| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > f1fn | Structured version Visualization version GIF version | ||
| Description: A one-to-one mapping is a function on its domain. (Contributed by NM, 8-Mar-2014.) |
| Ref | Expression |
|---|---|
| f1fn | ⊢ (𝐹:𝐴–1-1→𝐵 → 𝐹 Fn 𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | f1f 6779 | . 2 ⊢ (𝐹:𝐴–1-1→𝐵 → 𝐹:𝐴⟶𝐵) | |
| 2 | 1 | ffnd 6712 | 1 ⊢ (𝐹:𝐴–1-1→𝐵 → 𝐹 Fn 𝐴) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 Fn wfn 6531 –1-1→wf1 6533 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-f 6540 df-f1 6541 |
| This theorem is referenced by: f1fun 6781 f1rel 6782 f1dm 6783 f1ssr 6785 f1f1orn 6834 f1elima 7261 f1eqcocnv 7299 domunsncan 9091 f1domfi2 9201 sbthfilem 9217 fodomfir 9345 marypha2 9456 infdifsn 9676 acndom 10070 dfac12lem2 10164 ackbij1 10256 fin23lem32 10363 fin1a2lem5 10423 fin1a2lem6 10424 pwfseqlem1 10677 hashf1lem1 14478 hashf1 14480 kerf1ghm 19235 odf1o2 19559 frlmlbs 21762 f1lindf 21787 2ndcdisj 23399 qtopf1 23759 clwlkclwwlklem2 29986 f1rnen 32612 erdszelem10 35227 pibt2 37440 dihfn 41292 dihcl 41294 dih1dimatlem 41353 dochocss 41390 onsucf1o 43271 cantnfub 43320 cantnfub2 43321 gricushgr 47910 grtrimap 47940 |
| Copyright terms: Public domain | W3C validator |