|   | Metamath Proof Explorer | < Previous  
      Next > Nearby theorems | |
| Mirrors > Home > MPE Home > Th. List > f1fun | Structured version Visualization version GIF version | ||
| Description: A one-to-one mapping is a function. (Contributed by NM, 8-Mar-2014.) | 
| Ref | Expression | 
|---|---|
| f1fun | ⊢ (𝐹:𝐴–1-1→𝐵 → Fun 𝐹) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | f1fn 6804 | . 2 ⊢ (𝐹:𝐴–1-1→𝐵 → 𝐹 Fn 𝐴) | |
| 2 | fnfun 6667 | . 2 ⊢ (𝐹 Fn 𝐴 → Fun 𝐹) | |
| 3 | 1, 2 | syl 17 | 1 ⊢ (𝐹:𝐴–1-1→𝐵 → Fun 𝐹) | 
| Colors of variables: wff setvar class | 
| Syntax hints: → wi 4 Fun wfun 6554 Fn wfn 6555 –1-1→wf1 6557 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 | 
| This theorem depends on definitions: df-bi 207 df-an 396 df-fn 6563 df-f 6564 df-f1 6565 | 
| This theorem is referenced by: f1cocnv2 6875 f1o2ndf1 8148 fnwelem 8157 f1dmvrnfibi 9382 fsuppco 9443 ackbij1b 10279 fin23lem31 10384 fin1a2lem6 10446 hashimarn 14480 hashf1dmrn 14483 gsumval3lem1 19924 gsumval3lem2 19925 usgrfun 29176 trlsegvdeglem6 30245 ccatf1 32934 cycpmrn 33164 cycpmconjslem2 33176 elhf 36176 | 
| Copyright terms: Public domain | W3C validator |