Users' Mathboxes Mathbox for Scott Fenton < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  axextndbi Structured version   Visualization version   GIF version

Theorem axextndbi 33686
Description: axextnd 10278 as a biconditional. (Contributed by Scott Fenton, 14-Dec-2010.)
Assertion
Ref Expression
axextndbi 𝑧(𝑥 = 𝑦 ↔ (𝑧𝑥𝑧𝑦))

Proof of Theorem axextndbi
StepHypRef Expression
1 axextnd 10278 . . 3 𝑧((𝑧𝑥𝑧𝑦) → 𝑥 = 𝑦)
2 elequ2 2123 . . . 4 (𝑥 = 𝑦 → (𝑧𝑥𝑧𝑦))
32jctl 523 . . 3 (((𝑧𝑥𝑧𝑦) → 𝑥 = 𝑦) → ((𝑥 = 𝑦 → (𝑧𝑥𝑧𝑦)) ∧ ((𝑧𝑥𝑧𝑦) → 𝑥 = 𝑦)))
41, 3eximii 1840 . 2 𝑧((𝑥 = 𝑦 → (𝑧𝑥𝑧𝑦)) ∧ ((𝑧𝑥𝑧𝑦) → 𝑥 = 𝑦))
5 dfbi2 474 . . 3 ((𝑥 = 𝑦 ↔ (𝑧𝑥𝑧𝑦)) ↔ ((𝑥 = 𝑦 → (𝑧𝑥𝑧𝑦)) ∧ ((𝑧𝑥𝑧𝑦) → 𝑥 = 𝑦)))
65exbii 1851 . 2 (∃𝑧(𝑥 = 𝑦 ↔ (𝑧𝑥𝑧𝑦)) ↔ ∃𝑧((𝑥 = 𝑦 → (𝑧𝑥𝑧𝑦)) ∧ ((𝑧𝑥𝑧𝑦) → 𝑥 = 𝑦)))
74, 6mpbir 230 1 𝑧(𝑥 = 𝑦 ↔ (𝑧𝑥𝑧𝑦))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 395  wex 1783
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-13 2372  ax-ext 2709
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-tru 1542  df-ex 1784  df-nf 1788  df-clel 2817  df-nfc 2888
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator