![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > f1fun | Structured version Visualization version GIF version |
Description: A one-to-one mapping is a function. (Contributed by NM, 8-Mar-2014.) |
Ref | Expression |
---|---|
f1fun | ⊢ (𝐹:𝐴–1-1→𝐵 → Fun 𝐹) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | f1fn 6818 | . 2 ⊢ (𝐹:𝐴–1-1→𝐵 → 𝐹 Fn 𝐴) | |
2 | fnfun 6679 | . 2 ⊢ (𝐹 Fn 𝐴 → Fun 𝐹) | |
3 | 1, 2 | syl 17 | 1 ⊢ (𝐹:𝐴–1-1→𝐵 → Fun 𝐹) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 Fun wfun 6567 Fn wfn 6568 –1-1→wf1 6570 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 207 df-an 396 df-fn 6576 df-f 6577 df-f1 6578 |
This theorem is referenced by: f1cocnv2 6890 f1o2ndf1 8163 fnwelem 8172 f1dmvrnfibi 9409 fsuppco 9471 ackbij1b 10307 fin23lem31 10412 fin1a2lem6 10474 hashimarn 14489 hashf1dmrn 14492 gsumval3lem1 19947 gsumval3lem2 19948 usgrfun 29193 trlsegvdeglem6 30257 ccatf1 32915 cycpmrn 33136 cycpmconjslem2 33148 elhf 36138 |
Copyright terms: Public domain | W3C validator |