| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > con4bid | Structured version Visualization version GIF version | ||
| Description: A contraposition deduction. (Contributed by NM, 21-May-1994.) |
| Ref | Expression |
|---|---|
| con4bid.1 | ⊢ (𝜑 → (¬ 𝜓 ↔ ¬ 𝜒)) |
| Ref | Expression |
|---|---|
| con4bid | ⊢ (𝜑 → (𝜓 ↔ 𝜒)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | con4bid.1 | . . . 4 ⊢ (𝜑 → (¬ 𝜓 ↔ ¬ 𝜒)) | |
| 2 | 1 | biimprd 248 | . . 3 ⊢ (𝜑 → (¬ 𝜒 → ¬ 𝜓)) |
| 3 | 2 | con4d 115 | . 2 ⊢ (𝜑 → (𝜓 → 𝜒)) |
| 4 | 1 | biimpd 229 | . 2 ⊢ (𝜑 → (¬ 𝜓 → ¬ 𝜒)) |
| 5 | 3, 4 | impcon4bid 227 | 1 ⊢ (𝜑 → (𝜓 ↔ 𝜒)) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ↔ wb 206 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 |
| This theorem is referenced by: notbid 318 notbi 319 2falsed 376 had0 1605 cbvexdvaw 2040 cbvexdw 2339 cbvexd 2408 cbvrexdva 3213 raleq 3289 rexeqbidvvOLD 3303 cbvrexdva2 3315 rexeqf 3322 cbvexeqsetf 3451 sbcne12 4362 ordsucuniel 7754 rankr1a 9729 ltaddsub 11591 leaddsub 11593 supxrbnd1 13220 supxrbnd2 13221 ioo0 13270 ico0 13291 ioc0 13292 icc0 13293 fllt 13710 rabssnn0fi 13893 elcls 22988 sltrec 27762 rusgrnumwwlks 29955 chrelat3 32351 bj-equsexvwd 36825 wl-sb8eft 37595 wl-sb8et 37597 wl-issetft 37626 infxrbnd2 45477 oddprmne2 47825 nnolog2flm1 48701 |
| Copyright terms: Public domain | W3C validator |