Users' Mathboxes Mathbox for Richard Penner < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  frege71 Structured version   Visualization version   GIF version

Theorem frege71 42685
Description: Lemma for frege72 42686. Proposition 71 of [Frege1879] p. 59. (Contributed by RP, 28-Mar-2020.) (Revised by RP, 3-Jul-2020.) (Proof modification is discouraged.)
Hypothesis
Ref Expression
frege71.x 𝑋𝑉
Assertion
Ref Expression
frege71 ((∀𝑧(𝑋𝑅𝑧𝑧𝐴) → (𝑋𝑅𝑌𝑌𝐴)) → (𝑅 hereditary 𝐴 → (𝑋𝐴 → (𝑋𝑅𝑌𝑌𝐴))))
Distinct variable groups:   𝑧,𝐴   𝑧,𝑅   𝑧,𝑋
Allowed substitution hints:   𝑉(𝑧)   𝑌(𝑧)

Proof of Theorem frege71
StepHypRef Expression
1 frege71.x . . 3 𝑋𝑉
21frege70 42684 . 2 (𝑅 hereditary 𝐴 → (𝑋𝐴 → ∀𝑧(𝑋𝑅𝑧𝑧𝐴)))
3 frege19 42575 . 2 ((𝑅 hereditary 𝐴 → (𝑋𝐴 → ∀𝑧(𝑋𝑅𝑧𝑧𝐴))) → ((∀𝑧(𝑋𝑅𝑧𝑧𝐴) → (𝑋𝑅𝑌𝑌𝐴)) → (𝑅 hereditary 𝐴 → (𝑋𝐴 → (𝑋𝑅𝑌𝑌𝐴)))))
42, 3ax-mp 5 1 ((∀𝑧(𝑋𝑅𝑧𝑧𝐴) → (𝑋𝑅𝑌𝑌𝐴)) → (𝑅 hereditary 𝐴 → (𝑋𝐴 → (𝑋𝑅𝑌𝑌𝐴))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wal 1540  wcel 2107   class class class wbr 5149   hereditary whe 42523
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2155  ax-12 2172  ax-ext 2704  ax-sep 5300  ax-nul 5307  ax-pr 5428  ax-frege1 42541  ax-frege2 42542  ax-frege8 42560  ax-frege52a 42608  ax-frege58b 42652
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-ifp 1063  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-nf 1787  df-sb 2069  df-clab 2711  df-cleq 2725  df-clel 2811  df-nfc 2886  df-ral 3063  df-rex 3072  df-rab 3434  df-v 3477  df-sbc 3779  df-csb 3895  df-dif 3952  df-un 3954  df-in 3956  df-ss 3966  df-nul 4324  df-if 4530  df-sn 4630  df-pr 4632  df-op 4636  df-br 5150  df-opab 5212  df-xp 5683  df-cnv 5685  df-dm 5687  df-rn 5688  df-res 5689  df-ima 5690  df-he 42524
This theorem is referenced by:  frege72  42686
  Copyright terms: Public domain W3C validator