Users' Mathboxes Mathbox for Richard Penner < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  frege123 Structured version   Visualization version   GIF version

Theorem frege123 40684
Description: Lemma for frege124 40685. Proposition 123 of [Frege1879] p. 79. (Contributed by RP, 8-Jul-2020.) (Proof modification is discouraged.)
Hypotheses
Ref Expression
frege123.x 𝑋𝑈
frege123.y 𝑌𝑉
Assertion
Ref Expression
frege123 ((∀𝑎(𝑌𝑅𝑎𝑋((t+‘𝑅) ∪ I )𝑎) → (𝑌(t+‘𝑅)𝑀𝑋((t+‘𝑅) ∪ I )𝑀)) → (Fun 𝑅 → (𝑌𝑅𝑋 → (𝑌(t+‘𝑅)𝑀𝑋((t+‘𝑅) ∪ I )𝑀))))
Distinct variable groups:   𝑅,𝑎   𝑋,𝑎   𝑌,𝑎
Allowed substitution hints:   𝑈(𝑎)   𝑀(𝑎)   𝑉(𝑎)

Proof of Theorem frege123
StepHypRef Expression
1 frege123.x . . . 4 𝑋𝑈
2 frege123.y . . . 4 𝑌𝑉
3 vex 3447 . . . 4 𝑎 ∈ V
41, 2, 3frege122 40683 . . 3 (Fun 𝑅 → (𝑌𝑅𝑋 → (𝑌𝑅𝑎𝑋((t+‘𝑅) ∪ I )𝑎)))
54alrimdv 1930 . 2 (Fun 𝑅 → (𝑌𝑅𝑋 → ∀𝑎(𝑌𝑅𝑎𝑋((t+‘𝑅) ∪ I )𝑎)))
6 frege19 40522 . 2 ((Fun 𝑅 → (𝑌𝑅𝑋 → ∀𝑎(𝑌𝑅𝑎𝑋((t+‘𝑅) ∪ I )𝑎))) → ((∀𝑎(𝑌𝑅𝑎𝑋((t+‘𝑅) ∪ I )𝑎) → (𝑌(t+‘𝑅)𝑀𝑋((t+‘𝑅) ∪ I )𝑀)) → (Fun 𝑅 → (𝑌𝑅𝑋 → (𝑌(t+‘𝑅)𝑀𝑋((t+‘𝑅) ∪ I )𝑀)))))
75, 6ax-mp 5 1 ((∀𝑎(𝑌𝑅𝑎𝑋((t+‘𝑅) ∪ I )𝑎) → (𝑌(t+‘𝑅)𝑀𝑋((t+‘𝑅) ∪ I )𝑀)) → (Fun 𝑅 → (𝑌𝑅𝑋 → (𝑌(t+‘𝑅)𝑀𝑋((t+‘𝑅) ∪ I )𝑀))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wal 1536  wcel 2112  Vcvv 3444  cun 3882   class class class wbr 5033   I cid 5427  ccnv 5522  Fun wfun 6322  cfv 6328  t+ctcl 14340
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2114  ax-9 2122  ax-10 2143  ax-11 2159  ax-12 2176  ax-ext 2773  ax-sep 5170  ax-nul 5177  ax-pr 5298  ax-frege1 40488  ax-frege2 40489  ax-frege8 40507  ax-frege52a 40555  ax-frege58b 40599
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-ifp 1059  df-3an 1086  df-tru 1541  df-fal 1551  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2601  df-eu 2632  df-clab 2780  df-cleq 2794  df-clel 2873  df-nfc 2941  df-ral 3114  df-rex 3115  df-v 3446  df-sbc 3724  df-csb 3832  df-dif 3887  df-un 3889  df-in 3891  df-ss 3901  df-nul 4247  df-if 4429  df-sn 4529  df-pr 4531  df-op 4535  df-br 5034  df-opab 5096  df-id 5428  df-xp 5529  df-rel 5530  df-cnv 5531  df-co 5532  df-fun 6330
This theorem is referenced by:  frege124  40685
  Copyright terms: Public domain W3C validator