| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > f1fn | Structured version Visualization version GIF version | ||
| Description: A one-to-one mapping is a function on its domain. (Contributed by NM, 8-Mar-2014.) |
| Ref | Expression |
|---|---|
| f1fn | ⊢ (𝐹:𝐴–1-1→𝐵 → 𝐹 Fn 𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | f1f 6738 | . 2 ⊢ (𝐹:𝐴–1-1→𝐵 → 𝐹:𝐴⟶𝐵) | |
| 2 | 1 | ffnd 6671 | 1 ⊢ (𝐹:𝐴–1-1→𝐵 → 𝐹 Fn 𝐴) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 Fn wfn 6494 –1-1→wf1 6496 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-f 6503 df-f1 6504 |
| This theorem is referenced by: f1fun 6740 f1rel 6741 f1dm 6742 f1ssr 6744 f1f1orn 6793 f1elima 7220 f1eqcocnv 7258 domunsncan 9018 f1domfi2 9123 sbthfilem 9139 fodomfir 9255 marypha2 9366 infdifsn 9586 acndom 9980 dfac12lem2 10074 ackbij1 10166 fin23lem32 10273 fin1a2lem5 10333 fin1a2lem6 10334 pwfseqlem1 10587 hashf1lem1 14396 hashf1 14398 kerf1ghm 19155 odf1o2 19479 frlmlbs 21682 f1lindf 21707 2ndcdisj 23319 qtopf1 23679 clwlkclwwlklem2 29902 f1rnen 32526 erdszelem10 35160 pibt2 37378 dihfn 41235 dihcl 41237 dih1dimatlem 41296 dochocss 41333 onsucf1o 43234 cantnfub 43283 cantnfub2 43284 gricushgr 47890 grtrimap 47920 |
| Copyright terms: Public domain | W3C validator |