Mathbox for Richard Penner |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > frege71 | Structured version Visualization version GIF version |
Description: Lemma for frege72 41405. Proposition 71 of [Frege1879] p. 59. (Contributed by RP, 28-Mar-2020.) (Revised by RP, 3-Jul-2020.) (Proof modification is discouraged.) |
Ref | Expression |
---|---|
frege71.x | ⊢ 𝑋 ∈ 𝑉 |
Ref | Expression |
---|---|
frege71 | ⊢ ((∀𝑧(𝑋𝑅𝑧 → 𝑧 ∈ 𝐴) → (𝑋𝑅𝑌 → 𝑌 ∈ 𝐴)) → (𝑅 hereditary 𝐴 → (𝑋 ∈ 𝐴 → (𝑋𝑅𝑌 → 𝑌 ∈ 𝐴)))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | frege71.x | . . 3 ⊢ 𝑋 ∈ 𝑉 | |
2 | 1 | frege70 41403 | . 2 ⊢ (𝑅 hereditary 𝐴 → (𝑋 ∈ 𝐴 → ∀𝑧(𝑋𝑅𝑧 → 𝑧 ∈ 𝐴))) |
3 | frege19 41294 | . 2 ⊢ ((𝑅 hereditary 𝐴 → (𝑋 ∈ 𝐴 → ∀𝑧(𝑋𝑅𝑧 → 𝑧 ∈ 𝐴))) → ((∀𝑧(𝑋𝑅𝑧 → 𝑧 ∈ 𝐴) → (𝑋𝑅𝑌 → 𝑌 ∈ 𝐴)) → (𝑅 hereditary 𝐴 → (𝑋 ∈ 𝐴 → (𝑋𝑅𝑌 → 𝑌 ∈ 𝐴))))) | |
4 | 2, 3 | ax-mp 5 | 1 ⊢ ((∀𝑧(𝑋𝑅𝑧 → 𝑧 ∈ 𝐴) → (𝑋𝑅𝑌 → 𝑌 ∈ 𝐴)) → (𝑅 hereditary 𝐴 → (𝑋 ∈ 𝐴 → (𝑋𝑅𝑌 → 𝑌 ∈ 𝐴)))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∀wal 1541 ∈ wcel 2112 class class class wbr 5070 hereditary whe 41242 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1803 ax-4 1817 ax-5 1918 ax-6 1976 ax-7 2016 ax-8 2114 ax-9 2122 ax-10 2143 ax-11 2160 ax-12 2177 ax-ext 2710 ax-sep 5216 ax-nul 5223 ax-pr 5346 ax-frege1 41260 ax-frege2 41261 ax-frege8 41279 ax-frege52a 41327 ax-frege58b 41371 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 848 df-ifp 1064 df-3an 1091 df-tru 1546 df-fal 1556 df-ex 1788 df-nf 1792 df-sb 2073 df-clab 2717 df-cleq 2731 df-clel 2818 df-nfc 2889 df-ral 3069 df-rex 3070 df-rab 3073 df-v 3425 df-sbc 3713 df-csb 3830 df-dif 3887 df-un 3889 df-in 3891 df-ss 3901 df-nul 4255 df-if 4457 df-sn 4559 df-pr 4561 df-op 4565 df-br 5071 df-opab 5133 df-xp 5585 df-cnv 5587 df-dm 5589 df-rn 5590 df-res 5591 df-ima 5592 df-he 41243 |
This theorem is referenced by: frege72 41405 |
Copyright terms: Public domain | W3C validator |