MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  f1fun Structured version   Visualization version   GIF version

Theorem f1fun 6729
Description: A one-to-one mapping is a function. (Contributed by NM, 8-Mar-2014.)
Assertion
Ref Expression
f1fun (𝐹:𝐴1-1𝐵 → Fun 𝐹)

Proof of Theorem f1fun
StepHypRef Expression
1 f1fn 6728 . 2 (𝐹:𝐴1-1𝐵𝐹 Fn 𝐴)
2 fnfun 6589 . 2 (𝐹 Fn 𝐴 → Fun 𝐹)
31, 2syl 17 1 (𝐹:𝐴1-1𝐵 → Fun 𝐹)
Colors of variables: wff setvar class
Syntax hints:  wi 4  Fun wfun 6483   Fn wfn 6484  1-1wf1 6486
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 207  df-an 396  df-fn 6492  df-f 6493  df-f1 6494
This theorem is referenced by:  f1cocnv2  6799  f1o2ndf1  8061  fnwelem  8070  f1dmvrnfibi  9236  fsuppco  9297  ackbij1b  10140  fin23lem31  10245  fin1a2lem6  10307  hashimarn  14354  hashf1dmrn  14357  gsumval3lem1  19825  gsumval3lem2  19826  usgrfun  29157  trlsegvdeglem6  30226  ccatf1  32959  cycpmrn  33153  cycpmconjslem2  33165  elhf  36290
  Copyright terms: Public domain W3C validator