Users' Mathboxes Mathbox for Richard Penner < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  frege55b Structured version   Visualization version   GIF version

Theorem frege55b 43858
Description: Lemma for frege57b 43860. Proposition 55 of [Frege1879] p. 50.

Note that eqtr2 2751 incorporates eqcom 2737 which is stronger than this proposition which is identical to equcomi 2017. Is it possible that Frege tricked himself into assuming what he was out to prove? (Contributed by RP, 24-Dec-2019.) (Proof modification is discouraged.)

Assertion
Ref Expression
frege55b (𝑥 = 𝑦𝑦 = 𝑥)

Proof of Theorem frege55b
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 frege55lem2b 43857 . 2 (𝑥 = 𝑦 → [𝑦 / 𝑧]𝑧 = 𝑥)
2 dfsb1 2480 . . 3 ([𝑦 / 𝑧]𝑧 = 𝑥 ↔ ((𝑧 = 𝑦𝑧 = 𝑥) ∧ ∃𝑧(𝑧 = 𝑦𝑧 = 𝑥)))
3 eqtr2 2751 . . . . 5 ((𝑧 = 𝑦𝑧 = 𝑥) → 𝑦 = 𝑥)
43exlimiv 1930 . . . 4 (∃𝑧(𝑧 = 𝑦𝑧 = 𝑥) → 𝑦 = 𝑥)
54adantl 481 . . 3 (((𝑧 = 𝑦𝑧 = 𝑥) ∧ ∃𝑧(𝑧 = 𝑦𝑧 = 𝑥)) → 𝑦 = 𝑥)
62, 5sylbi 217 . 2 ([𝑦 / 𝑧]𝑧 = 𝑥𝑦 = 𝑥)
71, 6syl 17 1 (𝑥 = 𝑦𝑦 = 𝑥)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  wex 1779  [wsb 2065
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-12 2178  ax-13 2371  ax-ext 2702  ax-frege8 43770  ax-frege52c 43849
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-ex 1780  df-nf 1784  df-sb 2066  df-clab 2709  df-cleq 2722  df-clel 2804  df-sbc 3762
This theorem is referenced by:  frege56b  43859
  Copyright terms: Public domain W3C validator