![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > f1fn | Structured version Visualization version GIF version |
Description: A one-to-one mapping is a function on its domain. (Contributed by NM, 8-Mar-2014.) |
Ref | Expression |
---|---|
f1fn | ⊢ (𝐹:𝐴–1-1→𝐵 → 𝐹 Fn 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | f1f 6796 | . 2 ⊢ (𝐹:𝐴–1-1→𝐵 → 𝐹:𝐴⟶𝐵) | |
2 | 1 | ffnd 6726 | 1 ⊢ (𝐹:𝐴–1-1→𝐵 → 𝐹 Fn 𝐴) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 Fn wfn 6546 –1-1→wf1 6548 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 df-an 395 df-f 6555 df-f1 6556 |
This theorem is referenced by: f1fun 6798 f1rel 6799 f1dm 6800 f1dmOLD 6801 f1ssr 6803 f1f1orn 6853 f1elima 7277 f1eqcocnv 7314 f1eqcocnvOLD 7315 domunsncan 9101 f1domfi2 9214 sbthfilem 9230 marypha2 9468 infdifsn 9686 acndom 10080 dfac12lem2 10173 ackbij1 10267 fin23lem32 10373 fin1a2lem5 10433 fin1a2lem6 10434 pwfseqlem1 10687 hashf1lem1 14453 hashf1lem1OLD 14454 hashf1 14456 kerf1ghm 19206 odf1o2 19533 frlmlbs 21736 f1lindf 21761 2ndcdisj 23378 qtopf1 23738 clwlkclwwlklem2 29828 f1rnen 32432 erdszelem10 34815 pibt2 36901 dihfn 40745 dihcl 40747 dih1dimatlem 40806 dochocss 40843 onsucf1o 42704 cantnfub 42753 cantnfub2 42754 gricushgr 47234 |
Copyright terms: Public domain | W3C validator |