Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > fnrel | Structured version Visualization version GIF version |
Description: A function with domain is a relation. (Contributed by NM, 1-Aug-1994.) |
Ref | Expression |
---|---|
fnrel | ⊢ (𝐹 Fn 𝐴 → Rel 𝐹) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fnfun 6517 | . 2 ⊢ (𝐹 Fn 𝐴 → Fun 𝐹) | |
2 | funrel 6435 | . 2 ⊢ (Fun 𝐹 → Rel 𝐹) | |
3 | 1, 2 | syl 17 | 1 ⊢ (𝐹 Fn 𝐴 → Rel 𝐹) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 Rel wrel 5585 Fun wfun 6412 Fn wfn 6413 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 df-an 396 df-fun 6420 df-fn 6421 |
This theorem is referenced by: fnbr 6525 fnresdm 6535 fn0 6548 frel 6589 fcoi2 6633 f1rel 6657 f1ocnv 6712 dffn5 6810 feqmptdf 6821 fnsnfvOLD 6830 fconst5 7063 fnex 7075 fnexALT 7767 tz7.48-2 8243 resfnfinfin 9029 zorn2lem4 10186 imasvscafn 17165 2oppchomf 17352 fnunres1 30846 bnj66 32740 fnresdmss 42593 dfafn5a 44539 |
Copyright terms: Public domain | W3C validator |