![]() |
Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > HSE Home > Th. List > his1i | Structured version Visualization version GIF version |
Description: Conjugate law for inner product. Postulate (S1) of [Beran] p. 95. (Contributed by NM, 15-May-2005.) (New usage is discouraged.) |
Ref | Expression |
---|---|
his1.1 | โข ๐ด โ โ |
his1.2 | โข ๐ต โ โ |
Ref | Expression |
---|---|
his1i | โข (๐ด ยทih ๐ต) = (โโ(๐ต ยทih ๐ด)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | his1.1 | . 2 โข ๐ด โ โ | |
2 | his1.2 | . 2 โข ๐ต โ โ | |
3 | ax-his1 30602 | . 2 โข ((๐ด โ โ โง ๐ต โ โ) โ (๐ด ยทih ๐ต) = (โโ(๐ต ยทih ๐ด))) | |
4 | 1, 2, 3 | mp2an 688 | 1 โข (๐ด ยทih ๐ต) = (โโ(๐ต ยทih ๐ด)) |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1539 โ wcel 2104 โcfv 6542 (class class class)co 7411 โccj 15047 โchba 30439 ยทih csp 30442 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-his1 30602 |
This theorem depends on definitions: df-bi 206 df-an 395 |
This theorem is referenced by: normlem2 30631 bcseqi 30640 bcsiALT 30699 pjadjii 31194 lnopunilem1 31530 lnophmlem2 31537 |
Copyright terms: Public domain | W3C validator |