Mathbox for Richard Penner |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > frege66c | Structured version Visualization version GIF version |
Description: Swap antecedents of frege65c 41398. Proposition 66 of [Frege1879] p. 54. (Contributed by RP, 24-Dec-2019.) (Proof modification is discouraged.) |
Ref | Expression |
---|---|
frege59c.a | ⊢ 𝐴 ∈ 𝐵 |
Ref | Expression |
---|---|
frege66c | ⊢ (∀𝑥(𝜑 → 𝜓) → (∀𝑥(𝜒 → 𝜑) → ([𝐴 / 𝑥]𝜒 → [𝐴 / 𝑥]𝜓))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | frege59c.a | . . 3 ⊢ 𝐴 ∈ 𝐵 | |
2 | 1 | frege65c 41398 | . 2 ⊢ (∀𝑥(𝜒 → 𝜑) → (∀𝑥(𝜑 → 𝜓) → ([𝐴 / 𝑥]𝜒 → [𝐴 / 𝑥]𝜓))) |
3 | ax-frege8 41279 | . 2 ⊢ ((∀𝑥(𝜒 → 𝜑) → (∀𝑥(𝜑 → 𝜓) → ([𝐴 / 𝑥]𝜒 → [𝐴 / 𝑥]𝜓))) → (∀𝑥(𝜑 → 𝜓) → (∀𝑥(𝜒 → 𝜑) → ([𝐴 / 𝑥]𝜒 → [𝐴 / 𝑥]𝜓)))) | |
4 | 2, 3 | ax-mp 5 | 1 ⊢ (∀𝑥(𝜑 → 𝜓) → (∀𝑥(𝜒 → 𝜑) → ([𝐴 / 𝑥]𝜒 → [𝐴 / 𝑥]𝜓))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∀wal 1541 ∈ wcel 2112 [wsbc 3712 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1803 ax-4 1817 ax-5 1918 ax-6 1976 ax-7 2016 ax-8 2114 ax-9 2122 ax-ext 2710 ax-frege1 41260 ax-frege2 41261 ax-frege8 41279 ax-frege58b 41371 |
This theorem depends on definitions: df-bi 210 df-an 400 df-tru 1546 df-ex 1788 df-sb 2073 df-clab 2717 df-cleq 2731 df-clel 2818 df-v 3425 df-sbc 3713 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |