| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > f1fun | Structured version Visualization version GIF version | ||
| Description: A one-to-one mapping is a function. (Contributed by NM, 8-Mar-2014.) |
| Ref | Expression |
|---|---|
| f1fun | ⊢ (𝐹:𝐴–1-1→𝐵 → Fun 𝐹) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | f1fn 6725 | . 2 ⊢ (𝐹:𝐴–1-1→𝐵 → 𝐹 Fn 𝐴) | |
| 2 | fnfun 6586 | . 2 ⊢ (𝐹 Fn 𝐴 → Fun 𝐹) | |
| 3 | 1, 2 | syl 17 | 1 ⊢ (𝐹:𝐴–1-1→𝐵 → Fun 𝐹) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 Fun wfun 6480 Fn wfn 6481 –1-1→wf1 6483 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-fn 6489 df-f 6490 df-f1 6491 |
| This theorem is referenced by: f1cocnv2 6796 f1o2ndf1 8062 fnwelem 8071 f1dmvrnfibi 9250 fsuppco 9311 ackbij1b 10151 fin23lem31 10256 fin1a2lem6 10318 hashimarn 14366 hashf1dmrn 14369 gsumval3lem1 19803 gsumval3lem2 19804 usgrfun 29122 trlsegvdeglem6 30188 ccatf1 32909 cycpmrn 33104 cycpmconjslem2 33116 elhf 36167 |
| Copyright terms: Public domain | W3C validator |