Mathbox for Richard Penner |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > frege55b | Structured version Visualization version GIF version |
Description: Lemma for frege57b 41880. Proposition 55 of [Frege1879] p. 50.
Note that eqtr2 2761 incorporates eqcom 2744 which is stronger than this proposition which is identical to equcomi 2020. Is it possible that Frege tricked himself into assuming what he was out to prove? (Contributed by RP, 24-Dec-2019.) (Proof modification is discouraged.) |
Ref | Expression |
---|---|
frege55b | ⊢ (𝑥 = 𝑦 → 𝑦 = 𝑥) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | frege55lem2b 41877 | . 2 ⊢ (𝑥 = 𝑦 → [𝑦 / 𝑧]𝑧 = 𝑥) | |
2 | dfsb1 2484 | . . 3 ⊢ ([𝑦 / 𝑧]𝑧 = 𝑥 ↔ ((𝑧 = 𝑦 → 𝑧 = 𝑥) ∧ ∃𝑧(𝑧 = 𝑦 ∧ 𝑧 = 𝑥))) | |
3 | eqtr2 2761 | . . . . 5 ⊢ ((𝑧 = 𝑦 ∧ 𝑧 = 𝑥) → 𝑦 = 𝑥) | |
4 | 3 | exlimiv 1933 | . . . 4 ⊢ (∃𝑧(𝑧 = 𝑦 ∧ 𝑧 = 𝑥) → 𝑦 = 𝑥) |
5 | 4 | adantl 483 | . . 3 ⊢ (((𝑧 = 𝑦 → 𝑧 = 𝑥) ∧ ∃𝑧(𝑧 = 𝑦 ∧ 𝑧 = 𝑥)) → 𝑦 = 𝑥) |
6 | 2, 5 | sylbi 216 | . 2 ⊢ ([𝑦 / 𝑧]𝑧 = 𝑥 → 𝑦 = 𝑥) |
7 | 1, 6 | syl 17 | 1 ⊢ (𝑥 = 𝑦 → 𝑦 = 𝑥) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 397 ∃wex 1781 [wsb 2067 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-12 2171 ax-13 2371 ax-ext 2708 ax-frege8 41790 ax-frege52c 41869 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 846 df-ex 1782 df-nf 1786 df-sb 2068 df-clab 2715 df-cleq 2729 df-clel 2815 df-sbc 3731 |
This theorem is referenced by: frege56b 41879 |
Copyright terms: Public domain | W3C validator |