Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  fnrel Structured version   Visualization version   GIF version

Theorem fnrel 6424
 Description: A function with domain is a relation. (Contributed by NM, 1-Aug-1994.)
Assertion
Ref Expression
fnrel (𝐹 Fn 𝐴 → Rel 𝐹)

Proof of Theorem fnrel
StepHypRef Expression
1 fnfun 6423 . 2 (𝐹 Fn 𝐴 → Fun 𝐹)
2 funrel 6341 . 2 (Fun 𝐹 → Rel 𝐹)
31, 2syl 17 1 (𝐹 Fn 𝐴 → Rel 𝐹)
 Colors of variables: wff setvar class Syntax hints:   → wi 4  Rel wrel 5524  Fun wfun 6318   Fn wfn 6319 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8 This theorem depends on definitions:  df-bi 210  df-an 400  df-fun 6326  df-fn 6327 This theorem is referenced by:  fnbr  6430  fnresdm  6438  fn0  6451  frel  6492  fcoi2  6527  f1rel  6552  f1ocnv  6602  dffn5  6699  feqmptdf  6710  fnsnfv  6718  fconst5  6945  fnex  6957  fnexALT  7634  tz7.48-2  8061  resfnfinfin  8788  zorn2lem4  9910  imasvscafn  16802  2oppchomf  16986  fnunres1  30369  bnj66  32242  fnimasnd  39413  fnresdmss  41790  dfafn5a  43714
 Copyright terms: Public domain W3C validator