![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > con4bid | Structured version Visualization version GIF version |
Description: A contraposition deduction. (Contributed by NM, 21-May-1994.) |
Ref | Expression |
---|---|
con4bid.1 | ⊢ (𝜑 → (¬ 𝜓 ↔ ¬ 𝜒)) |
Ref | Expression |
---|---|
con4bid | ⊢ (𝜑 → (𝜓 ↔ 𝜒)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | con4bid.1 | . . . 4 ⊢ (𝜑 → (¬ 𝜓 ↔ ¬ 𝜒)) | |
2 | 1 | biimprd 248 | . . 3 ⊢ (𝜑 → (¬ 𝜒 → ¬ 𝜓)) |
3 | 2 | con4d 115 | . 2 ⊢ (𝜑 → (𝜓 → 𝜒)) |
4 | 1 | biimpd 229 | . 2 ⊢ (𝜑 → (¬ 𝜓 → ¬ 𝜒)) |
5 | 3, 4 | impcon4bid 227 | 1 ⊢ (𝜑 → (𝜓 ↔ 𝜒)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 206 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 207 |
This theorem is referenced by: notbid 318 notbi 319 2falsed 376 had0 1601 cbvexdvaw 2038 cbvexdw 2345 cbvexd 2416 cbvrexdva 3246 raleq 3331 rexeqbidvvOLD 3345 cbvrexdva2 3357 rexeqf 3362 cbvexeqsetf 3503 sbcne12 4438 ordsucuniel 7860 rankr1a 9905 ltaddsub 11764 leaddsub 11766 supxrbnd1 13383 supxrbnd2 13384 ioo0 13432 ico0 13453 ioc0 13454 icc0 13455 fllt 13857 rabssnn0fi 14037 elcls 23102 sltrec 27883 rusgrnumwwlks 30007 chrelat3 32403 bj-equsexvwd 36747 wl-sb8eft 37505 wl-sb8et 37507 wl-issetft 37536 infxrbnd2 45284 oddprmne2 47589 nnolog2flm1 48324 |
Copyright terms: Public domain | W3C validator |