| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > fnrel | Structured version Visualization version GIF version | ||
| Description: A function with domain is a relation. (Contributed by NM, 1-Aug-1994.) |
| Ref | Expression |
|---|---|
| fnrel | ⊢ (𝐹 Fn 𝐴 → Rel 𝐹) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fnfun 6589 | . 2 ⊢ (𝐹 Fn 𝐴 → Fun 𝐹) | |
| 2 | funrel 6506 | . 2 ⊢ (Fun 𝐹 → Rel 𝐹) | |
| 3 | 1, 2 | syl 17 | 1 ⊢ (𝐹 Fn 𝐴 → Rel 𝐹) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 Rel wrel 5626 Fun wfun 6483 Fn wfn 6484 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-fun 6491 df-fn 6492 |
| This theorem is referenced by: fnbr 6597 fnunres1 6601 fnresdm 6608 fn0 6620 frel 6664 fcoi2 6706 f1rel 6730 f1ocnv 6783 dffn5 6889 feqmptdf 6901 fconst5 7149 fnex 7160 fnexALT 7892 tz7.48-2 8370 resfnfinfin 9231 zorn2lem4 10400 imasvscafn 17451 2oppchomf 17640 opprabs 33458 bnj66 34883 tfsconcatb0 43451 tfsconcat0i 43452 tfsconcat0b 43453 tfsconcat00 43454 fnresdmss 45279 dfafn5a 47274 oppfvallem 49250 funcoppc3 49262 uptposlem 49312 |
| Copyright terms: Public domain | W3C validator |