![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > f1fun | Structured version Visualization version GIF version |
Description: A one-to-one mapping is a function. (Contributed by NM, 8-Mar-2014.) |
Ref | Expression |
---|---|
f1fun | ⊢ (𝐹:𝐴–1-1→𝐵 → Fun 𝐹) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | f1fn 6338 | . 2 ⊢ (𝐹:𝐴–1-1→𝐵 → 𝐹 Fn 𝐴) | |
2 | fnfun 6220 | . 2 ⊢ (𝐹 Fn 𝐴 → Fun 𝐹) | |
3 | 1, 2 | syl 17 | 1 ⊢ (𝐹:𝐴–1-1→𝐵 → Fun 𝐹) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 Fun wfun 6116 Fn wfn 6117 –1-1→wf1 6119 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 199 df-an 387 df-fn 6125 df-f 6126 df-f1 6127 |
This theorem is referenced by: f1cocnv2 6404 f1o2ndf1 7548 fnwelem 7555 f1dmvrnfibi 8518 fsuppco 8575 ackbij1b 9375 fin23lem31 9479 fin1a2lem6 9541 hashimarn 13515 gsumval3lem1 18658 gsumval3lem2 18659 usgrfun 26456 trlsegvdeglem6 27601 elhf 32819 |
Copyright terms: Public domain | W3C validator |