| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > f1fn | Structured version Visualization version GIF version | ||
| Description: A one-to-one mapping is a function on its domain. (Contributed by NM, 8-Mar-2014.) |
| Ref | Expression |
|---|---|
| f1fn | ⊢ (𝐹:𝐴–1-1→𝐵 → 𝐹 Fn 𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | f1f 6714 | . 2 ⊢ (𝐹:𝐴–1-1→𝐵 → 𝐹:𝐴⟶𝐵) | |
| 2 | 1 | ffnd 6647 | 1 ⊢ (𝐹:𝐴–1-1→𝐵 → 𝐹 Fn 𝐴) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 Fn wfn 6471 –1-1→wf1 6473 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-f 6480 df-f1 6481 |
| This theorem is referenced by: f1fun 6716 f1rel 6717 f1dm 6718 f1ssr 6720 f1f1orn 6769 f1elima 7192 f1eqcocnv 7230 domunsncan 8985 f1domfi2 9086 sbthfilem 9102 fodomfir 9207 marypha2 9318 infdifsn 9542 acndom 9937 dfac12lem2 10031 ackbij1 10123 fin23lem32 10230 fin1a2lem5 10290 fin1a2lem6 10291 pwfseqlem1 10544 hashf1lem1 14357 hashf1 14359 kerf1ghm 19154 odf1o2 19480 frlmlbs 21729 f1lindf 21754 2ndcdisj 23366 qtopf1 23726 clwlkclwwlklem2 29972 f1rnen 32602 erdszelem10 35236 pibt2 37451 dihfn 41307 dihcl 41309 dih1dimatlem 41368 dochocss 41405 onsucf1o 43305 cantnfub 43354 cantnfub2 43355 gricushgr 47948 grtrimap 47979 |
| Copyright terms: Public domain | W3C validator |