MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  f1fun Structured version   Visualization version   GIF version

Theorem f1fun 6805
Description: A one-to-one mapping is a function. (Contributed by NM, 8-Mar-2014.)
Assertion
Ref Expression
f1fun (𝐹:𝐴1-1𝐵 → Fun 𝐹)

Proof of Theorem f1fun
StepHypRef Expression
1 f1fn 6804 . 2 (𝐹:𝐴1-1𝐵𝐹 Fn 𝐴)
2 fnfun 6667 . 2 (𝐹 Fn 𝐴 → Fun 𝐹)
31, 2syl 17 1 (𝐹:𝐴1-1𝐵 → Fun 𝐹)
Colors of variables: wff setvar class
Syntax hints:  wi 4  Fun wfun 6554   Fn wfn 6555  1-1wf1 6557
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 207  df-an 396  df-fn 6563  df-f 6564  df-f1 6565
This theorem is referenced by:  f1cocnv2  6875  f1o2ndf1  8148  fnwelem  8157  f1dmvrnfibi  9382  fsuppco  9443  ackbij1b  10279  fin23lem31  10384  fin1a2lem6  10446  hashimarn  14480  hashf1dmrn  14483  gsumval3lem1  19924  gsumval3lem2  19925  usgrfun  29176  trlsegvdeglem6  30245  ccatf1  32934  cycpmrn  33164  cycpmconjslem2  33176  elhf  36176
  Copyright terms: Public domain W3C validator