MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  f1fun Structured version   Visualization version   GIF version

Theorem f1fun 6726
Description: A one-to-one mapping is a function. (Contributed by NM, 8-Mar-2014.)
Assertion
Ref Expression
f1fun (𝐹:𝐴1-1𝐵 → Fun 𝐹)

Proof of Theorem f1fun
StepHypRef Expression
1 f1fn 6725 . 2 (𝐹:𝐴1-1𝐵𝐹 Fn 𝐴)
2 fnfun 6586 . 2 (𝐹 Fn 𝐴 → Fun 𝐹)
31, 2syl 17 1 (𝐹:𝐴1-1𝐵 → Fun 𝐹)
Colors of variables: wff setvar class
Syntax hints:  wi 4  Fun wfun 6480   Fn wfn 6481  1-1wf1 6483
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 207  df-an 396  df-fn 6489  df-f 6490  df-f1 6491
This theorem is referenced by:  f1cocnv2  6796  f1o2ndf1  8062  fnwelem  8071  f1dmvrnfibi  9250  fsuppco  9311  ackbij1b  10151  fin23lem31  10256  fin1a2lem6  10318  hashimarn  14366  hashf1dmrn  14369  gsumval3lem1  19803  gsumval3lem2  19804  usgrfun  29122  trlsegvdeglem6  30188  ccatf1  32909  cycpmrn  33104  cycpmconjslem2  33116  elhf  36167
  Copyright terms: Public domain W3C validator