| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > f1fun | Structured version Visualization version GIF version | ||
| Description: A one-to-one mapping is a function. (Contributed by NM, 8-Mar-2014.) |
| Ref | Expression |
|---|---|
| f1fun | ⊢ (𝐹:𝐴–1-1→𝐵 → Fun 𝐹) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | f1fn 6739 | . 2 ⊢ (𝐹:𝐴–1-1→𝐵 → 𝐹 Fn 𝐴) | |
| 2 | fnfun 6600 | . 2 ⊢ (𝐹 Fn 𝐴 → Fun 𝐹) | |
| 3 | 1, 2 | syl 17 | 1 ⊢ (𝐹:𝐴–1-1→𝐵 → Fun 𝐹) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 Fun wfun 6493 Fn wfn 6494 –1-1→wf1 6496 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-fn 6502 df-f 6503 df-f1 6504 |
| This theorem is referenced by: f1cocnv2 6810 f1o2ndf1 8078 fnwelem 8087 f1dmvrnfibi 9268 fsuppco 9329 ackbij1b 10167 fin23lem31 10272 fin1a2lem6 10334 hashimarn 14381 hashf1dmrn 14384 gsumval3lem1 19811 gsumval3lem2 19812 usgrfun 29061 trlsegvdeglem6 30127 ccatf1 32843 cycpmrn 33073 cycpmconjslem2 33085 elhf 36135 |
| Copyright terms: Public domain | W3C validator |