Users' Mathboxes Mathbox for Richard Penner < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  frege71 Structured version   Visualization version   GIF version

Theorem frege71 43896
Description: Lemma for frege72 43897. Proposition 71 of [Frege1879] p. 59. (Contributed by RP, 28-Mar-2020.) (Revised by RP, 3-Jul-2020.) (Proof modification is discouraged.)
Hypothesis
Ref Expression
frege71.x 𝑋𝑉
Assertion
Ref Expression
frege71 ((∀𝑧(𝑋𝑅𝑧𝑧𝐴) → (𝑋𝑅𝑌𝑌𝐴)) → (𝑅 hereditary 𝐴 → (𝑋𝐴 → (𝑋𝑅𝑌𝑌𝐴))))
Distinct variable groups:   𝑧,𝐴   𝑧,𝑅   𝑧,𝑋
Allowed substitution hints:   𝑉(𝑧)   𝑌(𝑧)

Proof of Theorem frege71
StepHypRef Expression
1 frege71.x . . 3 𝑋𝑉
21frege70 43895 . 2 (𝑅 hereditary 𝐴 → (𝑋𝐴 → ∀𝑧(𝑋𝑅𝑧𝑧𝐴)))
3 frege19 43786 . 2 ((𝑅 hereditary 𝐴 → (𝑋𝐴 → ∀𝑧(𝑋𝑅𝑧𝑧𝐴))) → ((∀𝑧(𝑋𝑅𝑧𝑧𝐴) → (𝑋𝑅𝑌𝑌𝐴)) → (𝑅 hereditary 𝐴 → (𝑋𝐴 → (𝑋𝑅𝑌𝑌𝐴)))))
42, 3ax-mp 5 1 ((∀𝑧(𝑋𝑅𝑧𝑧𝐴) → (𝑋𝑅𝑌𝑌𝐴)) → (𝑅 hereditary 𝐴 → (𝑋𝐴 → (𝑋𝑅𝑌𝑌𝐴))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wal 1535  wcel 2108   class class class wbr 5166   hereditary whe 43734
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-sep 5317  ax-nul 5324  ax-pr 5447  ax-frege1 43752  ax-frege2 43753  ax-frege8 43771  ax-frege52a 43819  ax-frege58b 43863
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-ifp 1064  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ral 3068  df-rex 3077  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-nul 4353  df-if 4549  df-sn 4649  df-pr 4651  df-op 4655  df-br 5167  df-opab 5229  df-xp 5706  df-cnv 5708  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-he 43735
This theorem is referenced by:  frege72  43897
  Copyright terms: Public domain W3C validator