MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  f1fun Structured version   Visualization version   GIF version

Theorem f1fun 6807
Description: A one-to-one mapping is a function. (Contributed by NM, 8-Mar-2014.)
Assertion
Ref Expression
f1fun (𝐹:𝐴1-1𝐵 → Fun 𝐹)

Proof of Theorem f1fun
StepHypRef Expression
1 f1fn 6806 . 2 (𝐹:𝐴1-1𝐵𝐹 Fn 𝐴)
2 fnfun 6669 . 2 (𝐹 Fn 𝐴 → Fun 𝐹)
31, 2syl 17 1 (𝐹:𝐴1-1𝐵 → Fun 𝐹)
Colors of variables: wff setvar class
Syntax hints:  wi 4  Fun wfun 6557   Fn wfn 6558  1-1wf1 6560
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 207  df-an 396  df-fn 6566  df-f 6567  df-f1 6568
This theorem is referenced by:  f1cocnv2  6877  f1o2ndf1  8146  fnwelem  8155  f1dmvrnfibi  9379  fsuppco  9440  ackbij1b  10276  fin23lem31  10381  fin1a2lem6  10443  hashimarn  14476  hashf1dmrn  14479  gsumval3lem1  19938  gsumval3lem2  19939  usgrfun  29190  trlsegvdeglem6  30254  ccatf1  32918  cycpmrn  33146  cycpmconjslem2  33158  elhf  36156
  Copyright terms: Public domain W3C validator