| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > f1fn | Structured version Visualization version GIF version | ||
| Description: A one-to-one mapping is a function on its domain. (Contributed by NM, 8-Mar-2014.) |
| Ref | Expression |
|---|---|
| f1fn | ⊢ (𝐹:𝐴–1-1→𝐵 → 𝐹 Fn 𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | f1f 6727 | . 2 ⊢ (𝐹:𝐴–1-1→𝐵 → 𝐹:𝐴⟶𝐵) | |
| 2 | 1 | ffnd 6660 | 1 ⊢ (𝐹:𝐴–1-1→𝐵 → 𝐹 Fn 𝐴) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 Fn wfn 6484 –1-1→wf1 6486 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-f 6493 df-f1 6494 |
| This theorem is referenced by: f1fun 6729 f1rel 6730 f1dm 6731 f1ssr 6733 f1f1orn 6782 f1elima 7206 f1eqcocnv 7244 domunsncan 9001 f1domfi2 9102 sbthfilem 9118 fodomfir 9223 marypha2 9334 infdifsn 9558 acndom 9953 dfac12lem2 10047 ackbij1 10139 fin23lem32 10246 fin1a2lem5 10306 fin1a2lem6 10307 pwfseqlem1 10560 hashf1lem1 14369 hashf1 14371 kerf1ghm 19167 odf1o2 19493 frlmlbs 21743 f1lindf 21768 2ndcdisj 23391 qtopf1 23751 clwlkclwwlklem2 30001 f1rnen 32632 erdszelem10 35316 pibt2 37534 dihfn 41440 dihcl 41442 dih1dimatlem 41501 dochocss 41538 onsucf1o 43429 cantnfub 43478 cantnfub2 43479 gricushgr 48079 grtrimap 48110 |
| Copyright terms: Public domain | W3C validator |