| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > f1fun | Structured version Visualization version GIF version | ||
| Description: A one-to-one mapping is a function. (Contributed by NM, 8-Mar-2014.) |
| Ref | Expression |
|---|---|
| f1fun | ⊢ (𝐹:𝐴–1-1→𝐵 → Fun 𝐹) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | f1fn 6728 | . 2 ⊢ (𝐹:𝐴–1-1→𝐵 → 𝐹 Fn 𝐴) | |
| 2 | fnfun 6589 | . 2 ⊢ (𝐹 Fn 𝐴 → Fun 𝐹) | |
| 3 | 1, 2 | syl 17 | 1 ⊢ (𝐹:𝐴–1-1→𝐵 → Fun 𝐹) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 Fun wfun 6483 Fn wfn 6484 –1-1→wf1 6486 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-fn 6492 df-f 6493 df-f1 6494 |
| This theorem is referenced by: f1cocnv2 6799 f1o2ndf1 8061 fnwelem 8070 f1dmvrnfibi 9236 fsuppco 9297 ackbij1b 10140 fin23lem31 10245 fin1a2lem6 10307 hashimarn 14354 hashf1dmrn 14357 gsumval3lem1 19825 gsumval3lem2 19826 usgrfun 29157 trlsegvdeglem6 30226 ccatf1 32959 cycpmrn 33153 cycpmconjslem2 33165 elhf 36290 |
| Copyright terms: Public domain | W3C validator |