MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  con4bid Structured version   Visualization version   GIF version

Theorem con4bid 316
Description: A contraposition deduction. (Contributed by NM, 21-May-1994.)
Hypothesis
Ref Expression
con4bid.1 (𝜑 → (¬ 𝜓 ↔ ¬ 𝜒))
Assertion
Ref Expression
con4bid (𝜑 → (𝜓𝜒))

Proof of Theorem con4bid
StepHypRef Expression
1 con4bid.1 . . . 4 (𝜑 → (¬ 𝜓 ↔ ¬ 𝜒))
21biimprd 247 . . 3 (𝜑 → (¬ 𝜒 → ¬ 𝜓))
32con4d 115 . 2 (𝜑 → (𝜓𝜒))
41biimpd 228 . 2 (𝜑 → (¬ 𝜓 → ¬ 𝜒))
53, 4impcon4bid 226 1 (𝜑 → (𝜓𝜒))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 206
This theorem is referenced by:  notbid  317  notbi  318  2falsed  376  had0  1607  cbvexdvaw  2043  cbvexdw  2338  cbvexd  2408  rexeqbidvv  3330  vtoclgft  3482  sbcne12  4343  ordsucuniel  7646  rankr1a  9525  ltaddsub  11379  leaddsub  11381  supxrbnd1  12984  supxrbnd2  12985  ioo0  13033  ico0  13054  ioc0  13055  icc0  13056  fllt  13454  rabssnn0fi  13634  elcls  22132  rusgrnumwwlks  28240  chrelat3  30634  sltrec  33941  bj-equsexvwd  34890  wl-sb8et  35635  infxrbnd2  42798  oddprmne2  45055  nnolog2flm1  45824
  Copyright terms: Public domain W3C validator