Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > f1fun | Structured version Visualization version GIF version |
Description: A one-to-one mapping is a function. (Contributed by NM, 8-Mar-2014.) |
Ref | Expression |
---|---|
f1fun | ⊢ (𝐹:𝐴–1-1→𝐵 → Fun 𝐹) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | f1fn 6671 | . 2 ⊢ (𝐹:𝐴–1-1→𝐵 → 𝐹 Fn 𝐴) | |
2 | fnfun 6533 | . 2 ⊢ (𝐹 Fn 𝐴 → Fun 𝐹) | |
3 | 1, 2 | syl 17 | 1 ⊢ (𝐹:𝐴–1-1→𝐵 → Fun 𝐹) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 Fun wfun 6427 Fn wfn 6428 –1-1→wf1 6430 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 df-an 397 df-fn 6436 df-f 6437 df-f1 6438 |
This theorem is referenced by: f1cocnv2 6744 f1o2ndf1 7963 fnwelem 7972 f1dmvrnfibi 9103 fsuppco 9161 ackbij1b 9995 fin23lem31 10099 fin1a2lem6 10161 hashimarn 14155 gsumval3lem1 19506 gsumval3lem2 19507 usgrfun 27528 trlsegvdeglem6 28589 ccatf1 31223 cycpmrn 31410 cycpmconjslem2 31422 hashf1dmrn 33075 elhf 34476 |
Copyright terms: Public domain | W3C validator |