| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > con4bid | Structured version Visualization version GIF version | ||
| Description: A contraposition deduction. (Contributed by NM, 21-May-1994.) |
| Ref | Expression |
|---|---|
| con4bid.1 | ⊢ (𝜑 → (¬ 𝜓 ↔ ¬ 𝜒)) |
| Ref | Expression |
|---|---|
| con4bid | ⊢ (𝜑 → (𝜓 ↔ 𝜒)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | con4bid.1 | . . . 4 ⊢ (𝜑 → (¬ 𝜓 ↔ ¬ 𝜒)) | |
| 2 | 1 | biimprd 248 | . . 3 ⊢ (𝜑 → (¬ 𝜒 → ¬ 𝜓)) |
| 3 | 2 | con4d 115 | . 2 ⊢ (𝜑 → (𝜓 → 𝜒)) |
| 4 | 1 | biimpd 229 | . 2 ⊢ (𝜑 → (¬ 𝜓 → ¬ 𝜒)) |
| 5 | 3, 4 | impcon4bid 227 | 1 ⊢ (𝜑 → (𝜓 ↔ 𝜒)) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ↔ wb 206 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 |
| This theorem is referenced by: notbid 318 notbi 319 2falsed 376 had0 1604 cbvexdvaw 2038 cbvexdw 2340 cbvexd 2412 cbvrexdva 3223 raleq 3302 rexeqbidvvOLD 3316 cbvrexdva2 3328 rexeqf 3333 cbvexeqsetf 3474 sbcne12 4390 ordsucuniel 7818 rankr1a 9850 ltaddsub 11711 leaddsub 11713 supxrbnd1 13337 supxrbnd2 13338 ioo0 13387 ico0 13408 ioc0 13409 icc0 13410 fllt 13823 rabssnn0fi 14004 elcls 23011 sltrec 27784 rusgrnumwwlks 29956 chrelat3 32352 bj-equsexvwd 36799 wl-sb8eft 37569 wl-sb8et 37571 wl-issetft 37600 infxrbnd2 45396 oddprmne2 47729 nnolog2flm1 48570 |
| Copyright terms: Public domain | W3C validator |