Users' Mathboxes Mathbox for Richard Penner < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  frege71 Structured version   Visualization version   GIF version

Theorem frege71 43925
Description: Lemma for frege72 43926. Proposition 71 of [Frege1879] p. 59. (Contributed by RP, 28-Mar-2020.) (Revised by RP, 3-Jul-2020.) (Proof modification is discouraged.)
Hypothesis
Ref Expression
frege71.x 𝑋𝑉
Assertion
Ref Expression
frege71 ((∀𝑧(𝑋𝑅𝑧𝑧𝐴) → (𝑋𝑅𝑌𝑌𝐴)) → (𝑅 hereditary 𝐴 → (𝑋𝐴 → (𝑋𝑅𝑌𝑌𝐴))))
Distinct variable groups:   𝑧,𝐴   𝑧,𝑅   𝑧,𝑋
Allowed substitution hints:   𝑉(𝑧)   𝑌(𝑧)

Proof of Theorem frege71
StepHypRef Expression
1 frege71.x . . 3 𝑋𝑉
21frege70 43924 . 2 (𝑅 hereditary 𝐴 → (𝑋𝐴 → ∀𝑧(𝑋𝑅𝑧𝑧𝐴)))
3 frege19 43815 . 2 ((𝑅 hereditary 𝐴 → (𝑋𝐴 → ∀𝑧(𝑋𝑅𝑧𝑧𝐴))) → ((∀𝑧(𝑋𝑅𝑧𝑧𝐴) → (𝑋𝑅𝑌𝑌𝐴)) → (𝑅 hereditary 𝐴 → (𝑋𝐴 → (𝑋𝑅𝑌𝑌𝐴)))))
42, 3ax-mp 5 1 ((∀𝑧(𝑋𝑅𝑧𝑧𝐴) → (𝑋𝑅𝑌𝑌𝐴)) → (𝑅 hereditary 𝐴 → (𝑋𝐴 → (𝑋𝑅𝑌𝑌𝐴))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wal 1538  wcel 2109   class class class wbr 5124   hereditary whe 43763
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2708  ax-sep 5271  ax-nul 5281  ax-pr 5407  ax-frege1 43781  ax-frege2 43782  ax-frege8 43800  ax-frege52a 43848  ax-frege58b 43892
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-ifp 1063  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-clab 2715  df-cleq 2728  df-clel 2810  df-nfc 2886  df-ral 3053  df-rex 3062  df-rab 3421  df-v 3466  df-sbc 3771  df-csb 3880  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-nul 4314  df-if 4506  df-sn 4607  df-pr 4609  df-op 4613  df-br 5125  df-opab 5187  df-xp 5665  df-cnv 5667  df-dm 5669  df-rn 5670  df-res 5671  df-ima 5672  df-he 43764
This theorem is referenced by:  frege72  43926
  Copyright terms: Public domain W3C validator