| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > fnrel | Structured version Visualization version GIF version | ||
| Description: A function with domain is a relation. (Contributed by NM, 1-Aug-1994.) |
| Ref | Expression |
|---|---|
| fnrel | ⊢ (𝐹 Fn 𝐴 → Rel 𝐹) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fnfun 6586 | . 2 ⊢ (𝐹 Fn 𝐴 → Fun 𝐹) | |
| 2 | funrel 6503 | . 2 ⊢ (Fun 𝐹 → Rel 𝐹) | |
| 3 | 1, 2 | syl 17 | 1 ⊢ (𝐹 Fn 𝐴 → Rel 𝐹) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 Rel wrel 5628 Fun wfun 6480 Fn wfn 6481 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-fun 6488 df-fn 6489 |
| This theorem is referenced by: fnbr 6594 fnunres1 6598 fnresdm 6605 fn0 6617 frel 6661 fcoi2 6703 f1rel 6727 f1ocnv 6780 dffn5 6885 feqmptdf 6897 fconst5 7146 fnex 7157 fnexALT 7893 tz7.48-2 8371 resfnfinfin 9246 zorn2lem4 10412 imasvscafn 17459 2oppchomf 17648 opprabs 33429 bnj66 34826 tfsconcatb0 43317 tfsconcat0i 43318 tfsconcat0b 43319 tfsconcat00 43320 fnresdmss 45146 dfafn5a 47145 oppfvallem 49108 funcoppc3 49120 uptposlem 49170 |
| Copyright terms: Public domain | W3C validator |