| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > con4bid | Structured version Visualization version GIF version | ||
| Description: A contraposition deduction. (Contributed by NM, 21-May-1994.) |
| Ref | Expression |
|---|---|
| con4bid.1 | ⊢ (𝜑 → (¬ 𝜓 ↔ ¬ 𝜒)) |
| Ref | Expression |
|---|---|
| con4bid | ⊢ (𝜑 → (𝜓 ↔ 𝜒)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | con4bid.1 | . . . 4 ⊢ (𝜑 → (¬ 𝜓 ↔ ¬ 𝜒)) | |
| 2 | 1 | biimprd 248 | . . 3 ⊢ (𝜑 → (¬ 𝜒 → ¬ 𝜓)) |
| 3 | 2 | con4d 115 | . 2 ⊢ (𝜑 → (𝜓 → 𝜒)) |
| 4 | 1 | biimpd 229 | . 2 ⊢ (𝜑 → (¬ 𝜓 → ¬ 𝜒)) |
| 5 | 3, 4 | impcon4bid 227 | 1 ⊢ (𝜑 → (𝜓 ↔ 𝜒)) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ↔ wb 206 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 |
| This theorem is referenced by: notbid 318 notbi 319 2falsed 376 had0 1604 cbvexdvaw 2039 cbvexdw 2337 cbvexd 2407 cbvrexdva 3219 raleq 3298 rexeqbidvvOLD 3312 cbvrexdva2 3324 rexeqf 3332 cbvexeqsetf 3465 sbcne12 4381 ordsucuniel 7802 rankr1a 9796 ltaddsub 11659 leaddsub 11661 supxrbnd1 13288 supxrbnd2 13289 ioo0 13338 ico0 13359 ioc0 13360 icc0 13361 fllt 13775 rabssnn0fi 13958 elcls 22967 sltrec 27739 rusgrnumwwlks 29911 chrelat3 32307 bj-equsexvwd 36776 wl-sb8eft 37546 wl-sb8et 37548 wl-issetft 37577 infxrbnd2 45372 oddprmne2 47720 nnolog2flm1 48583 |
| Copyright terms: Public domain | W3C validator |