Users' Mathboxes Mathbox for Richard Penner < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  frege123 Structured version   Visualization version   GIF version

Theorem frege123 43975
Description: Lemma for frege124 43976. Proposition 123 of [Frege1879] p. 79. (Contributed by RP, 8-Jul-2020.) (Proof modification is discouraged.)
Hypotheses
Ref Expression
frege123.x 𝑋𝑈
frege123.y 𝑌𝑉
Assertion
Ref Expression
frege123 ((∀𝑎(𝑌𝑅𝑎𝑋((t+‘𝑅) ∪ I )𝑎) → (𝑌(t+‘𝑅)𝑀𝑋((t+‘𝑅) ∪ I )𝑀)) → (Fun 𝑅 → (𝑌𝑅𝑋 → (𝑌(t+‘𝑅)𝑀𝑋((t+‘𝑅) ∪ I )𝑀))))
Distinct variable groups:   𝑅,𝑎   𝑋,𝑎   𝑌,𝑎
Allowed substitution hints:   𝑈(𝑎)   𝑀(𝑎)   𝑉(𝑎)

Proof of Theorem frege123
StepHypRef Expression
1 frege123.x . . . 4 𝑋𝑈
2 frege123.y . . . 4 𝑌𝑉
3 vex 3451 . . . 4 𝑎 ∈ V
41, 2, 3frege122 43974 . . 3 (Fun 𝑅 → (𝑌𝑅𝑋 → (𝑌𝑅𝑎𝑋((t+‘𝑅) ∪ I )𝑎)))
54alrimdv 1929 . 2 (Fun 𝑅 → (𝑌𝑅𝑋 → ∀𝑎(𝑌𝑅𝑎𝑋((t+‘𝑅) ∪ I )𝑎)))
6 frege19 43813 . 2 ((Fun 𝑅 → (𝑌𝑅𝑋 → ∀𝑎(𝑌𝑅𝑎𝑋((t+‘𝑅) ∪ I )𝑎))) → ((∀𝑎(𝑌𝑅𝑎𝑋((t+‘𝑅) ∪ I )𝑎) → (𝑌(t+‘𝑅)𝑀𝑋((t+‘𝑅) ∪ I )𝑀)) → (Fun 𝑅 → (𝑌𝑅𝑋 → (𝑌(t+‘𝑅)𝑀𝑋((t+‘𝑅) ∪ I )𝑀)))))
75, 6ax-mp 5 1 ((∀𝑎(𝑌𝑅𝑎𝑋((t+‘𝑅) ∪ I )𝑎) → (𝑌(t+‘𝑅)𝑀𝑋((t+‘𝑅) ∪ I )𝑀)) → (Fun 𝑅 → (𝑌𝑅𝑋 → (𝑌(t+‘𝑅)𝑀𝑋((t+‘𝑅) ∪ I )𝑀))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wal 1538  wcel 2109  Vcvv 3447  cun 3912   class class class wbr 5107   I cid 5532  ccnv 5637  Fun wfun 6505  cfv 6511  t+ctcl 14951
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5251  ax-nul 5261  ax-pr 5387  ax-frege1 43779  ax-frege2 43780  ax-frege8 43798  ax-frege52a 43846  ax-frege58b 43890
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-ifp 1063  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ral 3045  df-rex 3054  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-ss 3931  df-nul 4297  df-if 4489  df-sn 4590  df-pr 4592  df-op 4596  df-br 5108  df-opab 5170  df-id 5533  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-fun 6513
This theorem is referenced by:  frege124  43976
  Copyright terms: Public domain W3C validator