| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > f1fn | Structured version Visualization version GIF version | ||
| Description: A one-to-one mapping is a function on its domain. (Contributed by NM, 8-Mar-2014.) |
| Ref | Expression |
|---|---|
| f1fn | ⊢ (𝐹:𝐴–1-1→𝐵 → 𝐹 Fn 𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | f1f 6756 | . 2 ⊢ (𝐹:𝐴–1-1→𝐵 → 𝐹:𝐴⟶𝐵) | |
| 2 | 1 | ffnd 6689 | 1 ⊢ (𝐹:𝐴–1-1→𝐵 → 𝐹 Fn 𝐴) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 Fn wfn 6506 –1-1→wf1 6508 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-f 6515 df-f1 6516 |
| This theorem is referenced by: f1fun 6758 f1rel 6759 f1dm 6760 f1ssr 6762 f1f1orn 6811 f1elima 7238 f1eqcocnv 7276 domunsncan 9041 f1domfi2 9146 sbthfilem 9162 fodomfir 9279 marypha2 9390 infdifsn 9610 acndom 10004 dfac12lem2 10098 ackbij1 10190 fin23lem32 10297 fin1a2lem5 10357 fin1a2lem6 10358 pwfseqlem1 10611 hashf1lem1 14420 hashf1 14422 kerf1ghm 19179 odf1o2 19503 frlmlbs 21706 f1lindf 21731 2ndcdisj 23343 qtopf1 23703 clwlkclwwlklem2 29929 f1rnen 32553 erdszelem10 35187 pibt2 37405 dihfn 41262 dihcl 41264 dih1dimatlem 41323 dochocss 41360 onsucf1o 43261 cantnfub 43310 cantnfub2 43311 gricushgr 47917 grtrimap 47947 |
| Copyright terms: Public domain | W3C validator |