| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > f1fun | Structured version Visualization version GIF version | ||
| Description: A one-to-one mapping is a function. (Contributed by NM, 8-Mar-2014.) |
| Ref | Expression |
|---|---|
| f1fun | ⊢ (𝐹:𝐴–1-1→𝐵 → Fun 𝐹) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | f1fn 6715 | . 2 ⊢ (𝐹:𝐴–1-1→𝐵 → 𝐹 Fn 𝐴) | |
| 2 | fnfun 6576 | . 2 ⊢ (𝐹 Fn 𝐴 → Fun 𝐹) | |
| 3 | 1, 2 | syl 17 | 1 ⊢ (𝐹:𝐴–1-1→𝐵 → Fun 𝐹) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 Fun wfun 6470 Fn wfn 6471 –1-1→wf1 6473 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-fn 6479 df-f 6480 df-f1 6481 |
| This theorem is referenced by: f1cocnv2 6786 f1o2ndf1 8047 fnwelem 8056 f1dmvrnfibi 9220 fsuppco 9281 ackbij1b 10124 fin23lem31 10229 fin1a2lem6 10291 hashimarn 14342 hashf1dmrn 14345 gsumval3lem1 19812 gsumval3lem2 19813 usgrfun 29131 trlsegvdeglem6 30197 ccatf1 32922 cycpmrn 33104 cycpmconjslem2 33116 elhf 36208 |
| Copyright terms: Public domain | W3C validator |