Mathbox for Richard Penner < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  frege64c Structured version   Visualization version   GIF version

Theorem frege64c 39060
 Description: Lemma for frege65c 39061. Proposition 64 of [Frege1879] p. 53. (Contributed by RP, 24-Dec-2019.) (Proof modification is discouraged.)
Hypothesis
Ref Expression
frege59c.a 𝐴𝐵
Assertion
Ref Expression
frege64c (([𝐶 / 𝑥]𝜑[𝐴 / 𝑥]𝜓) → (∀𝑥(𝜓𝜒) → ([𝐶 / 𝑥]𝜑[𝐴 / 𝑥]𝜒)))

Proof of Theorem frege64c
StepHypRef Expression
1 frege59c.a . . 3 𝐴𝐵
21frege62c 39058 . 2 ([𝐴 / 𝑥]𝜓 → (∀𝑥(𝜓𝜒) → [𝐴 / 𝑥]𝜒))
3 frege18 38951 . 2 (([𝐴 / 𝑥]𝜓 → (∀𝑥(𝜓𝜒) → [𝐴 / 𝑥]𝜒)) → (([𝐶 / 𝑥]𝜑[𝐴 / 𝑥]𝜓) → (∀𝑥(𝜓𝜒) → ([𝐶 / 𝑥]𝜑[𝐴 / 𝑥]𝜒))))
42, 3ax-mp 5 1 (([𝐶 / 𝑥]𝜑[𝐴 / 𝑥]𝜓) → (∀𝑥(𝜓𝜒) → ([𝐶 / 𝑥]𝜑[𝐴 / 𝑥]𝜒)))
 Colors of variables: wff setvar class Syntax hints:   → wi 4  ∀wal 1654   ∈ wcel 2164  [wsbc 3662 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1894  ax-4 1908  ax-5 2009  ax-6 2075  ax-7 2112  ax-9 2173  ax-10 2192  ax-12 2220  ax-13 2389  ax-ext 2803  ax-frege1 38923  ax-frege2 38924  ax-frege8 38942  ax-frege58b 39034 This theorem depends on definitions:  df-bi 199  df-an 387  df-or 879  df-tru 1660  df-ex 1879  df-nf 1883  df-sb 2068  df-clab 2812  df-cleq 2818  df-clel 2821  df-v 3416  df-sbc 3663 This theorem is referenced by:  frege65c  39061
 Copyright terms: Public domain W3C validator