MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  f1fun Structured version   Visualization version   GIF version

Theorem f1fun 6758
Description: A one-to-one mapping is a function. (Contributed by NM, 8-Mar-2014.)
Assertion
Ref Expression
f1fun (𝐹:𝐴1-1𝐵 → Fun 𝐹)

Proof of Theorem f1fun
StepHypRef Expression
1 f1fn 6757 . 2 (𝐹:𝐴1-1𝐵𝐹 Fn 𝐴)
2 fnfun 6618 . 2 (𝐹 Fn 𝐴 → Fun 𝐹)
31, 2syl 17 1 (𝐹:𝐴1-1𝐵 → Fun 𝐹)
Colors of variables: wff setvar class
Syntax hints:  wi 4  Fun wfun 6505   Fn wfn 6506  1-1wf1 6508
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 207  df-an 396  df-fn 6514  df-f 6515  df-f1 6516
This theorem is referenced by:  f1cocnv2  6828  f1o2ndf1  8101  fnwelem  8110  f1dmvrnfibi  9292  fsuppco  9353  ackbij1b  10191  fin23lem31  10296  fin1a2lem6  10358  hashimarn  14405  hashf1dmrn  14408  gsumval3lem1  19835  gsumval3lem2  19836  usgrfun  29085  trlsegvdeglem6  30154  ccatf1  32870  cycpmrn  33100  cycpmconjslem2  33112  elhf  36162
  Copyright terms: Public domain W3C validator