Users' Mathboxes Mathbox for Richard Penner < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  frege66c Structured version   Visualization version   GIF version

Theorem frege66c 42275
Description: Swap antecedents of frege65c 42274. Proposition 66 of [Frege1879] p. 54. (Contributed by RP, 24-Dec-2019.) (Proof modification is discouraged.)
Hypothesis
Ref Expression
frege59c.a 𝐴𝐵
Assertion
Ref Expression
frege66c (∀𝑥(𝜑𝜓) → (∀𝑥(𝜒𝜑) → ([𝐴 / 𝑥]𝜒[𝐴 / 𝑥]𝜓)))

Proof of Theorem frege66c
StepHypRef Expression
1 frege59c.a . . 3 𝐴𝐵
21frege65c 42274 . 2 (∀𝑥(𝜒𝜑) → (∀𝑥(𝜑𝜓) → ([𝐴 / 𝑥]𝜒[𝐴 / 𝑥]𝜓)))
3 ax-frege8 42155 . 2 ((∀𝑥(𝜒𝜑) → (∀𝑥(𝜑𝜓) → ([𝐴 / 𝑥]𝜒[𝐴 / 𝑥]𝜓))) → (∀𝑥(𝜑𝜓) → (∀𝑥(𝜒𝜑) → ([𝐴 / 𝑥]𝜒[𝐴 / 𝑥]𝜓))))
42, 3ax-mp 5 1 (∀𝑥(𝜑𝜓) → (∀𝑥(𝜒𝜑) → ([𝐴 / 𝑥]𝜒[𝐴 / 𝑥]𝜓)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wal 1540  wcel 2107  [wsbc 3744
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-ext 2708  ax-frege1 42136  ax-frege2 42137  ax-frege8 42155  ax-frege58b 42247
This theorem depends on definitions:  df-bi 206  df-an 398  df-tru 1545  df-ex 1783  df-sb 2069  df-clab 2715  df-cleq 2729  df-clel 2815  df-v 3450  df-sbc 3745
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator