| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > con4bid | Structured version Visualization version GIF version | ||
| Description: A contraposition deduction. (Contributed by NM, 21-May-1994.) |
| Ref | Expression |
|---|---|
| con4bid.1 | ⊢ (𝜑 → (¬ 𝜓 ↔ ¬ 𝜒)) |
| Ref | Expression |
|---|---|
| con4bid | ⊢ (𝜑 → (𝜓 ↔ 𝜒)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | con4bid.1 | . . . 4 ⊢ (𝜑 → (¬ 𝜓 ↔ ¬ 𝜒)) | |
| 2 | 1 | biimprd 248 | . . 3 ⊢ (𝜑 → (¬ 𝜒 → ¬ 𝜓)) |
| 3 | 2 | con4d 115 | . 2 ⊢ (𝜑 → (𝜓 → 𝜒)) |
| 4 | 1 | biimpd 229 | . 2 ⊢ (𝜑 → (¬ 𝜓 → ¬ 𝜒)) |
| 5 | 3, 4 | impcon4bid 227 | 1 ⊢ (𝜑 → (𝜓 ↔ 𝜒)) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ↔ wb 206 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 |
| This theorem is referenced by: notbid 318 notbi 319 2falsed 376 had0 1604 cbvexdvaw 2039 cbvexdw 2337 cbvexd 2406 cbvrexdva 3218 raleq 3296 rexeqbidvvOLD 3310 cbvrexdva2 3322 rexeqf 3330 cbvexeqsetf 3462 sbcne12 4378 ordsucuniel 7799 rankr1a 9789 ltaddsub 11652 leaddsub 11654 supxrbnd1 13281 supxrbnd2 13282 ioo0 13331 ico0 13352 ioc0 13353 icc0 13354 fllt 13768 rabssnn0fi 13951 elcls 22960 sltrec 27732 rusgrnumwwlks 29904 chrelat3 32300 bj-equsexvwd 36769 wl-sb8eft 37539 wl-sb8et 37541 wl-issetft 37570 infxrbnd2 45365 oddprmne2 47716 nnolog2flm1 48579 |
| Copyright terms: Public domain | W3C validator |