![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > df-fun | Structured version Visualization version GIF version |
Description: Define predicate that determines if some class 𝐴 is a function. Definition 10.1 of [Quine] p. 65. For example, the expression Fun cos is true once we define cosine (df-cos 16052). This is not the same as defining a specific function's mapping, which is typically done using the format of cmpt 5233 with the maps-to notation (see df-mpt 5234 and df-mpo 7429). Contrast this predicate with the predicates to determine if some class is a function with a given domain (df-fn 6554), a function with a given domain and codomain (df-f 6555), a one-to-one function (df-f1 6556), an onto function (df-fo 6557), or a one-to-one onto function (df-f1o 6558). For alternate definitions, see dffun2 6561, dffun3 6565, dffun4 6567, dffun5 6568, dffun6 6564, dffun7 6583, dffun8 6584, and dffun9 6585. (Contributed by NM, 1-Aug-1994.) |
Ref | Expression |
---|---|
df-fun | ⊢ (Fun 𝐴 ↔ (Rel 𝐴 ∧ (𝐴 ∘ ◡𝐴) ⊆ I )) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cA | . . 3 class 𝐴 | |
2 | 1 | wfun 6545 | . 2 wff Fun 𝐴 |
3 | 1 | wrel 5685 | . . 3 wff Rel 𝐴 |
4 | 1 | ccnv 5679 | . . . . 5 class ◡𝐴 |
5 | 1, 4 | ccom 5684 | . . . 4 class (𝐴 ∘ ◡𝐴) |
6 | cid 5577 | . . . 4 class I | |
7 | 5, 6 | wss 3947 | . . 3 wff (𝐴 ∘ ◡𝐴) ⊆ I |
8 | 3, 7 | wa 394 | . 2 wff (Rel 𝐴 ∧ (𝐴 ∘ ◡𝐴) ⊆ I ) |
9 | 2, 8 | wb 205 | 1 wff (Fun 𝐴 ↔ (Rel 𝐴 ∧ (𝐴 ∘ ◡𝐴) ⊆ I )) |
Colors of variables: wff setvar class |
This definition is referenced by: dffun2 6561 dffun2OLD 6562 dffun2OLDOLD 6563 funrel 6573 funss 6575 nffun 6579 funi 6588 funcocnv2 6867 dffv2 6996 funALTVfun 38174 |
Copyright terms: Public domain | W3C validator |