![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > df-f1 | Structured version Visualization version GIF version |
Description: Define a one-to-one
function. For equivalent definitions see dff12 6442
and dff13 6878. Compare Definition 6.15(5) of [TakeutiZaring] p. 27. We
use their notation ("1-1" above the arrow).
A one-to-one function is also called an "injection" or an "injective function", 𝐹:𝐴–1-1→𝐵 can be read as "𝐹 is an injection from 𝐴 into 𝐵". Injections are precisely the monomorphisms in the category SetCat of sets and set functions, see setcmon 17176. (Contributed by NM, 1-Aug-1994.) |
Ref | Expression |
---|---|
df-f1 | ⊢ (𝐹:𝐴–1-1→𝐵 ↔ (𝐹:𝐴⟶𝐵 ∧ Fun ◡𝐹)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cA | . . 3 class 𝐴 | |
2 | cB | . . 3 class 𝐵 | |
3 | cF | . . 3 class 𝐹 | |
4 | 1, 2, 3 | wf1 6222 | . 2 wff 𝐹:𝐴–1-1→𝐵 |
5 | 1, 2, 3 | wf 6221 | . . 3 wff 𝐹:𝐴⟶𝐵 |
6 | 3 | ccnv 5442 | . . . 4 class ◡𝐹 |
7 | 6 | wfun 6219 | . . 3 wff Fun ◡𝐹 |
8 | 5, 7 | wa 396 | . 2 wff (𝐹:𝐴⟶𝐵 ∧ Fun ◡𝐹) |
9 | 4, 8 | wb 207 | 1 wff (𝐹:𝐴–1-1→𝐵 ↔ (𝐹:𝐴⟶𝐵 ∧ Fun ◡𝐹)) |
Colors of variables: wff setvar class |
This definition is referenced by: f1eq1 6438 f1eq2 6439 f1eq3 6440 nff1 6441 dff12 6442 f1f 6443 f1ss 6448 f1ssr 6449 f1ssres 6450 f1cnvcnv 6452 f1co 6453 dff1o2 6488 f1f1orn 6494 f1imacnv 6499 f10 6515 fpropnf1 6890 nvof1o 6902 f1iun 7501 f11o 7504 f1o2ndf1 7671 tz7.48lem 7928 ssdomg 8403 domunsncan 8464 sbthlem9 8482 fodomr 8515 1sdom 8567 fsuppcolem 8710 fsuppco 8711 enfin1ai 9652 injresinj 13008 cshinj 14009 isercolllem2 14856 isercoll 14858 ismon2 16833 isepi2 16840 isfth2 17014 fthoppc 17022 odf1o2 18428 frlmlbs 20623 f1lindf 20648 usgrislfuspgr 26652 subusgr 26754 trlf1 27165 trlres 27167 trlresOLD 27169 upgrf1istrl 27172 pthdivtx 27197 spthdifv 27201 spthdep 27202 upgrwlkdvdelem 27204 upgrwlkdvde 27205 spthonepeq 27220 usgr2pth 27232 pthdlem1 27234 uspgrn2crct 27273 crctcshtrl 27288 rinvf1o 30065 cycpmfvlem 30401 cycpmfv1 30402 cycpmfv2 30403 cycpmfv3 30404 cycpmcl 30405 madjusmdetlem4 30710 omssubadd 31175 pthhashvtx 31982 subfacp1lem3 32037 subfacp1lem5 32039 diophrw 38841 |
Copyright terms: Public domain | W3C validator |