![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > f1fn | Structured version Visualization version GIF version |
Description: A one-to-one mapping is a function on its domain. (Contributed by NM, 8-Mar-2014.) |
Ref | Expression |
---|---|
f1fn | ⊢ (𝐹:𝐴–1-1→𝐵 → 𝐹 Fn 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | f1f 6817 | . 2 ⊢ (𝐹:𝐴–1-1→𝐵 → 𝐹:𝐴⟶𝐵) | |
2 | 1 | ffnd 6748 | 1 ⊢ (𝐹:𝐴–1-1→𝐵 → 𝐹 Fn 𝐴) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 Fn wfn 6568 –1-1→wf1 6570 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 207 df-an 396 df-f 6577 df-f1 6578 |
This theorem is referenced by: f1fun 6819 f1rel 6820 f1dm 6821 f1ssr 6823 f1f1orn 6873 f1elima 7300 f1eqcocnv 7337 domunsncan 9138 f1domfi2 9248 sbthfilem 9264 fodomfir 9396 marypha2 9508 infdifsn 9726 acndom 10120 dfac12lem2 10214 ackbij1 10306 fin23lem32 10413 fin1a2lem5 10473 fin1a2lem6 10474 pwfseqlem1 10727 hashf1lem1 14504 hashf1 14506 kerf1ghm 19287 odf1o2 19615 frlmlbs 21840 f1lindf 21865 2ndcdisj 23485 qtopf1 23845 clwlkclwwlklem2 30032 f1rnen 32648 erdszelem10 35168 pibt2 37383 dihfn 41225 dihcl 41227 dih1dimatlem 41286 dochocss 41323 onsucf1o 43234 cantnfub 43283 cantnfub2 43284 gricushgr 47770 grtrimap 47797 |
Copyright terms: Public domain | W3C validator |