MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fnrel Structured version   Visualization version   GIF version

Theorem fnrel 6642
Description: A function with domain is a relation. (Contributed by NM, 1-Aug-1994.)
Assertion
Ref Expression
fnrel (𝐹 Fn 𝐴 → Rel 𝐹)

Proof of Theorem fnrel
StepHypRef Expression
1 fnfun 6640 . 2 (𝐹 Fn 𝐴 → Fun 𝐹)
2 funrel 6556 . 2 (Fun 𝐹 → Rel 𝐹)
31, 2syl 17 1 (𝐹 Fn 𝐴 → Rel 𝐹)
Colors of variables: wff setvar class
Syntax hints:  wi 4  Rel wrel 5672  Fun wfun 6528   Fn wfn 6529
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 206  df-an 396  df-fun 6536  df-fn 6537
This theorem is referenced by:  fnbr  6648  fnunres1  6652  fnresdm  6660  fn0  6672  frel  6713  fcoi2  6757  f1rel  6781  f1ocnv  6836  dffn5  6941  feqmptdf  6953  fnsnfvOLD  6962  fconst5  7200  fnex  7211  fnexALT  7931  tz7.48-2  8438  resfnfinfin  9329  zorn2lem4  10491  imasvscafn  17488  2oppchomf  17675  opprabs  33091  bnj66  34389  tfsconcatb0  42643  tfsconcat0i  42644  tfsconcat0b  42645  tfsconcat00  42646  fnresdmss  44412  dfafn5a  46413
  Copyright terms: Public domain W3C validator