Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > fnrel | Structured version Visualization version GIF version |
Description: A function with domain is a relation. (Contributed by NM, 1-Aug-1994.) |
Ref | Expression |
---|---|
fnrel | ⊢ (𝐹 Fn 𝐴 → Rel 𝐹) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fnfun 6529 | . 2 ⊢ (𝐹 Fn 𝐴 → Fun 𝐹) | |
2 | funrel 6447 | . 2 ⊢ (Fun 𝐹 → Rel 𝐹) | |
3 | 1, 2 | syl 17 | 1 ⊢ (𝐹 Fn 𝐴 → Rel 𝐹) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 Rel wrel 5593 Fun wfun 6424 Fn wfn 6425 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 df-an 396 df-fun 6432 df-fn 6433 |
This theorem is referenced by: fnbr 6537 fnresdm 6547 fn0 6560 frel 6601 fcoi2 6645 f1rel 6669 f1ocnv 6724 dffn5 6822 feqmptdf 6833 fnsnfvOLD 6842 fconst5 7075 fnex 7087 fnexALT 7780 tz7.48-2 8257 resfnfinfin 9060 zorn2lem4 10239 imasvscafn 17229 2oppchomf 17416 fnunres1 30924 bnj66 32819 fnresdmss 42657 dfafn5a 44603 |
Copyright terms: Public domain | W3C validator |