Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > df-fun | Structured version Visualization version GIF version |
Description: Define predicate that determines if some class 𝐴 is a function. Definition 10.1 of [Quine] p. 65. For example, the expression Fun cos is true once we define cosine (df-cos 15789). This is not the same as defining a specific function's mapping, which is typically done using the format of cmpt 5158 with the maps-to notation (see df-mpt 5159 and df-mpo 7289). Contrast this predicate with the predicates to determine if some class is a function with a given domain (df-fn 6440), a function with a given domain and codomain (df-f 6441), a one-to-one function (df-f1 6442), an onto function (df-fo 6443), or a one-to-one onto function (df-f1o 6444). For alternate definitions, see dffun2 6447, dffun3 6450, dffun4 6452, dffun5 6453, dffun6 6449, dffun7 6468, dffun8 6469, and dffun9 6470. (Contributed by NM, 1-Aug-1994.) |
Ref | Expression |
---|---|
df-fun | ⊢ (Fun 𝐴 ↔ (Rel 𝐴 ∧ (𝐴 ∘ ◡𝐴) ⊆ I )) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cA | . . 3 class 𝐴 | |
2 | 1 | wfun 6431 | . 2 wff Fun 𝐴 |
3 | 1 | wrel 5595 | . . 3 wff Rel 𝐴 |
4 | 1 | ccnv 5589 | . . . . 5 class ◡𝐴 |
5 | 1, 4 | ccom 5594 | . . . 4 class (𝐴 ∘ ◡𝐴) |
6 | cid 5489 | . . . 4 class I | |
7 | 5, 6 | wss 3888 | . . 3 wff (𝐴 ∘ ◡𝐴) ⊆ I |
8 | 3, 7 | wa 396 | . 2 wff (Rel 𝐴 ∧ (𝐴 ∘ ◡𝐴) ⊆ I ) |
9 | 2, 8 | wb 205 | 1 wff (Fun 𝐴 ↔ (Rel 𝐴 ∧ (𝐴 ∘ ◡𝐴) ⊆ I )) |
Colors of variables: wff setvar class |
This definition is referenced by: dffun2 6447 dffun2OLD 6448 funrel 6458 funss 6460 nffun 6464 funi 6473 funcocnv2 6750 dffv2 6872 funALTVfun 36816 |
Copyright terms: Public domain | W3C validator |