| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > f1fun | Structured version Visualization version GIF version | ||
| Description: A one-to-one mapping is a function. (Contributed by NM, 8-Mar-2014.) |
| Ref | Expression |
|---|---|
| f1fun | ⊢ (𝐹:𝐴–1-1→𝐵 → Fun 𝐹) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | f1fn 6757 | . 2 ⊢ (𝐹:𝐴–1-1→𝐵 → 𝐹 Fn 𝐴) | |
| 2 | fnfun 6618 | . 2 ⊢ (𝐹 Fn 𝐴 → Fun 𝐹) | |
| 3 | 1, 2 | syl 17 | 1 ⊢ (𝐹:𝐴–1-1→𝐵 → Fun 𝐹) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 Fun wfun 6505 Fn wfn 6506 –1-1→wf1 6508 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-fn 6514 df-f 6515 df-f1 6516 |
| This theorem is referenced by: f1cocnv2 6828 f1o2ndf1 8101 fnwelem 8110 f1dmvrnfibi 9292 fsuppco 9353 ackbij1b 10191 fin23lem31 10296 fin1a2lem6 10358 hashimarn 14405 hashf1dmrn 14408 gsumval3lem1 19835 gsumval3lem2 19836 usgrfun 29085 trlsegvdeglem6 30154 ccatf1 32870 cycpmrn 33100 cycpmconjslem2 33112 elhf 36162 |
| Copyright terms: Public domain | W3C validator |