099 zorn2lem4 10255 imasvscafn 17248 2oppchomf 17435 fnunres1 30945 bnj66 32840 fnresdmss 42704 dfafn5a 44652 |
Copyright terms: Public domain | W3C validator |