MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  f1fun Structured version   Visualization version   GIF version

Theorem f1fun 6740
Description: A one-to-one mapping is a function. (Contributed by NM, 8-Mar-2014.)
Assertion
Ref Expression
f1fun (𝐹:𝐴1-1𝐵 → Fun 𝐹)

Proof of Theorem f1fun
StepHypRef Expression
1 f1fn 6739 . 2 (𝐹:𝐴1-1𝐵𝐹 Fn 𝐴)
2 fnfun 6600 . 2 (𝐹 Fn 𝐴 → Fun 𝐹)
31, 2syl 17 1 (𝐹:𝐴1-1𝐵 → Fun 𝐹)
Colors of variables: wff setvar class
Syntax hints:  wi 4  Fun wfun 6493   Fn wfn 6494  1-1wf1 6496
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 207  df-an 396  df-fn 6502  df-f 6503  df-f1 6504
This theorem is referenced by:  f1cocnv2  6810  f1o2ndf1  8078  fnwelem  8087  f1dmvrnfibi  9268  fsuppco  9329  ackbij1b  10167  fin23lem31  10272  fin1a2lem6  10334  hashimarn  14381  hashf1dmrn  14384  gsumval3lem1  19811  gsumval3lem2  19812  usgrfun  29061  trlsegvdeglem6  30127  ccatf1  32843  cycpmrn  33073  cycpmconjslem2  33085  elhf  36135
  Copyright terms: Public domain W3C validator