| Mathbox for Richard Penner |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > frege123 | Structured version Visualization version GIF version | ||
| Description: Lemma for frege124 43978. Proposition 123 of [Frege1879] p. 79. (Contributed by RP, 8-Jul-2020.) (Proof modification is discouraged.) |
| Ref | Expression |
|---|---|
| frege123.x | ⊢ 𝑋 ∈ 𝑈 |
| frege123.y | ⊢ 𝑌 ∈ 𝑉 |
| Ref | Expression |
|---|---|
| frege123 | ⊢ ((∀𝑎(𝑌𝑅𝑎 → 𝑋((t+‘𝑅) ∪ I )𝑎) → (𝑌(t+‘𝑅)𝑀 → 𝑋((t+‘𝑅) ∪ I )𝑀)) → (Fun ◡◡𝑅 → (𝑌𝑅𝑋 → (𝑌(t+‘𝑅)𝑀 → 𝑋((t+‘𝑅) ∪ I )𝑀)))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | frege123.x | . . . 4 ⊢ 𝑋 ∈ 𝑈 | |
| 2 | frege123.y | . . . 4 ⊢ 𝑌 ∈ 𝑉 | |
| 3 | vex 3468 | . . . 4 ⊢ 𝑎 ∈ V | |
| 4 | 1, 2, 3 | frege122 43976 | . . 3 ⊢ (Fun ◡◡𝑅 → (𝑌𝑅𝑋 → (𝑌𝑅𝑎 → 𝑋((t+‘𝑅) ∪ I )𝑎))) |
| 5 | 4 | alrimdv 1929 | . 2 ⊢ (Fun ◡◡𝑅 → (𝑌𝑅𝑋 → ∀𝑎(𝑌𝑅𝑎 → 𝑋((t+‘𝑅) ∪ I )𝑎))) |
| 6 | frege19 43815 | . 2 ⊢ ((Fun ◡◡𝑅 → (𝑌𝑅𝑋 → ∀𝑎(𝑌𝑅𝑎 → 𝑋((t+‘𝑅) ∪ I )𝑎))) → ((∀𝑎(𝑌𝑅𝑎 → 𝑋((t+‘𝑅) ∪ I )𝑎) → (𝑌(t+‘𝑅)𝑀 → 𝑋((t+‘𝑅) ∪ I )𝑀)) → (Fun ◡◡𝑅 → (𝑌𝑅𝑋 → (𝑌(t+‘𝑅)𝑀 → 𝑋((t+‘𝑅) ∪ I )𝑀))))) | |
| 7 | 5, 6 | ax-mp 5 | 1 ⊢ ((∀𝑎(𝑌𝑅𝑎 → 𝑋((t+‘𝑅) ∪ I )𝑎) → (𝑌(t+‘𝑅)𝑀 → 𝑋((t+‘𝑅) ∪ I )𝑀)) → (Fun ◡◡𝑅 → (𝑌𝑅𝑋 → (𝑌(t+‘𝑅)𝑀 → 𝑋((t+‘𝑅) ∪ I )𝑀)))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∀wal 1538 ∈ wcel 2109 Vcvv 3464 ∪ cun 3929 class class class wbr 5124 I cid 5552 ◡ccnv 5658 Fun wfun 6530 ‘cfv 6536 t+ctcl 15009 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2708 ax-sep 5271 ax-nul 5281 ax-pr 5407 ax-frege1 43781 ax-frege2 43782 ax-frege8 43800 ax-frege52a 43848 ax-frege58b 43892 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-ifp 1063 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2540 df-clab 2715 df-cleq 2728 df-clel 2810 df-nfc 2886 df-ral 3053 df-rex 3062 df-rab 3421 df-v 3466 df-sbc 3771 df-csb 3880 df-dif 3934 df-un 3936 df-ss 3948 df-nul 4314 df-if 4506 df-sn 4607 df-pr 4609 df-op 4613 df-br 5125 df-opab 5187 df-id 5553 df-xp 5665 df-rel 5666 df-cnv 5667 df-co 5668 df-fun 6538 |
| This theorem is referenced by: frege124 43978 |
| Copyright terms: Public domain | W3C validator |