![]() |
Mathbox for Richard Penner |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > frege71 | Structured version Visualization version GIF version |
Description: Lemma for frege72 43243. Proposition 71 of [Frege1879] p. 59. (Contributed by RP, 28-Mar-2020.) (Revised by RP, 3-Jul-2020.) (Proof modification is discouraged.) |
Ref | Expression |
---|---|
frege71.x | ⊢ 𝑋 ∈ 𝑉 |
Ref | Expression |
---|---|
frege71 | ⊢ ((∀𝑧(𝑋𝑅𝑧 → 𝑧 ∈ 𝐴) → (𝑋𝑅𝑌 → 𝑌 ∈ 𝐴)) → (𝑅 hereditary 𝐴 → (𝑋 ∈ 𝐴 → (𝑋𝑅𝑌 → 𝑌 ∈ 𝐴)))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | frege71.x | . . 3 ⊢ 𝑋 ∈ 𝑉 | |
2 | 1 | frege70 43241 | . 2 ⊢ (𝑅 hereditary 𝐴 → (𝑋 ∈ 𝐴 → ∀𝑧(𝑋𝑅𝑧 → 𝑧 ∈ 𝐴))) |
3 | frege19 43132 | . 2 ⊢ ((𝑅 hereditary 𝐴 → (𝑋 ∈ 𝐴 → ∀𝑧(𝑋𝑅𝑧 → 𝑧 ∈ 𝐴))) → ((∀𝑧(𝑋𝑅𝑧 → 𝑧 ∈ 𝐴) → (𝑋𝑅𝑌 → 𝑌 ∈ 𝐴)) → (𝑅 hereditary 𝐴 → (𝑋 ∈ 𝐴 → (𝑋𝑅𝑌 → 𝑌 ∈ 𝐴))))) | |
4 | 2, 3 | ax-mp 5 | 1 ⊢ ((∀𝑧(𝑋𝑅𝑧 → 𝑧 ∈ 𝐴) → (𝑋𝑅𝑌 → 𝑌 ∈ 𝐴)) → (𝑅 hereditary 𝐴 → (𝑋 ∈ 𝐴 → (𝑋𝑅𝑌 → 𝑌 ∈ 𝐴)))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∀wal 1531 ∈ wcel 2098 class class class wbr 5141 hereditary whe 43080 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2163 ax-ext 2697 ax-sep 5292 ax-nul 5299 ax-pr 5420 ax-frege1 43098 ax-frege2 43099 ax-frege8 43117 ax-frege52a 43165 ax-frege58b 43209 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-ifp 1060 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-clab 2704 df-cleq 2718 df-clel 2804 df-nfc 2879 df-ral 3056 df-rex 3065 df-rab 3427 df-v 3470 df-sbc 3773 df-csb 3889 df-dif 3946 df-un 3948 df-in 3950 df-ss 3960 df-nul 4318 df-if 4524 df-sn 4624 df-pr 4626 df-op 4630 df-br 5142 df-opab 5204 df-xp 5675 df-cnv 5677 df-dm 5679 df-rn 5680 df-res 5681 df-ima 5682 df-he 43081 |
This theorem is referenced by: frege72 43243 |
Copyright terms: Public domain | W3C validator |