| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > con4bid | Structured version Visualization version GIF version | ||
| Description: A contraposition deduction. (Contributed by NM, 21-May-1994.) |
| Ref | Expression |
|---|---|
| con4bid.1 | ⊢ (𝜑 → (¬ 𝜓 ↔ ¬ 𝜒)) |
| Ref | Expression |
|---|---|
| con4bid | ⊢ (𝜑 → (𝜓 ↔ 𝜒)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | con4bid.1 | . . . 4 ⊢ (𝜑 → (¬ 𝜓 ↔ ¬ 𝜒)) | |
| 2 | 1 | biimprd 248 | . . 3 ⊢ (𝜑 → (¬ 𝜒 → ¬ 𝜓)) |
| 3 | 2 | con4d 115 | . 2 ⊢ (𝜑 → (𝜓 → 𝜒)) |
| 4 | 1 | biimpd 229 | . 2 ⊢ (𝜑 → (¬ 𝜓 → ¬ 𝜒)) |
| 5 | 3, 4 | impcon4bid 227 | 1 ⊢ (𝜑 → (𝜓 ↔ 𝜒)) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ↔ wb 206 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 |
| This theorem is referenced by: notbid 318 notbi 319 2falsed 376 had0 1604 cbvexdvaw 2039 cbvexdw 2337 cbvexd 2406 cbvrexdva 3216 raleq 3293 rexeqbidvvOLD 3307 cbvrexdva2 3319 rexeqf 3327 cbvexeqsetf 3459 sbcne12 4374 ordsucuniel 7779 rankr1a 9765 ltaddsub 11628 leaddsub 11630 supxrbnd1 13257 supxrbnd2 13258 ioo0 13307 ico0 13328 ioc0 13329 icc0 13330 fllt 13744 rabssnn0fi 13927 elcls 22936 sltrec 27708 rusgrnumwwlks 29877 chrelat3 32273 bj-equsexvwd 36742 wl-sb8eft 37512 wl-sb8et 37514 wl-issetft 37543 infxrbnd2 45338 oddprmne2 47689 nnolog2flm1 48552 |
| Copyright terms: Public domain | W3C validator |