![]() |
Mathbox for Richard Penner |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > frege55b | Structured version Visualization version GIF version |
Description: Lemma for frege57b 43903. Proposition 55 of [Frege1879] p. 50.
Note that eqtr2 2760 incorporates eqcom 2743 which is stronger than this proposition which is identical to equcomi 2015. Is it possible that Frege tricked himself into assuming what he was out to prove? (Contributed by RP, 24-Dec-2019.) (Proof modification is discouraged.) |
Ref | Expression |
---|---|
frege55b | ⊢ (𝑥 = 𝑦 → 𝑦 = 𝑥) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | frege55lem2b 43900 | . 2 ⊢ (𝑥 = 𝑦 → [𝑦 / 𝑧]𝑧 = 𝑥) | |
2 | dfsb1 2485 | . . 3 ⊢ ([𝑦 / 𝑧]𝑧 = 𝑥 ↔ ((𝑧 = 𝑦 → 𝑧 = 𝑥) ∧ ∃𝑧(𝑧 = 𝑦 ∧ 𝑧 = 𝑥))) | |
3 | eqtr2 2760 | . . . . 5 ⊢ ((𝑧 = 𝑦 ∧ 𝑧 = 𝑥) → 𝑦 = 𝑥) | |
4 | 3 | exlimiv 1929 | . . . 4 ⊢ (∃𝑧(𝑧 = 𝑦 ∧ 𝑧 = 𝑥) → 𝑦 = 𝑥) |
5 | 4 | adantl 481 | . . 3 ⊢ (((𝑧 = 𝑦 → 𝑧 = 𝑥) ∧ ∃𝑧(𝑧 = 𝑦 ∧ 𝑧 = 𝑥)) → 𝑦 = 𝑥) |
6 | 2, 5 | sylbi 217 | . 2 ⊢ ([𝑦 / 𝑧]𝑧 = 𝑥 → 𝑦 = 𝑥) |
7 | 1, 6 | syl 17 | 1 ⊢ (𝑥 = 𝑦 → 𝑦 = 𝑥) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 ∃wex 1777 [wsb 2063 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-12 2176 ax-13 2376 ax-ext 2707 ax-frege8 43813 ax-frege52c 43892 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-ex 1778 df-nf 1782 df-sb 2064 df-clab 2714 df-cleq 2728 df-clel 2815 df-sbc 3793 |
This theorem is referenced by: frege56b 43902 |
Copyright terms: Public domain | W3C validator |