MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  df-fun Structured version   Visualization version   GIF version

Definition df-fun 6484
Description: Define predicate that determines if some class 𝐴 is a function. Definition 10.1 of [Quine] p. 65. For example, the expression Fun cos is true once we define cosine (df-cos 15977). This is not the same as defining a specific function's mapping, which is typically done using the format of cmpt 5173 with the maps-to notation (see df-mpt 5174 and df-mpo 7354). Contrast this predicate with the predicates to determine if some class is a function with a given domain (df-fn 6485), a function with a given domain and codomain (df-f 6486), a one-to-one function (df-f1 6487), an onto function (df-fo 6488), or a one-to-one onto function (df-f1o 6489). For alternate definitions, see dffun2 6492, dffun3 6494, dffun4 6495, dffun5 6496, dffun6 6493, dffun7 6509, dffun8 6510, and dffun9 6511. (Contributed by NM, 1-Aug-1994.)
Assertion
Ref Expression
df-fun (Fun 𝐴 ↔ (Rel 𝐴 ∧ (𝐴𝐴) ⊆ I ))

Detailed syntax breakdown of Definition df-fun
StepHypRef Expression
1 cA . . 3 class 𝐴
21wfun 6476 . 2 wff Fun 𝐴
31wrel 5624 . . 3 wff Rel 𝐴
41ccnv 5618 . . . . 5 class 𝐴
51, 4ccom 5623 . . . 4 class (𝐴𝐴)
6 cid 5513 . . . 4 class I
75, 6wss 3903 . . 3 wff (𝐴𝐴) ⊆ I
83, 7wa 395 . 2 wff (Rel 𝐴 ∧ (𝐴𝐴) ⊆ I )
92, 8wb 206 1 wff (Fun 𝐴 ↔ (Rel 𝐴 ∧ (𝐴𝐴) ⊆ I ))
Colors of variables: wff setvar class
This definition is referenced by:  dffun2  6492  funrel  6499  funss  6501  nffun  6505  funi  6514  funcocnv2  6789  dffv2  6918  funALTVfun  38686
  Copyright terms: Public domain W3C validator