Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > f1fn | Structured version Visualization version GIF version |
Description: A one-to-one mapping is a function on its domain. (Contributed by NM, 8-Mar-2014.) |
Ref | Expression |
---|---|
f1fn | ⊢ (𝐹:𝐴–1-1→𝐵 → 𝐹 Fn 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | f1f 6654 | . 2 ⊢ (𝐹:𝐴–1-1→𝐵 → 𝐹:𝐴⟶𝐵) | |
2 | 1 | ffnd 6585 | 1 ⊢ (𝐹:𝐴–1-1→𝐵 → 𝐹 Fn 𝐴) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 Fn wfn 6413 –1-1→wf1 6415 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 df-an 396 df-f 6422 df-f1 6423 |
This theorem is referenced by: f1fun 6656 f1rel 6657 f1dm 6658 f1dmOLD 6659 f1ssr 6661 f1f1orn 6711 f1elima 7117 f1eqcocnv 7153 f1eqcocnvOLD 7154 domunsncan 8812 sbthfilem 8941 marypha2 9128 infdifsn 9345 acndom 9738 dfac12lem2 9831 ackbij1 9925 fin23lem32 10031 fin1a2lem5 10091 fin1a2lem6 10092 pwfseqlem1 10345 hashf1lem1 14096 hashf1lem1OLD 14097 hashf1 14099 odf1o2 19093 kerf1ghm 19902 frlmlbs 20914 f1lindf 20939 2ndcdisj 22515 qtopf1 22875 clwlkclwwlklem2 28265 f1rnen 30865 erdszelem10 33062 pibt2 35515 dihfn 39209 dihcl 39211 dih1dimatlem 39270 dochocss 39307 isomushgr 45166 |
Copyright terms: Public domain | W3C validator |