HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  his1i Structured version   Visualization version   GIF version

Theorem his1i 30620
Description: Conjugate law for inner product. Postulate (S1) of [Beran] p. 95. (Contributed by NM, 15-May-2005.) (New usage is discouraged.)
Hypotheses
Ref Expression
his1.1 ๐ด โˆˆ โ„‹
his1.2 ๐ต โˆˆ โ„‹
Assertion
Ref Expression
his1i (๐ด ยทih ๐ต) = (โˆ—โ€˜(๐ต ยทih ๐ด))

Proof of Theorem his1i
StepHypRef Expression
1 his1.1 . 2 ๐ด โˆˆ โ„‹
2 his1.2 . 2 ๐ต โˆˆ โ„‹
3 ax-his1 30602 . 2 ((๐ด โˆˆ โ„‹ โˆง ๐ต โˆˆ โ„‹) โ†’ (๐ด ยทih ๐ต) = (โˆ—โ€˜(๐ต ยทih ๐ด)))
41, 2, 3mp2an 688 1 (๐ด ยทih ๐ต) = (โˆ—โ€˜(๐ต ยทih ๐ด))
Colors of variables: wff setvar class
Syntax hints:   = wceq 1539   โˆˆ wcel 2104  โ€˜cfv 6542  (class class class)co 7411  โˆ—ccj 15047   โ„‹chba 30439   ยทih csp 30442
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-his1 30602
This theorem depends on definitions:  df-bi 206  df-an 395
This theorem is referenced by:  normlem2  30631  bcseqi  30640  bcsiALT  30699  pjadjii  31194  lnopunilem1  31530  lnophmlem2  31537
  Copyright terms: Public domain W3C validator