Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > HSE Home > Th. List > his1i | Structured version Visualization version GIF version |
Description: Conjugate law for inner product. Postulate (S1) of [Beran] p. 95. (Contributed by NM, 15-May-2005.) (New usage is discouraged.) |
Ref | Expression |
---|---|
his1.1 | ⊢ 𝐴 ∈ ℋ |
his1.2 | ⊢ 𝐵 ∈ ℋ |
Ref | Expression |
---|---|
his1i | ⊢ (𝐴 ·ih 𝐵) = (∗‘(𝐵 ·ih 𝐴)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | his1.1 | . 2 ⊢ 𝐴 ∈ ℋ | |
2 | his1.2 | . 2 ⊢ 𝐵 ∈ ℋ | |
3 | ax-his1 29345 | . 2 ⊢ ((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ) → (𝐴 ·ih 𝐵) = (∗‘(𝐵 ·ih 𝐴))) | |
4 | 1, 2, 3 | mp2an 688 | 1 ⊢ (𝐴 ·ih 𝐵) = (∗‘(𝐵 ·ih 𝐴)) |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1539 ∈ wcel 2108 ‘cfv 6418 (class class class)co 7255 ∗ccj 14735 ℋchba 29182 ·ih csp 29185 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-his1 29345 |
This theorem depends on definitions: df-bi 206 df-an 396 |
This theorem is referenced by: normlem2 29374 bcseqi 29383 bcsiALT 29442 pjadjii 29937 lnopunilem1 30273 lnophmlem2 30280 |
Copyright terms: Public domain | W3C validator |