Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > f1fun | Structured version Visualization version GIF version |
Description: A one-to-one mapping is a function. (Contributed by NM, 8-Mar-2014.) |
Ref | Expression |
---|---|
f1fun | ⊢ (𝐹:𝐴–1-1→𝐵 → Fun 𝐹) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | f1fn 6655 | . 2 ⊢ (𝐹:𝐴–1-1→𝐵 → 𝐹 Fn 𝐴) | |
2 | fnfun 6517 | . 2 ⊢ (𝐹 Fn 𝐴 → Fun 𝐹) | |
3 | 1, 2 | syl 17 | 1 ⊢ (𝐹:𝐴–1-1→𝐵 → Fun 𝐹) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 Fun wfun 6412 Fn wfn 6413 –1-1→wf1 6415 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 df-an 396 df-fn 6421 df-f 6422 df-f1 6423 |
This theorem is referenced by: f1cocnv2 6727 f1o2ndf1 7934 fnwelem 7943 f1dmvrnfibi 9033 fsuppco 9091 ackbij1b 9926 fin23lem31 10030 fin1a2lem6 10092 hashimarn 14083 gsumval3lem1 19421 gsumval3lem2 19422 usgrfun 27431 trlsegvdeglem6 28490 ccatf1 31125 cycpmrn 31312 cycpmconjslem2 31324 hashf1dmrn 32975 elhf 34403 |
Copyright terms: Public domain | W3C validator |