![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > f1fn | Structured version Visualization version GIF version |
Description: A one-to-one mapping is a function on its domain. (Contributed by NM, 8-Mar-2014.) |
Ref | Expression |
---|---|
f1fn | ⊢ (𝐹:𝐴–1-1→𝐵 → 𝐹 Fn 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | f1f 6805 | . 2 ⊢ (𝐹:𝐴–1-1→𝐵 → 𝐹:𝐴⟶𝐵) | |
2 | 1 | ffnd 6738 | 1 ⊢ (𝐹:𝐴–1-1→𝐵 → 𝐹 Fn 𝐴) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 Fn wfn 6558 –1-1→wf1 6560 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 207 df-an 396 df-f 6567 df-f1 6568 |
This theorem is referenced by: f1fun 6807 f1rel 6808 f1dm 6809 f1ssr 6811 f1f1orn 6860 f1elima 7283 f1eqcocnv 7321 domunsncan 9111 f1domfi2 9220 sbthfilem 9236 fodomfir 9366 marypha2 9477 infdifsn 9695 acndom 10089 dfac12lem2 10183 ackbij1 10275 fin23lem32 10382 fin1a2lem5 10442 fin1a2lem6 10443 pwfseqlem1 10696 hashf1lem1 14491 hashf1 14493 kerf1ghm 19278 odf1o2 19606 frlmlbs 21835 f1lindf 21860 2ndcdisj 23480 qtopf1 23840 clwlkclwwlklem2 30029 f1rnen 32646 erdszelem10 35185 pibt2 37400 dihfn 41251 dihcl 41253 dih1dimatlem 41312 dochocss 41349 onsucf1o 43262 cantnfub 43311 cantnfub2 43312 gricushgr 47824 grtrimap 47851 |
Copyright terms: Public domain | W3C validator |