![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > df-fun | Structured version Visualization version GIF version |
Description: Define predicate that determines if some class 𝐴 is a function. Definition 10.1 of [Quine] p. 65. For example, the expression Fun cos is true once we define cosine (df-cos 16118). This is not the same as defining a specific function's mapping, which is typically done using the format of cmpt 5249 with the maps-to notation (see df-mpt 5250 and df-mpo 7453). Contrast this predicate with the predicates to determine if some class is a function with a given domain (df-fn 6576), a function with a given domain and codomain (df-f 6577), a one-to-one function (df-f1 6578), an onto function (df-fo 6579), or a one-to-one onto function (df-f1o 6580). For alternate definitions, see dffun2 6583, dffun3 6587, dffun4 6589, dffun5 6590, dffun6 6586, dffun7 6605, dffun8 6606, and dffun9 6607. (Contributed by NM, 1-Aug-1994.) |
Ref | Expression |
---|---|
df-fun | ⊢ (Fun 𝐴 ↔ (Rel 𝐴 ∧ (𝐴 ∘ ◡𝐴) ⊆ I )) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cA | . . 3 class 𝐴 | |
2 | 1 | wfun 6567 | . 2 wff Fun 𝐴 |
3 | 1 | wrel 5705 | . . 3 wff Rel 𝐴 |
4 | 1 | ccnv 5699 | . . . . 5 class ◡𝐴 |
5 | 1, 4 | ccom 5704 | . . . 4 class (𝐴 ∘ ◡𝐴) |
6 | cid 5592 | . . . 4 class I | |
7 | 5, 6 | wss 3976 | . . 3 wff (𝐴 ∘ ◡𝐴) ⊆ I |
8 | 3, 7 | wa 395 | . 2 wff (Rel 𝐴 ∧ (𝐴 ∘ ◡𝐴) ⊆ I ) |
9 | 2, 8 | wb 206 | 1 wff (Fun 𝐴 ↔ (Rel 𝐴 ∧ (𝐴 ∘ ◡𝐴) ⊆ I )) |
Colors of variables: wff setvar class |
This definition is referenced by: dffun2 6583 dffun2OLD 6584 dffun2OLDOLD 6585 funrel 6595 funss 6597 nffun 6601 funi 6610 funcocnv2 6887 dffv2 7017 funALTVfun 38654 |
Copyright terms: Public domain | W3C validator |