HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  bcseqi Structured version   Visualization version   GIF version

Theorem bcseqi 31099
Description: Equality case of Bunjakovaskij-Cauchy-Schwarz inequality. Specifically, in the equality case the two vectors are collinear. Compare bcsiHIL 31159. (Contributed by NM, 16-Jul-2001.) (New usage is discouraged.)
Hypotheses
Ref Expression
normlem7t.1 𝐴 ∈ ℋ
normlem7t.2 𝐵 ∈ ℋ
Assertion
Ref Expression
bcseqi (((𝐴 ·ih 𝐵) · (𝐵 ·ih 𝐴)) = ((𝐴 ·ih 𝐴) · (𝐵 ·ih 𝐵)) ↔ ((𝐵 ·ih 𝐵) · 𝐴) = ((𝐴 ·ih 𝐵) · 𝐵))

Proof of Theorem bcseqi
StepHypRef Expression
1 normlem7t.2 . . . . . . . 8 𝐵 ∈ ℋ
21, 1hicli 31060 . . . . . . 7 (𝐵 ·ih 𝐵) ∈ ℂ
3 normlem7t.1 . . . . . . 7 𝐴 ∈ ℋ
42, 3hvmulcli 30993 . . . . . 6 ((𝐵 ·ih 𝐵) · 𝐴) ∈ ℋ
53, 1hicli 31060 . . . . . . 7 (𝐴 ·ih 𝐵) ∈ ℂ
65, 1hvmulcli 30993 . . . . . 6 ((𝐴 ·ih 𝐵) · 𝐵) ∈ ℋ
74, 6, 4, 6normlem9 31097 . . . . 5 ((((𝐵 ·ih 𝐵) · 𝐴) − ((𝐴 ·ih 𝐵) · 𝐵)) ·ih (((𝐵 ·ih 𝐵) · 𝐴) − ((𝐴 ·ih 𝐵) · 𝐵))) = (((((𝐵 ·ih 𝐵) · 𝐴) ·ih ((𝐵 ·ih 𝐵) · 𝐴)) + (((𝐴 ·ih 𝐵) · 𝐵) ·ih ((𝐴 ·ih 𝐵) · 𝐵))) − ((((𝐵 ·ih 𝐵) · 𝐴) ·ih ((𝐴 ·ih 𝐵) · 𝐵)) + (((𝐴 ·ih 𝐵) · 𝐵) ·ih ((𝐵 ·ih 𝐵) · 𝐴))))
8 oveq1 7376 . . . . . . . . . 10 (((𝐴 ·ih 𝐵) · (𝐵 ·ih 𝐴)) = ((𝐴 ·ih 𝐴) · (𝐵 ·ih 𝐵)) → (((𝐴 ·ih 𝐵) · (𝐵 ·ih 𝐴)) · (𝐵 ·ih 𝐵)) = (((𝐴 ·ih 𝐴) · (𝐵 ·ih 𝐵)) · (𝐵 ·ih 𝐵)))
98eqcomd 2735 . . . . . . . . 9 (((𝐴 ·ih 𝐵) · (𝐵 ·ih 𝐴)) = ((𝐴 ·ih 𝐴) · (𝐵 ·ih 𝐵)) → (((𝐴 ·ih 𝐴) · (𝐵 ·ih 𝐵)) · (𝐵 ·ih 𝐵)) = (((𝐴 ·ih 𝐵) · (𝐵 ·ih 𝐴)) · (𝐵 ·ih 𝐵)))
10 his5 31065 . . . . . . . . . . 11 (((𝐵 ·ih 𝐵) ∈ ℂ ∧ ((𝐵 ·ih 𝐵) · 𝐴) ∈ ℋ ∧ 𝐴 ∈ ℋ) → (((𝐵 ·ih 𝐵) · 𝐴) ·ih ((𝐵 ·ih 𝐵) · 𝐴)) = ((∗‘(𝐵 ·ih 𝐵)) · (((𝐵 ·ih 𝐵) · 𝐴) ·ih 𝐴)))
112, 4, 3, 10mp3an 1463 . . . . . . . . . 10 (((𝐵 ·ih 𝐵) · 𝐴) ·ih ((𝐵 ·ih 𝐵) · 𝐴)) = ((∗‘(𝐵 ·ih 𝐵)) · (((𝐵 ·ih 𝐵) · 𝐴) ·ih 𝐴))
12 hiidrcl 31074 . . . . . . . . . . . 12 (𝐵 ∈ ℋ → (𝐵 ·ih 𝐵) ∈ ℝ)
13 cjre 15081 . . . . . . . . . . . 12 ((𝐵 ·ih 𝐵) ∈ ℝ → (∗‘(𝐵 ·ih 𝐵)) = (𝐵 ·ih 𝐵))
141, 12, 13mp2b 10 . . . . . . . . . . 11 (∗‘(𝐵 ·ih 𝐵)) = (𝐵 ·ih 𝐵)
15 ax-his3 31063 . . . . . . . . . . . 12 (((𝐵 ·ih 𝐵) ∈ ℂ ∧ 𝐴 ∈ ℋ ∧ 𝐴 ∈ ℋ) → (((𝐵 ·ih 𝐵) · 𝐴) ·ih 𝐴) = ((𝐵 ·ih 𝐵) · (𝐴 ·ih 𝐴)))
162, 3, 3, 15mp3an 1463 . . . . . . . . . . 11 (((𝐵 ·ih 𝐵) · 𝐴) ·ih 𝐴) = ((𝐵 ·ih 𝐵) · (𝐴 ·ih 𝐴))
1714, 16oveq12i 7381 . . . . . . . . . 10 ((∗‘(𝐵 ·ih 𝐵)) · (((𝐵 ·ih 𝐵) · 𝐴) ·ih 𝐴)) = ((𝐵 ·ih 𝐵) · ((𝐵 ·ih 𝐵) · (𝐴 ·ih 𝐴)))
183, 3hicli 31060 . . . . . . . . . . . . 13 (𝐴 ·ih 𝐴) ∈ ℂ
192, 18mulcli 11157 . . . . . . . . . . . 12 ((𝐵 ·ih 𝐵) · (𝐴 ·ih 𝐴)) ∈ ℂ
202, 19mulcomi 11158 . . . . . . . . . . 11 ((𝐵 ·ih 𝐵) · ((𝐵 ·ih 𝐵) · (𝐴 ·ih 𝐴))) = (((𝐵 ·ih 𝐵) · (𝐴 ·ih 𝐴)) · (𝐵 ·ih 𝐵))
2118, 2mulcomi 11158 . . . . . . . . . . . 12 ((𝐴 ·ih 𝐴) · (𝐵 ·ih 𝐵)) = ((𝐵 ·ih 𝐵) · (𝐴 ·ih 𝐴))
2221oveq1i 7379 . . . . . . . . . . 11 (((𝐴 ·ih 𝐴) · (𝐵 ·ih 𝐵)) · (𝐵 ·ih 𝐵)) = (((𝐵 ·ih 𝐵) · (𝐴 ·ih 𝐴)) · (𝐵 ·ih 𝐵))
2320, 22eqtr4i 2755 . . . . . . . . . 10 ((𝐵 ·ih 𝐵) · ((𝐵 ·ih 𝐵) · (𝐴 ·ih 𝐴))) = (((𝐴 ·ih 𝐴) · (𝐵 ·ih 𝐵)) · (𝐵 ·ih 𝐵))
2411, 17, 233eqtri 2756 . . . . . . . . 9 (((𝐵 ·ih 𝐵) · 𝐴) ·ih ((𝐵 ·ih 𝐵) · 𝐴)) = (((𝐴 ·ih 𝐴) · (𝐵 ·ih 𝐵)) · (𝐵 ·ih 𝐵))
25 his5 31065 . . . . . . . . . . 11 (((𝐴 ·ih 𝐵) ∈ ℂ ∧ ((𝐵 ·ih 𝐵) · 𝐴) ∈ ℋ ∧ 𝐵 ∈ ℋ) → (((𝐵 ·ih 𝐵) · 𝐴) ·ih ((𝐴 ·ih 𝐵) · 𝐵)) = ((∗‘(𝐴 ·ih 𝐵)) · (((𝐵 ·ih 𝐵) · 𝐴) ·ih 𝐵)))
265, 4, 1, 25mp3an 1463 . . . . . . . . . 10 (((𝐵 ·ih 𝐵) · 𝐴) ·ih ((𝐴 ·ih 𝐵) · 𝐵)) = ((∗‘(𝐴 ·ih 𝐵)) · (((𝐵 ·ih 𝐵) · 𝐴) ·ih 𝐵))
271, 3his1i 31079 . . . . . . . . . . . 12 (𝐵 ·ih 𝐴) = (∗‘(𝐴 ·ih 𝐵))
2827eqcomi 2738 . . . . . . . . . . 11 (∗‘(𝐴 ·ih 𝐵)) = (𝐵 ·ih 𝐴)
29 ax-his3 31063 . . . . . . . . . . . 12 (((𝐵 ·ih 𝐵) ∈ ℂ ∧ 𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ) → (((𝐵 ·ih 𝐵) · 𝐴) ·ih 𝐵) = ((𝐵 ·ih 𝐵) · (𝐴 ·ih 𝐵)))
302, 3, 1, 29mp3an 1463 . . . . . . . . . . 11 (((𝐵 ·ih 𝐵) · 𝐴) ·ih 𝐵) = ((𝐵 ·ih 𝐵) · (𝐴 ·ih 𝐵))
3128, 30oveq12i 7381 . . . . . . . . . 10 ((∗‘(𝐴 ·ih 𝐵)) · (((𝐵 ·ih 𝐵) · 𝐴) ·ih 𝐵)) = ((𝐵 ·ih 𝐴) · ((𝐵 ·ih 𝐵) · (𝐴 ·ih 𝐵)))
321, 3hicli 31060 . . . . . . . . . . . 12 (𝐵 ·ih 𝐴) ∈ ℂ
332, 5mulcli 11157 . . . . . . . . . . . 12 ((𝐵 ·ih 𝐵) · (𝐴 ·ih 𝐵)) ∈ ℂ
3432, 33mulcomi 11158 . . . . . . . . . . 11 ((𝐵 ·ih 𝐴) · ((𝐵 ·ih 𝐵) · (𝐴 ·ih 𝐵))) = (((𝐵 ·ih 𝐵) · (𝐴 ·ih 𝐵)) · (𝐵 ·ih 𝐴))
352, 5, 32mulassi 11161 . . . . . . . . . . 11 (((𝐵 ·ih 𝐵) · (𝐴 ·ih 𝐵)) · (𝐵 ·ih 𝐴)) = ((𝐵 ·ih 𝐵) · ((𝐴 ·ih 𝐵) · (𝐵 ·ih 𝐴)))
365, 32mulcli 11157 . . . . . . . . . . . 12 ((𝐴 ·ih 𝐵) · (𝐵 ·ih 𝐴)) ∈ ℂ
372, 36mulcomi 11158 . . . . . . . . . . 11 ((𝐵 ·ih 𝐵) · ((𝐴 ·ih 𝐵) · (𝐵 ·ih 𝐴))) = (((𝐴 ·ih 𝐵) · (𝐵 ·ih 𝐴)) · (𝐵 ·ih 𝐵))
3834, 35, 373eqtri 2756 . . . . . . . . . 10 ((𝐵 ·ih 𝐴) · ((𝐵 ·ih 𝐵) · (𝐴 ·ih 𝐵))) = (((𝐴 ·ih 𝐵) · (𝐵 ·ih 𝐴)) · (𝐵 ·ih 𝐵))
3926, 31, 383eqtri 2756 . . . . . . . . 9 (((𝐵 ·ih 𝐵) · 𝐴) ·ih ((𝐴 ·ih 𝐵) · 𝐵)) = (((𝐴 ·ih 𝐵) · (𝐵 ·ih 𝐴)) · (𝐵 ·ih 𝐵))
409, 24, 393eqtr4g 2789 . . . . . . . 8 (((𝐴 ·ih 𝐵) · (𝐵 ·ih 𝐴)) = ((𝐴 ·ih 𝐴) · (𝐵 ·ih 𝐵)) → (((𝐵 ·ih 𝐵) · 𝐴) ·ih ((𝐵 ·ih 𝐵) · 𝐴)) = (((𝐵 ·ih 𝐵) · 𝐴) ·ih ((𝐴 ·ih 𝐵) · 𝐵)))
41 ax-his3 31063 . . . . . . . . . . . 12 (((𝐴 ·ih 𝐵) ∈ ℂ ∧ 𝐵 ∈ ℋ ∧ 𝐴 ∈ ℋ) → (((𝐴 ·ih 𝐵) · 𝐵) ·ih 𝐴) = ((𝐴 ·ih 𝐵) · (𝐵 ·ih 𝐴)))
425, 1, 3, 41mp3an 1463 . . . . . . . . . . 11 (((𝐴 ·ih 𝐵) · 𝐵) ·ih 𝐴) = ((𝐴 ·ih 𝐵) · (𝐵 ·ih 𝐴))
4314, 42oveq12i 7381 . . . . . . . . . 10 ((∗‘(𝐵 ·ih 𝐵)) · (((𝐴 ·ih 𝐵) · 𝐵) ·ih 𝐴)) = ((𝐵 ·ih 𝐵) · ((𝐴 ·ih 𝐵) · (𝐵 ·ih 𝐴)))
44 his5 31065 . . . . . . . . . . 11 (((𝐵 ·ih 𝐵) ∈ ℂ ∧ ((𝐴 ·ih 𝐵) · 𝐵) ∈ ℋ ∧ 𝐴 ∈ ℋ) → (((𝐴 ·ih 𝐵) · 𝐵) ·ih ((𝐵 ·ih 𝐵) · 𝐴)) = ((∗‘(𝐵 ·ih 𝐵)) · (((𝐴 ·ih 𝐵) · 𝐵) ·ih 𝐴)))
452, 6, 3, 44mp3an 1463 . . . . . . . . . 10 (((𝐴 ·ih 𝐵) · 𝐵) ·ih ((𝐵 ·ih 𝐵) · 𝐴)) = ((∗‘(𝐵 ·ih 𝐵)) · (((𝐴 ·ih 𝐵) · 𝐵) ·ih 𝐴))
46 his5 31065 . . . . . . . . . . . 12 (((𝐴 ·ih 𝐵) ∈ ℂ ∧ ((𝐴 ·ih 𝐵) · 𝐵) ∈ ℋ ∧ 𝐵 ∈ ℋ) → (((𝐴 ·ih 𝐵) · 𝐵) ·ih ((𝐴 ·ih 𝐵) · 𝐵)) = ((∗‘(𝐴 ·ih 𝐵)) · (((𝐴 ·ih 𝐵) · 𝐵) ·ih 𝐵)))
475, 6, 1, 46mp3an 1463 . . . . . . . . . . 11 (((𝐴 ·ih 𝐵) · 𝐵) ·ih ((𝐴 ·ih 𝐵) · 𝐵)) = ((∗‘(𝐴 ·ih 𝐵)) · (((𝐴 ·ih 𝐵) · 𝐵) ·ih 𝐵))
48 ax-his3 31063 . . . . . . . . . . . . 13 (((𝐴 ·ih 𝐵) ∈ ℂ ∧ 𝐵 ∈ ℋ ∧ 𝐵 ∈ ℋ) → (((𝐴 ·ih 𝐵) · 𝐵) ·ih 𝐵) = ((𝐴 ·ih 𝐵) · (𝐵 ·ih 𝐵)))
495, 1, 1, 48mp3an 1463 . . . . . . . . . . . 12 (((𝐴 ·ih 𝐵) · 𝐵) ·ih 𝐵) = ((𝐴 ·ih 𝐵) · (𝐵 ·ih 𝐵))
5028, 49oveq12i 7381 . . . . . . . . . . 11 ((∗‘(𝐴 ·ih 𝐵)) · (((𝐴 ·ih 𝐵) · 𝐵) ·ih 𝐵)) = ((𝐵 ·ih 𝐴) · ((𝐴 ·ih 𝐵) · (𝐵 ·ih 𝐵)))
515, 2mulcli 11157 . . . . . . . . . . . . 13 ((𝐴 ·ih 𝐵) · (𝐵 ·ih 𝐵)) ∈ ℂ
5232, 51mulcomi 11158 . . . . . . . . . . . 12 ((𝐵 ·ih 𝐴) · ((𝐴 ·ih 𝐵) · (𝐵 ·ih 𝐵))) = (((𝐴 ·ih 𝐵) · (𝐵 ·ih 𝐵)) · (𝐵 ·ih 𝐴))
535, 2, 32mul32i 11346 . . . . . . . . . . . 12 (((𝐴 ·ih 𝐵) · (𝐵 ·ih 𝐵)) · (𝐵 ·ih 𝐴)) = (((𝐴 ·ih 𝐵) · (𝐵 ·ih 𝐴)) · (𝐵 ·ih 𝐵))
5436, 2mulcomi 11158 . . . . . . . . . . . 12 (((𝐴 ·ih 𝐵) · (𝐵 ·ih 𝐴)) · (𝐵 ·ih 𝐵)) = ((𝐵 ·ih 𝐵) · ((𝐴 ·ih 𝐵) · (𝐵 ·ih 𝐴)))
5552, 53, 543eqtri 2756 . . . . . . . . . . 11 ((𝐵 ·ih 𝐴) · ((𝐴 ·ih 𝐵) · (𝐵 ·ih 𝐵))) = ((𝐵 ·ih 𝐵) · ((𝐴 ·ih 𝐵) · (𝐵 ·ih 𝐴)))
5647, 50, 553eqtri 2756 . . . . . . . . . 10 (((𝐴 ·ih 𝐵) · 𝐵) ·ih ((𝐴 ·ih 𝐵) · 𝐵)) = ((𝐵 ·ih 𝐵) · ((𝐴 ·ih 𝐵) · (𝐵 ·ih 𝐴)))
5743, 45, 563eqtr4ri 2763 . . . . . . . . 9 (((𝐴 ·ih 𝐵) · 𝐵) ·ih ((𝐴 ·ih 𝐵) · 𝐵)) = (((𝐴 ·ih 𝐵) · 𝐵) ·ih ((𝐵 ·ih 𝐵) · 𝐴))
5857a1i 11 . . . . . . . 8 (((𝐴 ·ih 𝐵) · (𝐵 ·ih 𝐴)) = ((𝐴 ·ih 𝐴) · (𝐵 ·ih 𝐵)) → (((𝐴 ·ih 𝐵) · 𝐵) ·ih ((𝐴 ·ih 𝐵) · 𝐵)) = (((𝐴 ·ih 𝐵) · 𝐵) ·ih ((𝐵 ·ih 𝐵) · 𝐴)))
5940, 58oveq12d 7387 . . . . . . 7 (((𝐴 ·ih 𝐵) · (𝐵 ·ih 𝐴)) = ((𝐴 ·ih 𝐴) · (𝐵 ·ih 𝐵)) → ((((𝐵 ·ih 𝐵) · 𝐴) ·ih ((𝐵 ·ih 𝐵) · 𝐴)) + (((𝐴 ·ih 𝐵) · 𝐵) ·ih ((𝐴 ·ih 𝐵) · 𝐵))) = ((((𝐵 ·ih 𝐵) · 𝐴) ·ih ((𝐴 ·ih 𝐵) · 𝐵)) + (((𝐴 ·ih 𝐵) · 𝐵) ·ih ((𝐵 ·ih 𝐵) · 𝐴))))
6059oveq1d 7384 . . . . . 6 (((𝐴 ·ih 𝐵) · (𝐵 ·ih 𝐴)) = ((𝐴 ·ih 𝐴) · (𝐵 ·ih 𝐵)) → (((((𝐵 ·ih 𝐵) · 𝐴) ·ih ((𝐵 ·ih 𝐵) · 𝐴)) + (((𝐴 ·ih 𝐵) · 𝐵) ·ih ((𝐴 ·ih 𝐵) · 𝐵))) − ((((𝐵 ·ih 𝐵) · 𝐴) ·ih ((𝐴 ·ih 𝐵) · 𝐵)) + (((𝐴 ·ih 𝐵) · 𝐵) ·ih ((𝐵 ·ih 𝐵) · 𝐴)))) = (((((𝐵 ·ih 𝐵) · 𝐴) ·ih ((𝐴 ·ih 𝐵) · 𝐵)) + (((𝐴 ·ih 𝐵) · 𝐵) ·ih ((𝐵 ·ih 𝐵) · 𝐴))) − ((((𝐵 ·ih 𝐵) · 𝐴) ·ih ((𝐴 ·ih 𝐵) · 𝐵)) + (((𝐴 ·ih 𝐵) · 𝐵) ·ih ((𝐵 ·ih 𝐵) · 𝐴)))))
614, 6hicli 31060 . . . . . . . 8 (((𝐵 ·ih 𝐵) · 𝐴) ·ih ((𝐴 ·ih 𝐵) · 𝐵)) ∈ ℂ
626, 4hicli 31060 . . . . . . . 8 (((𝐴 ·ih 𝐵) · 𝐵) ·ih ((𝐵 ·ih 𝐵) · 𝐴)) ∈ ℂ
6361, 62addcli 11156 . . . . . . 7 ((((𝐵 ·ih 𝐵) · 𝐴) ·ih ((𝐴 ·ih 𝐵) · 𝐵)) + (((𝐴 ·ih 𝐵) · 𝐵) ·ih ((𝐵 ·ih 𝐵) · 𝐴))) ∈ ℂ
6463subidi 11469 . . . . . 6 (((((𝐵 ·ih 𝐵) · 𝐴) ·ih ((𝐴 ·ih 𝐵) · 𝐵)) + (((𝐴 ·ih 𝐵) · 𝐵) ·ih ((𝐵 ·ih 𝐵) · 𝐴))) − ((((𝐵 ·ih 𝐵) · 𝐴) ·ih ((𝐴 ·ih 𝐵) · 𝐵)) + (((𝐴 ·ih 𝐵) · 𝐵) ·ih ((𝐵 ·ih 𝐵) · 𝐴)))) = 0
6560, 64eqtrdi 2780 . . . . 5 (((𝐴 ·ih 𝐵) · (𝐵 ·ih 𝐴)) = ((𝐴 ·ih 𝐴) · (𝐵 ·ih 𝐵)) → (((((𝐵 ·ih 𝐵) · 𝐴) ·ih ((𝐵 ·ih 𝐵) · 𝐴)) + (((𝐴 ·ih 𝐵) · 𝐵) ·ih ((𝐴 ·ih 𝐵) · 𝐵))) − ((((𝐵 ·ih 𝐵) · 𝐴) ·ih ((𝐴 ·ih 𝐵) · 𝐵)) + (((𝐴 ·ih 𝐵) · 𝐵) ·ih ((𝐵 ·ih 𝐵) · 𝐴)))) = 0)
667, 65eqtrid 2776 . . . 4 (((𝐴 ·ih 𝐵) · (𝐵 ·ih 𝐴)) = ((𝐴 ·ih 𝐴) · (𝐵 ·ih 𝐵)) → ((((𝐵 ·ih 𝐵) · 𝐴) − ((𝐴 ·ih 𝐵) · 𝐵)) ·ih (((𝐵 ·ih 𝐵) · 𝐴) − ((𝐴 ·ih 𝐵) · 𝐵))) = 0)
674, 6hvsubcli 31000 . . . . 5 (((𝐵 ·ih 𝐵) · 𝐴) − ((𝐴 ·ih 𝐵) · 𝐵)) ∈ ℋ
68 his6 31078 . . . . 5 ((((𝐵 ·ih 𝐵) · 𝐴) − ((𝐴 ·ih 𝐵) · 𝐵)) ∈ ℋ → (((((𝐵 ·ih 𝐵) · 𝐴) − ((𝐴 ·ih 𝐵) · 𝐵)) ·ih (((𝐵 ·ih 𝐵) · 𝐴) − ((𝐴 ·ih 𝐵) · 𝐵))) = 0 ↔ (((𝐵 ·ih 𝐵) · 𝐴) − ((𝐴 ·ih 𝐵) · 𝐵)) = 0))
6967, 68ax-mp 5 . . . 4 (((((𝐵 ·ih 𝐵) · 𝐴) − ((𝐴 ·ih 𝐵) · 𝐵)) ·ih (((𝐵 ·ih 𝐵) · 𝐴) − ((𝐴 ·ih 𝐵) · 𝐵))) = 0 ↔ (((𝐵 ·ih 𝐵) · 𝐴) − ((𝐴 ·ih 𝐵) · 𝐵)) = 0)
7066, 69sylib 218 . . 3 (((𝐴 ·ih 𝐵) · (𝐵 ·ih 𝐴)) = ((𝐴 ·ih 𝐴) · (𝐵 ·ih 𝐵)) → (((𝐵 ·ih 𝐵) · 𝐴) − ((𝐴 ·ih 𝐵) · 𝐵)) = 0)
714, 6hvsubeq0i 31042 . . 3 ((((𝐵 ·ih 𝐵) · 𝐴) − ((𝐴 ·ih 𝐵) · 𝐵)) = 0 ↔ ((𝐵 ·ih 𝐵) · 𝐴) = ((𝐴 ·ih 𝐵) · 𝐵))
7270, 71sylib 218 . 2 (((𝐴 ·ih 𝐵) · (𝐵 ·ih 𝐴)) = ((𝐴 ·ih 𝐴) · (𝐵 ·ih 𝐵)) → ((𝐵 ·ih 𝐵) · 𝐴) = ((𝐴 ·ih 𝐵) · 𝐵))
73 oveq1 7376 . . . 4 (((𝐵 ·ih 𝐵) · 𝐴) = ((𝐴 ·ih 𝐵) · 𝐵) → (((𝐵 ·ih 𝐵) · 𝐴) ·ih 𝐴) = (((𝐴 ·ih 𝐵) · 𝐵) ·ih 𝐴))
7421, 16eqtr4i 2755 . . . 4 ((𝐴 ·ih 𝐴) · (𝐵 ·ih 𝐵)) = (((𝐵 ·ih 𝐵) · 𝐴) ·ih 𝐴)
7542eqcomi 2738 . . . 4 ((𝐴 ·ih 𝐵) · (𝐵 ·ih 𝐴)) = (((𝐴 ·ih 𝐵) · 𝐵) ·ih 𝐴)
7673, 74, 753eqtr4g 2789 . . 3 (((𝐵 ·ih 𝐵) · 𝐴) = ((𝐴 ·ih 𝐵) · 𝐵) → ((𝐴 ·ih 𝐴) · (𝐵 ·ih 𝐵)) = ((𝐴 ·ih 𝐵) · (𝐵 ·ih 𝐴)))
7776eqcomd 2735 . 2 (((𝐵 ·ih 𝐵) · 𝐴) = ((𝐴 ·ih 𝐵) · 𝐵) → ((𝐴 ·ih 𝐵) · (𝐵 ·ih 𝐴)) = ((𝐴 ·ih 𝐴) · (𝐵 ·ih 𝐵)))
7872, 77impbii 209 1 (((𝐴 ·ih 𝐵) · (𝐵 ·ih 𝐴)) = ((𝐴 ·ih 𝐴) · (𝐵 ·ih 𝐵)) ↔ ((𝐵 ·ih 𝐵) · 𝐴) = ((𝐴 ·ih 𝐵) · 𝐵))
Colors of variables: wff setvar class
Syntax hints:  wb 206   = wceq 1540  wcel 2109  cfv 6499  (class class class)co 7369  cc 11042  cr 11043  0cc0 11044   + caddc 11047   · cmul 11049  cmin 11381  ccj 15038  chba 30898   · csm 30900   ·ih csp 30901  0c0v 30903   cmv 30904
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5246  ax-nul 5256  ax-pow 5315  ax-pr 5382  ax-un 7691  ax-resscn 11101  ax-1cn 11102  ax-icn 11103  ax-addcl 11104  ax-addrcl 11105  ax-mulcl 11106  ax-mulrcl 11107  ax-mulcom 11108  ax-addass 11109  ax-mulass 11110  ax-distr 11111  ax-i2m1 11112  ax-1ne0 11113  ax-1rid 11114  ax-rnegex 11115  ax-rrecex 11116  ax-cnre 11117  ax-pre-lttri 11118  ax-pre-lttrn 11119  ax-pre-ltadd 11120  ax-pre-mulgt0 11121  ax-hfvadd 30979  ax-hvcom 30980  ax-hvass 30981  ax-hv0cl 30982  ax-hvaddid 30983  ax-hfvmul 30984  ax-hvmulid 30985  ax-hvdistr2 30988  ax-hvmul0 30989  ax-hfi 31058  ax-his1 31061  ax-his2 31062  ax-his3 31063  ax-his4 31064
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3351  df-reu 3352  df-rab 3403  df-v 3446  df-sbc 3751  df-csb 3860  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-pss 3931  df-nul 4293  df-if 4485  df-pw 4561  df-sn 4586  df-pr 4588  df-op 4592  df-uni 4868  df-iun 4953  df-br 5103  df-opab 5165  df-mpt 5184  df-tr 5210  df-id 5526  df-eprel 5531  df-po 5539  df-so 5540  df-fr 5584  df-we 5586  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-rn 5642  df-res 5643  df-ima 5644  df-pred 6262  df-ord 6323  df-on 6324  df-lim 6325  df-suc 6326  df-iota 6452  df-fun 6501  df-fn 6502  df-f 6503  df-f1 6504  df-fo 6505  df-f1o 6506  df-fv 6507  df-riota 7326  df-ov 7372  df-oprab 7373  df-mpo 7374  df-om 7823  df-2nd 7948  df-frecs 8237  df-wrecs 8268  df-recs 8317  df-rdg 8355  df-er 8648  df-en 8896  df-dom 8897  df-sdom 8898  df-pnf 11186  df-mnf 11187  df-xr 11188  df-ltxr 11189  df-le 11190  df-sub 11383  df-neg 11384  df-div 11812  df-nn 12163  df-2 12225  df-cj 15041  df-re 15042  df-im 15043  df-hvsub 30950
This theorem is referenced by:  h1de2i  31532
  Copyright terms: Public domain W3C validator