Mathbox for Richard Penner |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > frege103 | Structured version Visualization version GIF version |
Description: Proposition 103 of [Frege1879] p. 73. (Contributed by RP, 7-Jul-2020.) (Proof modification is discouraged.) |
Ref | Expression |
---|---|
frege103.z | ⊢ 𝑍 ∈ 𝑉 |
Ref | Expression |
---|---|
frege103 | ⊢ ((𝑍 = 𝑋 → 𝑋 = 𝑍) → (𝑋((t+‘𝑅) ∪ I )𝑍 → (¬ 𝑋(t+‘𝑅)𝑍 → 𝑋 = 𝑍))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | frege103.z | . . 3 ⊢ 𝑍 ∈ 𝑉 | |
2 | 1 | frege100 41433 | . 2 ⊢ (𝑋((t+‘𝑅) ∪ I )𝑍 → (¬ 𝑋(t+‘𝑅)𝑍 → 𝑍 = 𝑋)) |
3 | frege19 41294 | . 2 ⊢ ((𝑋((t+‘𝑅) ∪ I )𝑍 → (¬ 𝑋(t+‘𝑅)𝑍 → 𝑍 = 𝑋)) → ((𝑍 = 𝑋 → 𝑋 = 𝑍) → (𝑋((t+‘𝑅) ∪ I )𝑍 → (¬ 𝑋(t+‘𝑅)𝑍 → 𝑋 = 𝑍)))) | |
4 | 2, 3 | ax-mp 5 | 1 ⊢ ((𝑍 = 𝑋 → 𝑋 = 𝑍) → (𝑋((t+‘𝑅) ∪ I )𝑍 → (¬ 𝑋(t+‘𝑅)𝑍 → 𝑋 = 𝑍))) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 = wceq 1543 ∈ wcel 2112 ∪ cun 3882 class class class wbr 5070 I cid 5478 ‘cfv 6415 t+ctcl 14599 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1803 ax-4 1817 ax-5 1918 ax-6 1976 ax-7 2016 ax-8 2114 ax-9 2122 ax-ext 2710 ax-sep 5216 ax-nul 5223 ax-pr 5346 ax-frege1 41260 ax-frege2 41261 ax-frege8 41279 ax-frege52a 41327 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 848 df-ifp 1064 df-3an 1091 df-tru 1546 df-fal 1556 df-ex 1788 df-sb 2073 df-clab 2717 df-cleq 2731 df-clel 2818 df-ral 3069 df-rex 3070 df-rab 3073 df-v 3425 df-dif 3887 df-un 3889 df-in 3891 df-ss 3901 df-nul 4255 df-if 4457 df-sn 4559 df-pr 4561 df-op 4565 df-br 5071 df-opab 5133 df-id 5479 df-xp 5585 df-rel 5586 |
This theorem is referenced by: frege104 41437 |
Copyright terms: Public domain | W3C validator |