MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  df-fun Structured version   Visualization version   GIF version

Definition df-fun 6564
Description: Define predicate that determines if some class 𝐴 is a function. Definition 10.1 of [Quine] p. 65. For example, the expression Fun cos is true once we define cosine (df-cos 16102). This is not the same as defining a specific function's mapping, which is typically done using the format of cmpt 5230 with the maps-to notation (see df-mpt 5231 and df-mpo 7435). Contrast this predicate with the predicates to determine if some class is a function with a given domain (df-fn 6565), a function with a given domain and codomain (df-f 6566), a one-to-one function (df-f1 6567), an onto function (df-fo 6568), or a one-to-one onto function (df-f1o 6569). For alternate definitions, see dffun2 6572, dffun3 6576, dffun4 6578, dffun5 6579, dffun6 6575, dffun7 6594, dffun8 6595, and dffun9 6596. (Contributed by NM, 1-Aug-1994.)
Assertion
Ref Expression
df-fun (Fun 𝐴 ↔ (Rel 𝐴 ∧ (𝐴𝐴) ⊆ I ))

Detailed syntax breakdown of Definition df-fun
StepHypRef Expression
1 cA . . 3 class 𝐴
21wfun 6556 . 2 wff Fun 𝐴
31wrel 5693 . . 3 wff Rel 𝐴
41ccnv 5687 . . . . 5 class 𝐴
51, 4ccom 5692 . . . 4 class (𝐴𝐴)
6 cid 5581 . . . 4 class I
75, 6wss 3962 . . 3 wff (𝐴𝐴) ⊆ I
83, 7wa 395 . 2 wff (Rel 𝐴 ∧ (𝐴𝐴) ⊆ I )
92, 8wb 206 1 wff (Fun 𝐴 ↔ (Rel 𝐴 ∧ (𝐴𝐴) ⊆ I ))
Colors of variables: wff setvar class
This definition is referenced by:  dffun2  6572  dffun2OLD  6573  dffun2OLDOLD  6574  funrel  6584  funss  6586  nffun  6590  funi  6599  funcocnv2  6873  dffv2  7003  funALTVfun  38679
  Copyright terms: Public domain W3C validator