| Mathbox for Richard Penner |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > frege55b | Structured version Visualization version GIF version | ||
| Description: Lemma for frege57b 44002. Proposition 55 of [Frege1879] p. 50.
Note that eqtr2 2752 incorporates eqcom 2738 which is stronger than this proposition which is identical to equcomi 2018. Is it possible that Frege tricked himself into assuming what he was out to prove? (Contributed by RP, 24-Dec-2019.) (Proof modification is discouraged.) |
| Ref | Expression |
|---|---|
| frege55b | ⊢ (𝑥 = 𝑦 → 𝑦 = 𝑥) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | frege55lem2b 43999 | . 2 ⊢ (𝑥 = 𝑦 → [𝑦 / 𝑧]𝑧 = 𝑥) | |
| 2 | dfsb1 2481 | . . 3 ⊢ ([𝑦 / 𝑧]𝑧 = 𝑥 ↔ ((𝑧 = 𝑦 → 𝑧 = 𝑥) ∧ ∃𝑧(𝑧 = 𝑦 ∧ 𝑧 = 𝑥))) | |
| 3 | eqtr2 2752 | . . . . 5 ⊢ ((𝑧 = 𝑦 ∧ 𝑧 = 𝑥) → 𝑦 = 𝑥) | |
| 4 | 3 | exlimiv 1931 | . . . 4 ⊢ (∃𝑧(𝑧 = 𝑦 ∧ 𝑧 = 𝑥) → 𝑦 = 𝑥) |
| 5 | 4 | adantl 481 | . . 3 ⊢ (((𝑧 = 𝑦 → 𝑧 = 𝑥) ∧ ∃𝑧(𝑧 = 𝑦 ∧ 𝑧 = 𝑥)) → 𝑦 = 𝑥) |
| 6 | 2, 5 | sylbi 217 | . 2 ⊢ ([𝑦 / 𝑧]𝑧 = 𝑥 → 𝑦 = 𝑥) |
| 7 | 1, 6 | syl 17 | 1 ⊢ (𝑥 = 𝑦 → 𝑦 = 𝑥) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∃wex 1780 [wsb 2067 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-12 2180 ax-13 2372 ax-ext 2703 ax-frege8 43912 ax-frege52c 43991 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-ex 1781 df-nf 1785 df-sb 2068 df-clab 2710 df-cleq 2723 df-clel 2806 df-sbc 3737 |
| This theorem is referenced by: frege56b 44001 |
| Copyright terms: Public domain | W3C validator |