Users' Mathboxes Mathbox for Richard Penner < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  frege123 Structured version   Visualization version   GIF version

Theorem frege123 41594
Description: Lemma for frege124 41595. Proposition 123 of [Frege1879] p. 79. (Contributed by RP, 8-Jul-2020.) (Proof modification is discouraged.)
Hypotheses
Ref Expression
frege123.x 𝑋𝑈
frege123.y 𝑌𝑉
Assertion
Ref Expression
frege123 ((∀𝑎(𝑌𝑅𝑎𝑋((t+‘𝑅) ∪ I )𝑎) → (𝑌(t+‘𝑅)𝑀𝑋((t+‘𝑅) ∪ I )𝑀)) → (Fun 𝑅 → (𝑌𝑅𝑋 → (𝑌(t+‘𝑅)𝑀𝑋((t+‘𝑅) ∪ I )𝑀))))
Distinct variable groups:   𝑅,𝑎   𝑋,𝑎   𝑌,𝑎
Allowed substitution hints:   𝑈(𝑎)   𝑀(𝑎)   𝑉(𝑎)

Proof of Theorem frege123
StepHypRef Expression
1 frege123.x . . . 4 𝑋𝑈
2 frege123.y . . . 4 𝑌𝑉
3 vex 3436 . . . 4 𝑎 ∈ V
41, 2, 3frege122 41593 . . 3 (Fun 𝑅 → (𝑌𝑅𝑋 → (𝑌𝑅𝑎𝑋((t+‘𝑅) ∪ I )𝑎)))
54alrimdv 1932 . 2 (Fun 𝑅 → (𝑌𝑅𝑋 → ∀𝑎(𝑌𝑅𝑎𝑋((t+‘𝑅) ∪ I )𝑎)))
6 frege19 41432 . 2 ((Fun 𝑅 → (𝑌𝑅𝑋 → ∀𝑎(𝑌𝑅𝑎𝑋((t+‘𝑅) ∪ I )𝑎))) → ((∀𝑎(𝑌𝑅𝑎𝑋((t+‘𝑅) ∪ I )𝑎) → (𝑌(t+‘𝑅)𝑀𝑋((t+‘𝑅) ∪ I )𝑀)) → (Fun 𝑅 → (𝑌𝑅𝑋 → (𝑌(t+‘𝑅)𝑀𝑋((t+‘𝑅) ∪ I )𝑀)))))
75, 6ax-mp 5 1 ((∀𝑎(𝑌𝑅𝑎𝑋((t+‘𝑅) ∪ I )𝑎) → (𝑌(t+‘𝑅)𝑀𝑋((t+‘𝑅) ∪ I )𝑀)) → (Fun 𝑅 → (𝑌𝑅𝑋 → (𝑌(t+‘𝑅)𝑀𝑋((t+‘𝑅) ∪ I )𝑀))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wal 1537  wcel 2106  Vcvv 3432  cun 3885   class class class wbr 5074   I cid 5488  ccnv 5588  Fun wfun 6427  cfv 6433  t+ctcl 14696
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-sep 5223  ax-nul 5230  ax-pr 5352  ax-frege1 41398  ax-frege2 41399  ax-frege8 41417  ax-frege52a 41465  ax-frege58b 41509
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-ifp 1061  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ral 3069  df-rex 3070  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-nul 4257  df-if 4460  df-sn 4562  df-pr 4564  df-op 4568  df-br 5075  df-opab 5137  df-id 5489  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-fun 6435
This theorem is referenced by:  frege124  41595
  Copyright terms: Public domain W3C validator