![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > con4bid | Structured version Visualization version GIF version |
Description: A contraposition deduction. (Contributed by NM, 21-May-1994.) |
Ref | Expression |
---|---|
con4bid.1 | ⊢ (𝜑 → (¬ 𝜓 ↔ ¬ 𝜒)) |
Ref | Expression |
---|---|
con4bid | ⊢ (𝜑 → (𝜓 ↔ 𝜒)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | con4bid.1 | . . . 4 ⊢ (𝜑 → (¬ 𝜓 ↔ ¬ 𝜒)) | |
2 | 1 | biimprd 248 | . . 3 ⊢ (𝜑 → (¬ 𝜒 → ¬ 𝜓)) |
3 | 2 | con4d 115 | . 2 ⊢ (𝜑 → (𝜓 → 𝜒)) |
4 | 1 | biimpd 229 | . 2 ⊢ (𝜑 → (¬ 𝜓 → ¬ 𝜒)) |
5 | 3, 4 | impcon4bid 227 | 1 ⊢ (𝜑 → (𝜓 ↔ 𝜒)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 206 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 207 |
This theorem is referenced by: notbid 318 notbi 319 2falsed 376 had0 1601 cbvexdvaw 2036 cbvexdw 2340 cbvexd 2411 cbvrexdva 3238 raleq 3321 rexeqbidvvOLD 3335 cbvrexdva2 3347 rexeqf 3352 cbvexeqsetf 3493 sbcne12 4421 ordsucuniel 7844 rankr1a 9874 ltaddsub 11735 leaddsub 11737 supxrbnd1 13360 supxrbnd2 13361 ioo0 13409 ico0 13430 ioc0 13431 icc0 13432 fllt 13843 rabssnn0fi 14024 elcls 23097 sltrec 27880 rusgrnumwwlks 30004 chrelat3 32400 bj-equsexvwd 36764 wl-sb8eft 37532 wl-sb8et 37534 wl-issetft 37563 infxrbnd2 45319 oddprmne2 47640 nnolog2flm1 48440 |
Copyright terms: Public domain | W3C validator |