Users' Mathboxes Mathbox for Richard Penner < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  frege71 Structured version   Visualization version   GIF version

Theorem frege71 43966
Description: Lemma for frege72 43967. Proposition 71 of [Frege1879] p. 59. (Contributed by RP, 28-Mar-2020.) (Revised by RP, 3-Jul-2020.) (Proof modification is discouraged.)
Hypothesis
Ref Expression
frege71.x 𝑋𝑉
Assertion
Ref Expression
frege71 ((∀𝑧(𝑋𝑅𝑧𝑧𝐴) → (𝑋𝑅𝑌𝑌𝐴)) → (𝑅 hereditary 𝐴 → (𝑋𝐴 → (𝑋𝑅𝑌𝑌𝐴))))
Distinct variable groups:   𝑧,𝐴   𝑧,𝑅   𝑧,𝑋
Allowed substitution hints:   𝑉(𝑧)   𝑌(𝑧)

Proof of Theorem frege71
StepHypRef Expression
1 frege71.x . . 3 𝑋𝑉
21frege70 43965 . 2 (𝑅 hereditary 𝐴 → (𝑋𝐴 → ∀𝑧(𝑋𝑅𝑧𝑧𝐴)))
3 frege19 43856 . 2 ((𝑅 hereditary 𝐴 → (𝑋𝐴 → ∀𝑧(𝑋𝑅𝑧𝑧𝐴))) → ((∀𝑧(𝑋𝑅𝑧𝑧𝐴) → (𝑋𝑅𝑌𝑌𝐴)) → (𝑅 hereditary 𝐴 → (𝑋𝐴 → (𝑋𝑅𝑌𝑌𝐴)))))
42, 3ax-mp 5 1 ((∀𝑧(𝑋𝑅𝑧𝑧𝐴) → (𝑋𝑅𝑌𝑌𝐴)) → (𝑅 hereditary 𝐴 → (𝑋𝐴 → (𝑋𝑅𝑌𝑌𝐴))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wal 1539  wcel 2111   class class class wbr 5091   hereditary whe 43804
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-sep 5234  ax-nul 5244  ax-pr 5370  ax-frege1 43822  ax-frege2 43823  ax-frege8 43841  ax-frege52a 43889  ax-frege58b 43933
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-ifp 1063  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ral 3048  df-rex 3057  df-rab 3396  df-v 3438  df-sbc 3742  df-csb 3851  df-dif 3905  df-un 3907  df-in 3909  df-ss 3919  df-nul 4284  df-if 4476  df-sn 4577  df-pr 4579  df-op 4583  df-br 5092  df-opab 5154  df-xp 5622  df-cnv 5624  df-dm 5626  df-rn 5627  df-res 5628  df-ima 5629  df-he 43805
This theorem is referenced by:  frege72  43967
  Copyright terms: Public domain W3C validator