| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > con4bid | Structured version Visualization version GIF version | ||
| Description: A contraposition deduction. (Contributed by NM, 21-May-1994.) |
| Ref | Expression |
|---|---|
| con4bid.1 | ⊢ (𝜑 → (¬ 𝜓 ↔ ¬ 𝜒)) |
| Ref | Expression |
|---|---|
| con4bid | ⊢ (𝜑 → (𝜓 ↔ 𝜒)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | con4bid.1 | . . . 4 ⊢ (𝜑 → (¬ 𝜓 ↔ ¬ 𝜒)) | |
| 2 | 1 | biimprd 248 | . . 3 ⊢ (𝜑 → (¬ 𝜒 → ¬ 𝜓)) |
| 3 | 2 | con4d 115 | . 2 ⊢ (𝜑 → (𝜓 → 𝜒)) |
| 4 | 1 | biimpd 229 | . 2 ⊢ (𝜑 → (¬ 𝜓 → ¬ 𝜒)) |
| 5 | 3, 4 | impcon4bid 227 | 1 ⊢ (𝜑 → (𝜓 ↔ 𝜒)) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ↔ wb 206 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 |
| This theorem is referenced by: notbid 318 notbi 319 2falsed 376 had0 1604 cbvexdvaw 2039 cbvexdw 2337 cbvexd 2406 cbvrexdva 3210 raleq 3286 rexeqbidvvOLD 3300 cbvrexdva2 3312 rexeqf 3319 cbvexeqsetf 3451 sbcne12 4366 ordsucuniel 7757 rankr1a 9732 ltaddsub 11594 leaddsub 11596 supxrbnd1 13223 supxrbnd2 13224 ioo0 13273 ico0 13294 ioc0 13295 icc0 13296 fllt 13710 rabssnn0fi 13893 elcls 22958 sltrec 27732 rusgrnumwwlks 29919 chrelat3 32315 bj-equsexvwd 36759 wl-sb8eft 37529 wl-sb8et 37531 wl-issetft 37560 infxrbnd2 45352 oddprmne2 47703 nnolog2flm1 48579 |
| Copyright terms: Public domain | W3C validator |