| Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > HSE Home > Th. List > his1i | Structured version Visualization version GIF version | ||
| Description: Conjugate law for inner product. Postulate (S1) of [Beran] p. 95. (Contributed by NM, 15-May-2005.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| his1.1 | ⊢ 𝐴 ∈ ℋ |
| his1.2 | ⊢ 𝐵 ∈ ℋ |
| Ref | Expression |
|---|---|
| his1i | ⊢ (𝐴 ·ih 𝐵) = (∗‘(𝐵 ·ih 𝐴)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | his1.1 | . 2 ⊢ 𝐴 ∈ ℋ | |
| 2 | his1.2 | . 2 ⊢ 𝐵 ∈ ℋ | |
| 3 | ax-his1 31011 | . 2 ⊢ ((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ) → (𝐴 ·ih 𝐵) = (∗‘(𝐵 ·ih 𝐴))) | |
| 4 | 1, 2, 3 | mp2an 692 | 1 ⊢ (𝐴 ·ih 𝐵) = (∗‘(𝐵 ·ih 𝐴)) |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1540 ∈ wcel 2109 ‘cfv 6511 (class class class)co 7387 ∗ccj 15062 ℋchba 30848 ·ih csp 30851 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-his1 31011 |
| This theorem depends on definitions: df-bi 207 df-an 396 |
| This theorem is referenced by: normlem2 31040 bcseqi 31049 bcsiALT 31108 pjadjii 31603 lnopunilem1 31939 lnophmlem2 31946 |
| Copyright terms: Public domain | W3C validator |