MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  df-fun Structured version   Visualization version   GIF version

Definition df-fun 6575
Description: Define predicate that determines if some class 𝐴 is a function. Definition 10.1 of [Quine] p. 65. For example, the expression Fun cos is true once we define cosine (df-cos 16118). This is not the same as defining a specific function's mapping, which is typically done using the format of cmpt 5249 with the maps-to notation (see df-mpt 5250 and df-mpo 7453). Contrast this predicate with the predicates to determine if some class is a function with a given domain (df-fn 6576), a function with a given domain and codomain (df-f 6577), a one-to-one function (df-f1 6578), an onto function (df-fo 6579), or a one-to-one onto function (df-f1o 6580). For alternate definitions, see dffun2 6583, dffun3 6587, dffun4 6589, dffun5 6590, dffun6 6586, dffun7 6605, dffun8 6606, and dffun9 6607. (Contributed by NM, 1-Aug-1994.)
Assertion
Ref Expression
df-fun (Fun 𝐴 ↔ (Rel 𝐴 ∧ (𝐴𝐴) ⊆ I ))

Detailed syntax breakdown of Definition df-fun
StepHypRef Expression
1 cA . . 3 class 𝐴
21wfun 6567 . 2 wff Fun 𝐴
31wrel 5705 . . 3 wff Rel 𝐴
41ccnv 5699 . . . . 5 class 𝐴
51, 4ccom 5704 . . . 4 class (𝐴𝐴)
6 cid 5592 . . . 4 class I
75, 6wss 3976 . . 3 wff (𝐴𝐴) ⊆ I
83, 7wa 395 . 2 wff (Rel 𝐴 ∧ (𝐴𝐴) ⊆ I )
92, 8wb 206 1 wff (Fun 𝐴 ↔ (Rel 𝐴 ∧ (𝐴𝐴) ⊆ I ))
Colors of variables: wff setvar class
This definition is referenced by:  dffun2  6583  dffun2OLD  6584  dffun2OLDOLD  6585  funrel  6595  funss  6597  nffun  6601  funi  6610  funcocnv2  6887  dffv2  7017  funALTVfun  38654
  Copyright terms: Public domain W3C validator