| Mathbox for Richard Penner |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > frege103 | Structured version Visualization version GIF version | ||
| Description: Proposition 103 of [Frege1879] p. 73. (Contributed by RP, 7-Jul-2020.) (Proof modification is discouraged.) |
| Ref | Expression |
|---|---|
| frege103.z | ⊢ 𝑍 ∈ 𝑉 |
| Ref | Expression |
|---|---|
| frege103 | ⊢ ((𝑍 = 𝑋 → 𝑋 = 𝑍) → (𝑋((t+‘𝑅) ∪ I )𝑍 → (¬ 𝑋(t+‘𝑅)𝑍 → 𝑋 = 𝑍))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | frege103.z | . . 3 ⊢ 𝑍 ∈ 𝑉 | |
| 2 | 1 | frege100 43995 | . 2 ⊢ (𝑋((t+‘𝑅) ∪ I )𝑍 → (¬ 𝑋(t+‘𝑅)𝑍 → 𝑍 = 𝑋)) |
| 3 | frege19 43856 | . 2 ⊢ ((𝑋((t+‘𝑅) ∪ I )𝑍 → (¬ 𝑋(t+‘𝑅)𝑍 → 𝑍 = 𝑋)) → ((𝑍 = 𝑋 → 𝑋 = 𝑍) → (𝑋((t+‘𝑅) ∪ I )𝑍 → (¬ 𝑋(t+‘𝑅)𝑍 → 𝑋 = 𝑍)))) | |
| 4 | 2, 3 | ax-mp 5 | 1 ⊢ ((𝑍 = 𝑋 → 𝑋 = 𝑍) → (𝑋((t+‘𝑅) ∪ I )𝑍 → (¬ 𝑋(t+‘𝑅)𝑍 → 𝑋 = 𝑍))) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 = wceq 1541 ∈ wcel 2111 ∪ cun 3900 class class class wbr 5091 I cid 5510 ‘cfv 6481 t+ctcl 14889 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-ext 2703 ax-sep 5234 ax-nul 5244 ax-pr 5370 ax-frege1 43822 ax-frege2 43823 ax-frege8 43841 ax-frege52a 43889 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-ifp 1063 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-sb 2068 df-clab 2710 df-cleq 2723 df-clel 2806 df-ral 3048 df-rex 3057 df-rab 3396 df-v 3438 df-dif 3905 df-un 3907 df-ss 3919 df-nul 4284 df-if 4476 df-sn 4577 df-pr 4579 df-op 4583 df-br 5092 df-opab 5154 df-id 5511 df-xp 5622 df-rel 5623 |
| This theorem is referenced by: frege104 43999 |
| Copyright terms: Public domain | W3C validator |