| Mathbox for Richard Penner |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > frege65c | Structured version Visualization version GIF version | ||
| Description: A kind of Aristotelian inference. This judgement replaces the mode of inference barbara 2657 when the minor premise has a general context. Proposition 65 of [Frege1879] p. 53. (Contributed by RP, 24-Dec-2019.) (Proof modification is discouraged.) |
| Ref | Expression |
|---|---|
| frege59c.a | ⊢ 𝐴 ∈ 𝐵 |
| Ref | Expression |
|---|---|
| frege65c | ⊢ (∀𝑥(𝜑 → 𝜓) → (∀𝑥(𝜓 → 𝜒) → ([𝐴 / 𝑥]𝜑 → [𝐴 / 𝑥]𝜒))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sbcim1 3815 | . . 3 ⊢ ([𝐴 / 𝑥](𝜑 → 𝜓) → ([𝐴 / 𝑥]𝜑 → [𝐴 / 𝑥]𝜓)) | |
| 2 | frege59c.a | . . . 4 ⊢ 𝐴 ∈ 𝐵 | |
| 3 | 2 | frege64c 43888 | . . 3 ⊢ (([𝐴 / 𝑥]𝜑 → [𝐴 / 𝑥]𝜓) → (∀𝑥(𝜓 → 𝜒) → ([𝐴 / 𝑥]𝜑 → [𝐴 / 𝑥]𝜒))) |
| 4 | 1, 3 | syl 17 | . 2 ⊢ ([𝐴 / 𝑥](𝜑 → 𝜓) → (∀𝑥(𝜓 → 𝜒) → ([𝐴 / 𝑥]𝜑 → [𝐴 / 𝑥]𝜒))) |
| 5 | 2 | frege61c 43885 | . 2 ⊢ (([𝐴 / 𝑥](𝜑 → 𝜓) → (∀𝑥(𝜓 → 𝜒) → ([𝐴 / 𝑥]𝜑 → [𝐴 / 𝑥]𝜒))) → (∀𝑥(𝜑 → 𝜓) → (∀𝑥(𝜓 → 𝜒) → ([𝐴 / 𝑥]𝜑 → [𝐴 / 𝑥]𝜒)))) |
| 6 | 4, 5 | ax-mp 5 | 1 ⊢ (∀𝑥(𝜑 → 𝜓) → (∀𝑥(𝜓 → 𝜒) → ([𝐴 / 𝑥]𝜑 → [𝐴 / 𝑥]𝜒))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∀wal 1538 ∈ wcel 2109 [wsbc 3761 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2702 ax-frege1 43751 ax-frege2 43752 ax-frege8 43770 ax-frege58b 43862 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1543 df-ex 1780 df-sb 2066 df-clab 2709 df-cleq 2722 df-clel 2804 df-v 3457 df-sbc 3762 |
| This theorem is referenced by: frege66c 43890 |
| Copyright terms: Public domain | W3C validator |