Users' Mathboxes Mathbox for Richard Penner < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  frege103 Structured version   Visualization version   GIF version

Theorem frege103 43206
Description: Proposition 103 of [Frege1879] p. 73. (Contributed by RP, 7-Jul-2020.) (Proof modification is discouraged.)
Hypothesis
Ref Expression
frege103.z 𝑍𝑉
Assertion
Ref Expression
frege103 ((𝑍 = 𝑋𝑋 = 𝑍) → (𝑋((t+‘𝑅) ∪ I )𝑍 → (¬ 𝑋(t+‘𝑅)𝑍𝑋 = 𝑍)))

Proof of Theorem frege103
StepHypRef Expression
1 frege103.z . . 3 𝑍𝑉
21frege100 43203 . 2 (𝑋((t+‘𝑅) ∪ I )𝑍 → (¬ 𝑋(t+‘𝑅)𝑍𝑍 = 𝑋))
3 frege19 43064 . 2 ((𝑋((t+‘𝑅) ∪ I )𝑍 → (¬ 𝑋(t+‘𝑅)𝑍𝑍 = 𝑋)) → ((𝑍 = 𝑋𝑋 = 𝑍) → (𝑋((t+‘𝑅) ∪ I )𝑍 → (¬ 𝑋(t+‘𝑅)𝑍𝑋 = 𝑍))))
42, 3ax-mp 5 1 ((𝑍 = 𝑋𝑋 = 𝑍) → (𝑋((t+‘𝑅) ∪ I )𝑍 → (¬ 𝑋(t+‘𝑅)𝑍𝑋 = 𝑍)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4   = wceq 1533  wcel 2098  cun 3938   class class class wbr 5138   I cid 5563  cfv 6533  t+ctcl 14929
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-ext 2695  ax-sep 5289  ax-nul 5296  ax-pr 5417  ax-frege1 43030  ax-frege2 43031  ax-frege8 43049  ax-frege52a 43097
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-ifp 1060  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-sb 2060  df-clab 2702  df-cleq 2716  df-clel 2802  df-ral 3054  df-rex 3063  df-rab 3425  df-v 3468  df-dif 3943  df-un 3945  df-in 3947  df-ss 3957  df-nul 4315  df-if 4521  df-sn 4621  df-pr 4623  df-op 4627  df-br 5139  df-opab 5201  df-id 5564  df-xp 5672  df-rel 5673
This theorem is referenced by:  frege104  43207
  Copyright terms: Public domain W3C validator