![]() |
Mathbox for Richard Penner |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > frege123 | Structured version Visualization version GIF version |
Description: Lemma for frege124 43296. Proposition 123 of [Frege1879] p. 79. (Contributed by RP, 8-Jul-2020.) (Proof modification is discouraged.) |
Ref | Expression |
---|---|
frege123.x | ⊢ 𝑋 ∈ 𝑈 |
frege123.y | ⊢ 𝑌 ∈ 𝑉 |
Ref | Expression |
---|---|
frege123 | ⊢ ((∀𝑎(𝑌𝑅𝑎 → 𝑋((t+‘𝑅) ∪ I )𝑎) → (𝑌(t+‘𝑅)𝑀 → 𝑋((t+‘𝑅) ∪ I )𝑀)) → (Fun ◡◡𝑅 → (𝑌𝑅𝑋 → (𝑌(t+‘𝑅)𝑀 → 𝑋((t+‘𝑅) ∪ I )𝑀)))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | frege123.x | . . . 4 ⊢ 𝑋 ∈ 𝑈 | |
2 | frege123.y | . . . 4 ⊢ 𝑌 ∈ 𝑉 | |
3 | vex 3472 | . . . 4 ⊢ 𝑎 ∈ V | |
4 | 1, 2, 3 | frege122 43294 | . . 3 ⊢ (Fun ◡◡𝑅 → (𝑌𝑅𝑋 → (𝑌𝑅𝑎 → 𝑋((t+‘𝑅) ∪ I )𝑎))) |
5 | 4 | alrimdv 1924 | . 2 ⊢ (Fun ◡◡𝑅 → (𝑌𝑅𝑋 → ∀𝑎(𝑌𝑅𝑎 → 𝑋((t+‘𝑅) ∪ I )𝑎))) |
6 | frege19 43133 | . 2 ⊢ ((Fun ◡◡𝑅 → (𝑌𝑅𝑋 → ∀𝑎(𝑌𝑅𝑎 → 𝑋((t+‘𝑅) ∪ I )𝑎))) → ((∀𝑎(𝑌𝑅𝑎 → 𝑋((t+‘𝑅) ∪ I )𝑎) → (𝑌(t+‘𝑅)𝑀 → 𝑋((t+‘𝑅) ∪ I )𝑀)) → (Fun ◡◡𝑅 → (𝑌𝑅𝑋 → (𝑌(t+‘𝑅)𝑀 → 𝑋((t+‘𝑅) ∪ I )𝑀))))) | |
7 | 5, 6 | ax-mp 5 | 1 ⊢ ((∀𝑎(𝑌𝑅𝑎 → 𝑋((t+‘𝑅) ∪ I )𝑎) → (𝑌(t+‘𝑅)𝑀 → 𝑋((t+‘𝑅) ∪ I )𝑀)) → (Fun ◡◡𝑅 → (𝑌𝑅𝑋 → (𝑌(t+‘𝑅)𝑀 → 𝑋((t+‘𝑅) ∪ I )𝑀)))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∀wal 1531 ∈ wcel 2098 Vcvv 3468 ∪ cun 3941 class class class wbr 5141 I cid 5566 ◡ccnv 5668 Fun wfun 6530 ‘cfv 6536 t+ctcl 14935 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2163 ax-ext 2697 ax-sep 5292 ax-nul 5299 ax-pr 5420 ax-frege1 43099 ax-frege2 43100 ax-frege8 43118 ax-frege52a 43166 ax-frege58b 43210 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-ifp 1060 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2528 df-clab 2704 df-cleq 2718 df-clel 2804 df-nfc 2879 df-ral 3056 df-rex 3065 df-rab 3427 df-v 3470 df-sbc 3773 df-csb 3889 df-dif 3946 df-un 3948 df-in 3950 df-ss 3960 df-nul 4318 df-if 4524 df-sn 4624 df-pr 4626 df-op 4630 df-br 5142 df-opab 5204 df-id 5567 df-xp 5675 df-rel 5676 df-cnv 5677 df-co 5678 df-fun 6538 |
This theorem is referenced by: frege124 43296 |
Copyright terms: Public domain | W3C validator |