| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > f1fun | Structured version Visualization version GIF version | ||
| Description: A one-to-one mapping is a function. (Contributed by NM, 8-Mar-2014.) |
| Ref | Expression |
|---|---|
| f1fun | ⊢ (𝐹:𝐴–1-1→𝐵 → Fun 𝐹) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | f1fn 6780 | . 2 ⊢ (𝐹:𝐴–1-1→𝐵 → 𝐹 Fn 𝐴) | |
| 2 | fnfun 6643 | . 2 ⊢ (𝐹 Fn 𝐴 → Fun 𝐹) | |
| 3 | 1, 2 | syl 17 | 1 ⊢ (𝐹:𝐴–1-1→𝐵 → Fun 𝐹) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 Fun wfun 6530 Fn wfn 6531 –1-1→wf1 6533 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-fn 6539 df-f 6540 df-f1 6541 |
| This theorem is referenced by: f1cocnv2 6851 f1o2ndf1 8126 fnwelem 8135 f1dmvrnfibi 9358 fsuppco 9419 ackbij1b 10257 fin23lem31 10362 fin1a2lem6 10424 hashimarn 14463 hashf1dmrn 14466 gsumval3lem1 19891 gsumval3lem2 19892 usgrfun 29142 trlsegvdeglem6 30211 ccatf1 32929 cycpmrn 33159 cycpmconjslem2 33171 elhf 36197 |
| Copyright terms: Public domain | W3C validator |