MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  f1fun Structured version   Visualization version   GIF version

Theorem f1fun 6819
Description: A one-to-one mapping is a function. (Contributed by NM, 8-Mar-2014.)
Assertion
Ref Expression
f1fun (𝐹:𝐴1-1𝐵 → Fun 𝐹)

Proof of Theorem f1fun
StepHypRef Expression
1 f1fn 6818 . 2 (𝐹:𝐴1-1𝐵𝐹 Fn 𝐴)
2 fnfun 6679 . 2 (𝐹 Fn 𝐴 → Fun 𝐹)
31, 2syl 17 1 (𝐹:𝐴1-1𝐵 → Fun 𝐹)
Colors of variables: wff setvar class
Syntax hints:  wi 4  Fun wfun 6567   Fn wfn 6568  1-1wf1 6570
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 207  df-an 396  df-fn 6576  df-f 6577  df-f1 6578
This theorem is referenced by:  f1cocnv2  6890  f1o2ndf1  8163  fnwelem  8172  f1dmvrnfibi  9409  fsuppco  9471  ackbij1b  10307  fin23lem31  10412  fin1a2lem6  10474  hashimarn  14489  hashf1dmrn  14492  gsumval3lem1  19947  gsumval3lem2  19948  usgrfun  29193  trlsegvdeglem6  30257  ccatf1  32915  cycpmrn  33136  cycpmconjslem2  33148  elhf  36138
  Copyright terms: Public domain W3C validator