![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > f1fn | Structured version Visualization version GIF version |
Description: A one-to-one mapping is a function on its domain. (Contributed by NM, 8-Mar-2014.) |
Ref | Expression |
---|---|
f1fn | ⊢ (𝐹:𝐴–1-1→𝐵 → 𝐹 Fn 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | f1f 6316 | . 2 ⊢ (𝐹:𝐴–1-1→𝐵 → 𝐹:𝐴⟶𝐵) | |
2 | 1 | ffnd 6257 | 1 ⊢ (𝐹:𝐴–1-1→𝐵 → 𝐹 Fn 𝐴) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 Fn wfn 6096 –1-1→wf1 6098 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 199 df-an 386 df-f 6105 df-f1 6106 |
This theorem is referenced by: f1fun 6318 f1rel 6319 f1dm 6320 f1ssr 6322 f1f1orn 6367 f1elima 6748 f1eqcocnv 6784 domunsncan 8302 marypha2 8587 infdifsn 8804 acndom 9160 dfac12lem2 9254 ackbij1 9348 fin23lem32 9454 fin1a2lem5 9514 fin1a2lem6 9515 pwfseqlem1 9768 hashf1lem1 13488 hashf1 13490 odf1o2 18301 kerf1hrm 19061 frlmlbs 20461 f1lindf 20486 2ndcdisj 21588 qtopf1 21948 clwlkclwwlklem2 27293 erdszelem10 31699 dihfn 37289 dihcl 37291 dih1dimatlem 37350 dochocss 37387 isomushgr 42496 |
Copyright terms: Public domain | W3C validator |