Mathbox for Richard Penner |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > frege123 | Structured version Visualization version GIF version |
Description: Lemma for frege124 41484. Proposition 123 of [Frege1879] p. 79. (Contributed by RP, 8-Jul-2020.) (Proof modification is discouraged.) |
Ref | Expression |
---|---|
frege123.x | ⊢ 𝑋 ∈ 𝑈 |
frege123.y | ⊢ 𝑌 ∈ 𝑉 |
Ref | Expression |
---|---|
frege123 | ⊢ ((∀𝑎(𝑌𝑅𝑎 → 𝑋((t+‘𝑅) ∪ I )𝑎) → (𝑌(t+‘𝑅)𝑀 → 𝑋((t+‘𝑅) ∪ I )𝑀)) → (Fun ◡◡𝑅 → (𝑌𝑅𝑋 → (𝑌(t+‘𝑅)𝑀 → 𝑋((t+‘𝑅) ∪ I )𝑀)))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | frege123.x | . . . 4 ⊢ 𝑋 ∈ 𝑈 | |
2 | frege123.y | . . . 4 ⊢ 𝑌 ∈ 𝑉 | |
3 | vex 3426 | . . . 4 ⊢ 𝑎 ∈ V | |
4 | 1, 2, 3 | frege122 41482 | . . 3 ⊢ (Fun ◡◡𝑅 → (𝑌𝑅𝑋 → (𝑌𝑅𝑎 → 𝑋((t+‘𝑅) ∪ I )𝑎))) |
5 | 4 | alrimdv 1933 | . 2 ⊢ (Fun ◡◡𝑅 → (𝑌𝑅𝑋 → ∀𝑎(𝑌𝑅𝑎 → 𝑋((t+‘𝑅) ∪ I )𝑎))) |
6 | frege19 41321 | . 2 ⊢ ((Fun ◡◡𝑅 → (𝑌𝑅𝑋 → ∀𝑎(𝑌𝑅𝑎 → 𝑋((t+‘𝑅) ∪ I )𝑎))) → ((∀𝑎(𝑌𝑅𝑎 → 𝑋((t+‘𝑅) ∪ I )𝑎) → (𝑌(t+‘𝑅)𝑀 → 𝑋((t+‘𝑅) ∪ I )𝑀)) → (Fun ◡◡𝑅 → (𝑌𝑅𝑋 → (𝑌(t+‘𝑅)𝑀 → 𝑋((t+‘𝑅) ∪ I )𝑀))))) | |
7 | 5, 6 | ax-mp 5 | 1 ⊢ ((∀𝑎(𝑌𝑅𝑎 → 𝑋((t+‘𝑅) ∪ I )𝑎) → (𝑌(t+‘𝑅)𝑀 → 𝑋((t+‘𝑅) ∪ I )𝑀)) → (Fun ◡◡𝑅 → (𝑌𝑅𝑋 → (𝑌(t+‘𝑅)𝑀 → 𝑋((t+‘𝑅) ∪ I )𝑀)))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∀wal 1537 ∈ wcel 2108 Vcvv 3422 ∪ cun 3881 class class class wbr 5070 I cid 5479 ◡ccnv 5579 Fun wfun 6412 ‘cfv 6418 t+ctcl 14624 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-sep 5218 ax-nul 5225 ax-pr 5347 ax-frege1 41287 ax-frege2 41288 ax-frege8 41306 ax-frege52a 41354 ax-frege58b 41398 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-ifp 1060 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ral 3068 df-rex 3069 df-rab 3072 df-v 3424 df-sbc 3712 df-csb 3829 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-nul 4254 df-if 4457 df-sn 4559 df-pr 4561 df-op 4565 df-br 5071 df-opab 5133 df-id 5480 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-fun 6420 |
This theorem is referenced by: frege124 41484 |
Copyright terms: Public domain | W3C validator |