MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  df-fun Structured version   Visualization version   GIF version

Definition df-fun 6382
Description: Define predicate that determines if some class 𝐴 is a function. Definition 10.1 of [Quine] p. 65. For example, the expression Fun cos is true once we define cosine (df-cos 15632). This is not the same as defining a specific function's mapping, which is typically done using the format of cmpt 5135 with the maps-to notation (see df-mpt 5136 and df-mpo 7218). Contrast this predicate with the predicates to determine if some class is a function with a given domain (df-fn 6383), a function with a given domain and codomain (df-f 6384), a one-to-one function (df-f1 6385), an onto function (df-fo 6386), or a one-to-one onto function (df-f1o 6387). For alternate definitions, see dffun2 6390, dffun3 6391, dffun4 6392, dffun5 6393, dffun6 6395, dffun7 6407, dffun8 6408, and dffun9 6409. (Contributed by NM, 1-Aug-1994.)
Assertion
Ref Expression
df-fun (Fun 𝐴 ↔ (Rel 𝐴 ∧ (𝐴𝐴) ⊆ I ))

Detailed syntax breakdown of Definition df-fun
StepHypRef Expression
1 cA . . 3 class 𝐴
21wfun 6374 . 2 wff Fun 𝐴
31wrel 5556 . . 3 wff Rel 𝐴
41ccnv 5550 . . . . 5 class 𝐴
51, 4ccom 5555 . . . 4 class (𝐴𝐴)
6 cid 5454 . . . 4 class I
75, 6wss 3866 . . 3 wff (𝐴𝐴) ⊆ I
83, 7wa 399 . 2 wff (Rel 𝐴 ∧ (𝐴𝐴) ⊆ I )
92, 8wb 209 1 wff (Fun 𝐴 ↔ (Rel 𝐴 ∧ (𝐴𝐴) ⊆ I ))
Colors of variables: wff setvar class
This definition is referenced by:  dffun2  6390  funrel  6397  funss  6399  nffun  6403  funi  6412  funcocnv2  6685  dffv2  6806  funALTVfun  36546
  Copyright terms: Public domain W3C validator