| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > f1fn | Structured version Visualization version GIF version | ||
| Description: A one-to-one mapping is a function on its domain. (Contributed by NM, 8-Mar-2014.) |
| Ref | Expression |
|---|---|
| f1fn | ⊢ (𝐹:𝐴–1-1→𝐵 → 𝐹 Fn 𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | f1f 6724 | . 2 ⊢ (𝐹:𝐴–1-1→𝐵 → 𝐹:𝐴⟶𝐵) | |
| 2 | 1 | ffnd 6657 | 1 ⊢ (𝐹:𝐴–1-1→𝐵 → 𝐹 Fn 𝐴) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 Fn wfn 6481 –1-1→wf1 6483 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-f 6490 df-f1 6491 |
| This theorem is referenced by: f1fun 6726 f1rel 6727 f1dm 6728 f1ssr 6730 f1f1orn 6779 f1elima 7204 f1eqcocnv 7242 domunsncan 9001 f1domfi2 9106 sbthfilem 9122 fodomfir 9237 marypha2 9348 infdifsn 9572 acndom 9964 dfac12lem2 10058 ackbij1 10150 fin23lem32 10257 fin1a2lem5 10317 fin1a2lem6 10318 pwfseqlem1 10571 hashf1lem1 14381 hashf1 14383 kerf1ghm 19145 odf1o2 19471 frlmlbs 21723 f1lindf 21748 2ndcdisj 23360 qtopf1 23720 clwlkclwwlklem2 29963 f1rnen 32590 erdszelem10 35192 pibt2 37410 dihfn 41267 dihcl 41269 dih1dimatlem 41328 dochocss 41365 onsucf1o 43265 cantnfub 43314 cantnfub2 43315 gricushgr 47921 grtrimap 47952 |
| Copyright terms: Public domain | W3C validator |