Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > con4bid | Structured version Visualization version GIF version |
Description: A contraposition deduction. (Contributed by NM, 21-May-1994.) |
Ref | Expression |
---|---|
con4bid.1 | ⊢ (𝜑 → (¬ 𝜓 ↔ ¬ 𝜒)) |
Ref | Expression |
---|---|
con4bid | ⊢ (𝜑 → (𝜓 ↔ 𝜒)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | con4bid.1 | . . . 4 ⊢ (𝜑 → (¬ 𝜓 ↔ ¬ 𝜒)) | |
2 | 1 | biimprd 247 | . . 3 ⊢ (𝜑 → (¬ 𝜒 → ¬ 𝜓)) |
3 | 2 | con4d 115 | . 2 ⊢ (𝜑 → (𝜓 → 𝜒)) |
4 | 1 | biimpd 228 | . 2 ⊢ (𝜑 → (¬ 𝜓 → ¬ 𝜒)) |
5 | 3, 4 | impcon4bid 226 | 1 ⊢ (𝜑 → (𝜓 ↔ 𝜒)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 205 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 |
This theorem is referenced by: notbid 317 notbi 318 2falsed 376 had0 1607 cbvexdvaw 2043 cbvexdw 2338 cbvexd 2408 rexeqbidvv 3330 vtoclgft 3482 sbcne12 4343 ordsucuniel 7646 rankr1a 9525 ltaddsub 11379 leaddsub 11381 supxrbnd1 12984 supxrbnd2 12985 ioo0 13033 ico0 13054 ioc0 13055 icc0 13056 fllt 13454 rabssnn0fi 13634 elcls 22132 rusgrnumwwlks 28240 chrelat3 30634 sltrec 33941 bj-equsexvwd 34890 wl-sb8et 35635 infxrbnd2 42798 oddprmne2 45055 nnolog2flm1 45824 |
Copyright terms: Public domain | W3C validator |