Users' Mathboxes Mathbox for Richard Penner < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  frege65c Structured version   Visualization version   GIF version

Theorem frege65c 43941
Description: A kind of Aristotelian inference. This judgement replaces the mode of inference barbara 2663 when the minor premise has a general context. Proposition 65 of [Frege1879] p. 53. (Contributed by RP, 24-Dec-2019.) (Proof modification is discouraged.)
Hypothesis
Ref Expression
frege59c.a 𝐴𝐵
Assertion
Ref Expression
frege65c (∀𝑥(𝜑𝜓) → (∀𝑥(𝜓𝜒) → ([𝐴 / 𝑥]𝜑[𝐴 / 𝑥]𝜒)))

Proof of Theorem frege65c
StepHypRef Expression
1 sbcim1 3842 . . 3 ([𝐴 / 𝑥](𝜑𝜓) → ([𝐴 / 𝑥]𝜑[𝐴 / 𝑥]𝜓))
2 frege59c.a . . . 4 𝐴𝐵
32frege64c 43940 . . 3 (([𝐴 / 𝑥]𝜑[𝐴 / 𝑥]𝜓) → (∀𝑥(𝜓𝜒) → ([𝐴 / 𝑥]𝜑[𝐴 / 𝑥]𝜒)))
41, 3syl 17 . 2 ([𝐴 / 𝑥](𝜑𝜓) → (∀𝑥(𝜓𝜒) → ([𝐴 / 𝑥]𝜑[𝐴 / 𝑥]𝜒)))
52frege61c 43937 . 2 (([𝐴 / 𝑥](𝜑𝜓) → (∀𝑥(𝜓𝜒) → ([𝐴 / 𝑥]𝜑[𝐴 / 𝑥]𝜒))) → (∀𝑥(𝜑𝜓) → (∀𝑥(𝜓𝜒) → ([𝐴 / 𝑥]𝜑[𝐴 / 𝑥]𝜒))))
64, 5ax-mp 5 1 (∀𝑥(𝜑𝜓) → (∀𝑥(𝜓𝜒) → ([𝐴 / 𝑥]𝜑[𝐴 / 𝑥]𝜒)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wal 1538  wcel 2108  [wsbc 3788
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-ext 2708  ax-frege1 43803  ax-frege2 43804  ax-frege8 43822  ax-frege58b 43914
This theorem depends on definitions:  df-bi 207  df-an 396  df-tru 1543  df-ex 1780  df-sb 2065  df-clab 2715  df-cleq 2729  df-clel 2816  df-v 3482  df-sbc 3789
This theorem is referenced by:  frege66c  43942
  Copyright terms: Public domain W3C validator