Users' Mathboxes Mathbox for Richard Penner < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  frege55b Structured version   Visualization version   GIF version

Theorem frege55b 44000
Description: Lemma for frege57b 44002. Proposition 55 of [Frege1879] p. 50.

Note that eqtr2 2752 incorporates eqcom 2738 which is stronger than this proposition which is identical to equcomi 2018. Is it possible that Frege tricked himself into assuming what he was out to prove? (Contributed by RP, 24-Dec-2019.) (Proof modification is discouraged.)

Assertion
Ref Expression
frege55b (𝑥 = 𝑦𝑦 = 𝑥)

Proof of Theorem frege55b
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 frege55lem2b 43999 . 2 (𝑥 = 𝑦 → [𝑦 / 𝑧]𝑧 = 𝑥)
2 dfsb1 2481 . . 3 ([𝑦 / 𝑧]𝑧 = 𝑥 ↔ ((𝑧 = 𝑦𝑧 = 𝑥) ∧ ∃𝑧(𝑧 = 𝑦𝑧 = 𝑥)))
3 eqtr2 2752 . . . . 5 ((𝑧 = 𝑦𝑧 = 𝑥) → 𝑦 = 𝑥)
43exlimiv 1931 . . . 4 (∃𝑧(𝑧 = 𝑦𝑧 = 𝑥) → 𝑦 = 𝑥)
54adantl 481 . . 3 (((𝑧 = 𝑦𝑧 = 𝑥) ∧ ∃𝑧(𝑧 = 𝑦𝑧 = 𝑥)) → 𝑦 = 𝑥)
62, 5sylbi 217 . 2 ([𝑦 / 𝑧]𝑧 = 𝑥𝑦 = 𝑥)
71, 6syl 17 1 (𝑥 = 𝑦𝑦 = 𝑥)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  wex 1780  [wsb 2067
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-12 2180  ax-13 2372  ax-ext 2703  ax-frege8 43912  ax-frege52c 43991
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-ex 1781  df-nf 1785  df-sb 2068  df-clab 2710  df-cleq 2723  df-clel 2806  df-sbc 3737
This theorem is referenced by:  frege56b  44001
  Copyright terms: Public domain W3C validator