MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  f1fun Structured version   Visualization version   GIF version

Theorem f1fun 6781
Description: A one-to-one mapping is a function. (Contributed by NM, 8-Mar-2014.)
Assertion
Ref Expression
f1fun (𝐹:𝐴1-1𝐵 → Fun 𝐹)

Proof of Theorem f1fun
StepHypRef Expression
1 f1fn 6780 . 2 (𝐹:𝐴1-1𝐵𝐹 Fn 𝐴)
2 fnfun 6643 . 2 (𝐹 Fn 𝐴 → Fun 𝐹)
31, 2syl 17 1 (𝐹:𝐴1-1𝐵 → Fun 𝐹)
Colors of variables: wff setvar class
Syntax hints:  wi 4  Fun wfun 6530   Fn wfn 6531  1-1wf1 6533
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 207  df-an 396  df-fn 6539  df-f 6540  df-f1 6541
This theorem is referenced by:  f1cocnv2  6851  f1o2ndf1  8126  fnwelem  8135  f1dmvrnfibi  9358  fsuppco  9419  ackbij1b  10257  fin23lem31  10362  fin1a2lem6  10424  hashimarn  14463  hashf1dmrn  14466  gsumval3lem1  19891  gsumval3lem2  19892  usgrfun  29142  trlsegvdeglem6  30211  ccatf1  32929  cycpmrn  33159  cycpmconjslem2  33171  elhf  36197
  Copyright terms: Public domain W3C validator