Users' Mathboxes Mathbox for Richard Penner < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  frege123 Structured version   Visualization version   GIF version

Theorem frege123 44089
Description: Lemma for frege124 44090. Proposition 123 of [Frege1879] p. 79. (Contributed by RP, 8-Jul-2020.) (Proof modification is discouraged.)
Hypotheses
Ref Expression
frege123.x 𝑋𝑈
frege123.y 𝑌𝑉
Assertion
Ref Expression
frege123 ((∀𝑎(𝑌𝑅𝑎𝑋((t+‘𝑅) ∪ I )𝑎) → (𝑌(t+‘𝑅)𝑀𝑋((t+‘𝑅) ∪ I )𝑀)) → (Fun 𝑅 → (𝑌𝑅𝑋 → (𝑌(t+‘𝑅)𝑀𝑋((t+‘𝑅) ∪ I )𝑀))))
Distinct variable groups:   𝑅,𝑎   𝑋,𝑎   𝑌,𝑎
Allowed substitution hints:   𝑈(𝑎)   𝑀(𝑎)   𝑉(𝑎)

Proof of Theorem frege123
StepHypRef Expression
1 frege123.x . . . 4 𝑋𝑈
2 frege123.y . . . 4 𝑌𝑉
3 vex 3440 . . . 4 𝑎 ∈ V
41, 2, 3frege122 44088 . . 3 (Fun 𝑅 → (𝑌𝑅𝑋 → (𝑌𝑅𝑎𝑋((t+‘𝑅) ∪ I )𝑎)))
54alrimdv 1930 . 2 (Fun 𝑅 → (𝑌𝑅𝑋 → ∀𝑎(𝑌𝑅𝑎𝑋((t+‘𝑅) ∪ I )𝑎)))
6 frege19 43927 . 2 ((Fun 𝑅 → (𝑌𝑅𝑋 → ∀𝑎(𝑌𝑅𝑎𝑋((t+‘𝑅) ∪ I )𝑎))) → ((∀𝑎(𝑌𝑅𝑎𝑋((t+‘𝑅) ∪ I )𝑎) → (𝑌(t+‘𝑅)𝑀𝑋((t+‘𝑅) ∪ I )𝑀)) → (Fun 𝑅 → (𝑌𝑅𝑋 → (𝑌(t+‘𝑅)𝑀𝑋((t+‘𝑅) ∪ I )𝑀)))))
75, 6ax-mp 5 1 ((∀𝑎(𝑌𝑅𝑎𝑋((t+‘𝑅) ∪ I )𝑎) → (𝑌(t+‘𝑅)𝑀𝑋((t+‘𝑅) ∪ I )𝑀)) → (Fun 𝑅 → (𝑌𝑅𝑋 → (𝑌(t+‘𝑅)𝑀𝑋((t+‘𝑅) ∪ I )𝑀))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wal 1539  wcel 2111  Vcvv 3436  cun 3895   class class class wbr 5089   I cid 5508  ccnv 5613  Fun wfun 6475  cfv 6481  t+ctcl 14892
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-sep 5232  ax-nul 5242  ax-pr 5368  ax-frege1 43893  ax-frege2 43894  ax-frege8 43912  ax-frege52a 43960  ax-frege58b 44004
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-ifp 1063  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ral 3048  df-rex 3057  df-rab 3396  df-v 3438  df-sbc 3737  df-csb 3846  df-dif 3900  df-un 3902  df-ss 3914  df-nul 4281  df-if 4473  df-sn 4574  df-pr 4576  df-op 4580  df-br 5090  df-opab 5152  df-id 5509  df-xp 5620  df-rel 5621  df-cnv 5622  df-co 5623  df-fun 6483
This theorem is referenced by:  frege124  44090
  Copyright terms: Public domain W3C validator