Mathbox for Scott Fenton |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > axextndbi | Structured version Visualization version GIF version |
Description: axextnd 10278 as a biconditional. (Contributed by Scott Fenton, 14-Dec-2010.) |
Ref | Expression |
---|---|
axextndbi | ⊢ ∃𝑧(𝑥 = 𝑦 ↔ (𝑧 ∈ 𝑥 ↔ 𝑧 ∈ 𝑦)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | axextnd 10278 | . . 3 ⊢ ∃𝑧((𝑧 ∈ 𝑥 ↔ 𝑧 ∈ 𝑦) → 𝑥 = 𝑦) | |
2 | elequ2 2123 | . . . 4 ⊢ (𝑥 = 𝑦 → (𝑧 ∈ 𝑥 ↔ 𝑧 ∈ 𝑦)) | |
3 | 2 | jctl 523 | . . 3 ⊢ (((𝑧 ∈ 𝑥 ↔ 𝑧 ∈ 𝑦) → 𝑥 = 𝑦) → ((𝑥 = 𝑦 → (𝑧 ∈ 𝑥 ↔ 𝑧 ∈ 𝑦)) ∧ ((𝑧 ∈ 𝑥 ↔ 𝑧 ∈ 𝑦) → 𝑥 = 𝑦))) |
4 | 1, 3 | eximii 1840 | . 2 ⊢ ∃𝑧((𝑥 = 𝑦 → (𝑧 ∈ 𝑥 ↔ 𝑧 ∈ 𝑦)) ∧ ((𝑧 ∈ 𝑥 ↔ 𝑧 ∈ 𝑦) → 𝑥 = 𝑦)) |
5 | dfbi2 474 | . . 3 ⊢ ((𝑥 = 𝑦 ↔ (𝑧 ∈ 𝑥 ↔ 𝑧 ∈ 𝑦)) ↔ ((𝑥 = 𝑦 → (𝑧 ∈ 𝑥 ↔ 𝑧 ∈ 𝑦)) ∧ ((𝑧 ∈ 𝑥 ↔ 𝑧 ∈ 𝑦) → 𝑥 = 𝑦))) | |
6 | 5 | exbii 1851 | . 2 ⊢ (∃𝑧(𝑥 = 𝑦 ↔ (𝑧 ∈ 𝑥 ↔ 𝑧 ∈ 𝑦)) ↔ ∃𝑧((𝑥 = 𝑦 → (𝑧 ∈ 𝑥 ↔ 𝑧 ∈ 𝑦)) ∧ ((𝑧 ∈ 𝑥 ↔ 𝑧 ∈ 𝑦) → 𝑥 = 𝑦))) |
7 | 4, 6 | mpbir 230 | 1 ⊢ ∃𝑧(𝑥 = 𝑦 ↔ (𝑧 ∈ 𝑥 ↔ 𝑧 ∈ 𝑦)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 395 ∃wex 1783 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-13 2372 ax-ext 2709 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-tru 1542 df-ex 1784 df-nf 1788 df-clel 2817 df-nfc 2888 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |