| Mathbox for Richard Penner |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > frege119 | Structured version Visualization version GIF version | ||
| Description: Lemma for frege120 44081. Proposition 119 of [Frege1879] p. 78. (Contributed by RP, 8-Jul-2020.) (Proof modification is discouraged.) |
| Ref | Expression |
|---|---|
| frege116.x | ⊢ 𝑋 ∈ 𝑈 |
| frege118.y | ⊢ 𝑌 ∈ 𝑉 |
| Ref | Expression |
|---|---|
| frege119 | ⊢ ((∀𝑎(𝑌𝑅𝑎 → 𝑎 = 𝑋) → (𝑌𝑅𝐴 → 𝐴 = 𝑋)) → (Fun ◡◡𝑅 → (𝑌𝑅𝑋 → (𝑌𝑅𝐴 → 𝐴 = 𝑋)))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | frege116.x | . . 3 ⊢ 𝑋 ∈ 𝑈 | |
| 2 | frege118.y | . . 3 ⊢ 𝑌 ∈ 𝑉 | |
| 3 | 1, 2 | frege118 44079 | . 2 ⊢ (Fun ◡◡𝑅 → (𝑌𝑅𝑋 → ∀𝑎(𝑌𝑅𝑎 → 𝑎 = 𝑋))) |
| 4 | frege19 43922 | . 2 ⊢ ((Fun ◡◡𝑅 → (𝑌𝑅𝑋 → ∀𝑎(𝑌𝑅𝑎 → 𝑎 = 𝑋))) → ((∀𝑎(𝑌𝑅𝑎 → 𝑎 = 𝑋) → (𝑌𝑅𝐴 → 𝐴 = 𝑋)) → (Fun ◡◡𝑅 → (𝑌𝑅𝑋 → (𝑌𝑅𝐴 → 𝐴 = 𝑋))))) | |
| 5 | 3, 4 | ax-mp 5 | 1 ⊢ ((∀𝑎(𝑌𝑅𝑎 → 𝑎 = 𝑋) → (𝑌𝑅𝐴 → 𝐴 = 𝑋)) → (Fun ◡◡𝑅 → (𝑌𝑅𝑋 → (𝑌𝑅𝐴 → 𝐴 = 𝑋)))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∀wal 1539 = wceq 1541 ∈ wcel 2111 class class class wbr 5093 ◡ccnv 5618 Fun wfun 6481 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-sep 5236 ax-nul 5246 ax-pr 5372 ax-frege1 43888 ax-frege2 43889 ax-frege8 43907 ax-frege52a 43955 ax-frege58b 43999 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-ifp 1063 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ral 3048 df-rex 3057 df-rab 3396 df-v 3438 df-sbc 3737 df-csb 3846 df-dif 3900 df-un 3902 df-ss 3914 df-nul 4283 df-if 4475 df-sn 4576 df-pr 4578 df-op 4582 df-br 5094 df-opab 5156 df-id 5514 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-fun 6489 |
| This theorem is referenced by: frege120 44081 |
| Copyright terms: Public domain | W3C validator |