Mathbox for Richard Penner |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > frege67c | Structured version Visualization version GIF version |
Description: Lemma for frege68c 41539. Proposition 67 of [Frege1879] p. 54. (Contributed by RP, 24-Dec-2019.) (Proof modification is discouraged.) |
Ref | Expression |
---|---|
frege59c.a | ⊢ 𝐴 ∈ 𝐵 |
Ref | Expression |
---|---|
frege67c | ⊢ (((∀𝑥𝜑 ↔ 𝜓) → (𝜓 → ∀𝑥𝜑)) → ((∀𝑥𝜑 ↔ 𝜓) → (𝜓 → [𝐴 / 𝑥]𝜑))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | frege59c.a | . . 3 ⊢ 𝐴 ∈ 𝐵 | |
2 | 1 | frege58c 41529 | . 2 ⊢ (∀𝑥𝜑 → [𝐴 / 𝑥]𝜑) |
3 | frege7 41416 | . 2 ⊢ ((∀𝑥𝜑 → [𝐴 / 𝑥]𝜑) → (((∀𝑥𝜑 ↔ 𝜓) → (𝜓 → ∀𝑥𝜑)) → ((∀𝑥𝜑 ↔ 𝜓) → (𝜓 → [𝐴 / 𝑥]𝜑)))) | |
4 | 2, 3 | ax-mp 5 | 1 ⊢ (((∀𝑥𝜑 ↔ 𝜓) → (𝜓 → ∀𝑥𝜑)) → ((∀𝑥𝜑 ↔ 𝜓) → (𝜓 → [𝐴 / 𝑥]𝜑))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∀wal 1537 ∈ wcel 2106 [wsbc 3716 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-ext 2709 ax-frege1 41398 ax-frege2 41399 ax-frege58b 41509 |
This theorem depends on definitions: df-bi 206 df-an 397 df-tru 1542 df-ex 1783 df-sb 2068 df-clab 2716 df-cleq 2730 df-clel 2816 df-sbc 3717 |
This theorem is referenced by: frege68c 41539 |
Copyright terms: Public domain | W3C validator |