![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > f1fun | Structured version Visualization version GIF version |
Description: A one-to-one mapping is a function. (Contributed by NM, 8-Mar-2014.) |
Ref | Expression |
---|---|
f1fun | ⊢ (𝐹:𝐴–1-1→𝐵 → Fun 𝐹) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | f1fn 6806 | . 2 ⊢ (𝐹:𝐴–1-1→𝐵 → 𝐹 Fn 𝐴) | |
2 | fnfun 6669 | . 2 ⊢ (𝐹 Fn 𝐴 → Fun 𝐹) | |
3 | 1, 2 | syl 17 | 1 ⊢ (𝐹:𝐴–1-1→𝐵 → Fun 𝐹) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 Fun wfun 6557 Fn wfn 6558 –1-1→wf1 6560 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 207 df-an 396 df-fn 6566 df-f 6567 df-f1 6568 |
This theorem is referenced by: f1cocnv2 6877 f1o2ndf1 8146 fnwelem 8155 f1dmvrnfibi 9379 fsuppco 9440 ackbij1b 10276 fin23lem31 10381 fin1a2lem6 10443 hashimarn 14476 hashf1dmrn 14479 gsumval3lem1 19938 gsumval3lem2 19939 usgrfun 29190 trlsegvdeglem6 30254 ccatf1 32918 cycpmrn 33146 cycpmconjslem2 33158 elhf 36156 |
Copyright terms: Public domain | W3C validator |