HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  bcseqi Structured version   Visualization version   GIF version

Theorem bcseqi 31106
Description: Equality case of Bunjakovaskij-Cauchy-Schwarz inequality. Specifically, in the equality case the two vectors are collinear. Compare bcsiHIL 31166. (Contributed by NM, 16-Jul-2001.) (New usage is discouraged.)
Hypotheses
Ref Expression
normlem7t.1 𝐴 ∈ ℋ
normlem7t.2 𝐵 ∈ ℋ
Assertion
Ref Expression
bcseqi (((𝐴 ·ih 𝐵) · (𝐵 ·ih 𝐴)) = ((𝐴 ·ih 𝐴) · (𝐵 ·ih 𝐵)) ↔ ((𝐵 ·ih 𝐵) · 𝐴) = ((𝐴 ·ih 𝐵) · 𝐵))

Proof of Theorem bcseqi
StepHypRef Expression
1 normlem7t.2 . . . . . . . 8 𝐵 ∈ ℋ
21, 1hicli 31067 . . . . . . 7 (𝐵 ·ih 𝐵) ∈ ℂ
3 normlem7t.1 . . . . . . 7 𝐴 ∈ ℋ
42, 3hvmulcli 31000 . . . . . 6 ((𝐵 ·ih 𝐵) · 𝐴) ∈ ℋ
53, 1hicli 31067 . . . . . . 7 (𝐴 ·ih 𝐵) ∈ ℂ
65, 1hvmulcli 31000 . . . . . 6 ((𝐴 ·ih 𝐵) · 𝐵) ∈ ℋ
74, 6, 4, 6normlem9 31104 . . . . 5 ((((𝐵 ·ih 𝐵) · 𝐴) − ((𝐴 ·ih 𝐵) · 𝐵)) ·ih (((𝐵 ·ih 𝐵) · 𝐴) − ((𝐴 ·ih 𝐵) · 𝐵))) = (((((𝐵 ·ih 𝐵) · 𝐴) ·ih ((𝐵 ·ih 𝐵) · 𝐴)) + (((𝐴 ·ih 𝐵) · 𝐵) ·ih ((𝐴 ·ih 𝐵) · 𝐵))) − ((((𝐵 ·ih 𝐵) · 𝐴) ·ih ((𝐴 ·ih 𝐵) · 𝐵)) + (((𝐴 ·ih 𝐵) · 𝐵) ·ih ((𝐵 ·ih 𝐵) · 𝐴))))
8 oveq1 7417 . . . . . . . . . 10 (((𝐴 ·ih 𝐵) · (𝐵 ·ih 𝐴)) = ((𝐴 ·ih 𝐴) · (𝐵 ·ih 𝐵)) → (((𝐴 ·ih 𝐵) · (𝐵 ·ih 𝐴)) · (𝐵 ·ih 𝐵)) = (((𝐴 ·ih 𝐴) · (𝐵 ·ih 𝐵)) · (𝐵 ·ih 𝐵)))
98eqcomd 2742 . . . . . . . . 9 (((𝐴 ·ih 𝐵) · (𝐵 ·ih 𝐴)) = ((𝐴 ·ih 𝐴) · (𝐵 ·ih 𝐵)) → (((𝐴 ·ih 𝐴) · (𝐵 ·ih 𝐵)) · (𝐵 ·ih 𝐵)) = (((𝐴 ·ih 𝐵) · (𝐵 ·ih 𝐴)) · (𝐵 ·ih 𝐵)))
10 his5 31072 . . . . . . . . . . 11 (((𝐵 ·ih 𝐵) ∈ ℂ ∧ ((𝐵 ·ih 𝐵) · 𝐴) ∈ ℋ ∧ 𝐴 ∈ ℋ) → (((𝐵 ·ih 𝐵) · 𝐴) ·ih ((𝐵 ·ih 𝐵) · 𝐴)) = ((∗‘(𝐵 ·ih 𝐵)) · (((𝐵 ·ih 𝐵) · 𝐴) ·ih 𝐴)))
112, 4, 3, 10mp3an 1463 . . . . . . . . . 10 (((𝐵 ·ih 𝐵) · 𝐴) ·ih ((𝐵 ·ih 𝐵) · 𝐴)) = ((∗‘(𝐵 ·ih 𝐵)) · (((𝐵 ·ih 𝐵) · 𝐴) ·ih 𝐴))
12 hiidrcl 31081 . . . . . . . . . . . 12 (𝐵 ∈ ℋ → (𝐵 ·ih 𝐵) ∈ ℝ)
13 cjre 15163 . . . . . . . . . . . 12 ((𝐵 ·ih 𝐵) ∈ ℝ → (∗‘(𝐵 ·ih 𝐵)) = (𝐵 ·ih 𝐵))
141, 12, 13mp2b 10 . . . . . . . . . . 11 (∗‘(𝐵 ·ih 𝐵)) = (𝐵 ·ih 𝐵)
15 ax-his3 31070 . . . . . . . . . . . 12 (((𝐵 ·ih 𝐵) ∈ ℂ ∧ 𝐴 ∈ ℋ ∧ 𝐴 ∈ ℋ) → (((𝐵 ·ih 𝐵) · 𝐴) ·ih 𝐴) = ((𝐵 ·ih 𝐵) · (𝐴 ·ih 𝐴)))
162, 3, 3, 15mp3an 1463 . . . . . . . . . . 11 (((𝐵 ·ih 𝐵) · 𝐴) ·ih 𝐴) = ((𝐵 ·ih 𝐵) · (𝐴 ·ih 𝐴))
1714, 16oveq12i 7422 . . . . . . . . . 10 ((∗‘(𝐵 ·ih 𝐵)) · (((𝐵 ·ih 𝐵) · 𝐴) ·ih 𝐴)) = ((𝐵 ·ih 𝐵) · ((𝐵 ·ih 𝐵) · (𝐴 ·ih 𝐴)))
183, 3hicli 31067 . . . . . . . . . . . . 13 (𝐴 ·ih 𝐴) ∈ ℂ
192, 18mulcli 11247 . . . . . . . . . . . 12 ((𝐵 ·ih 𝐵) · (𝐴 ·ih 𝐴)) ∈ ℂ
202, 19mulcomi 11248 . . . . . . . . . . 11 ((𝐵 ·ih 𝐵) · ((𝐵 ·ih 𝐵) · (𝐴 ·ih 𝐴))) = (((𝐵 ·ih 𝐵) · (𝐴 ·ih 𝐴)) · (𝐵 ·ih 𝐵))
2118, 2mulcomi 11248 . . . . . . . . . . . 12 ((𝐴 ·ih 𝐴) · (𝐵 ·ih 𝐵)) = ((𝐵 ·ih 𝐵) · (𝐴 ·ih 𝐴))
2221oveq1i 7420 . . . . . . . . . . 11 (((𝐴 ·ih 𝐴) · (𝐵 ·ih 𝐵)) · (𝐵 ·ih 𝐵)) = (((𝐵 ·ih 𝐵) · (𝐴 ·ih 𝐴)) · (𝐵 ·ih 𝐵))
2320, 22eqtr4i 2762 . . . . . . . . . 10 ((𝐵 ·ih 𝐵) · ((𝐵 ·ih 𝐵) · (𝐴 ·ih 𝐴))) = (((𝐴 ·ih 𝐴) · (𝐵 ·ih 𝐵)) · (𝐵 ·ih 𝐵))
2411, 17, 233eqtri 2763 . . . . . . . . 9 (((𝐵 ·ih 𝐵) · 𝐴) ·ih ((𝐵 ·ih 𝐵) · 𝐴)) = (((𝐴 ·ih 𝐴) · (𝐵 ·ih 𝐵)) · (𝐵 ·ih 𝐵))
25 his5 31072 . . . . . . . . . . 11 (((𝐴 ·ih 𝐵) ∈ ℂ ∧ ((𝐵 ·ih 𝐵) · 𝐴) ∈ ℋ ∧ 𝐵 ∈ ℋ) → (((𝐵 ·ih 𝐵) · 𝐴) ·ih ((𝐴 ·ih 𝐵) · 𝐵)) = ((∗‘(𝐴 ·ih 𝐵)) · (((𝐵 ·ih 𝐵) · 𝐴) ·ih 𝐵)))
265, 4, 1, 25mp3an 1463 . . . . . . . . . 10 (((𝐵 ·ih 𝐵) · 𝐴) ·ih ((𝐴 ·ih 𝐵) · 𝐵)) = ((∗‘(𝐴 ·ih 𝐵)) · (((𝐵 ·ih 𝐵) · 𝐴) ·ih 𝐵))
271, 3his1i 31086 . . . . . . . . . . . 12 (𝐵 ·ih 𝐴) = (∗‘(𝐴 ·ih 𝐵))
2827eqcomi 2745 . . . . . . . . . . 11 (∗‘(𝐴 ·ih 𝐵)) = (𝐵 ·ih 𝐴)
29 ax-his3 31070 . . . . . . . . . . . 12 (((𝐵 ·ih 𝐵) ∈ ℂ ∧ 𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ) → (((𝐵 ·ih 𝐵) · 𝐴) ·ih 𝐵) = ((𝐵 ·ih 𝐵) · (𝐴 ·ih 𝐵)))
302, 3, 1, 29mp3an 1463 . . . . . . . . . . 11 (((𝐵 ·ih 𝐵) · 𝐴) ·ih 𝐵) = ((𝐵 ·ih 𝐵) · (𝐴 ·ih 𝐵))
3128, 30oveq12i 7422 . . . . . . . . . 10 ((∗‘(𝐴 ·ih 𝐵)) · (((𝐵 ·ih 𝐵) · 𝐴) ·ih 𝐵)) = ((𝐵 ·ih 𝐴) · ((𝐵 ·ih 𝐵) · (𝐴 ·ih 𝐵)))
321, 3hicli 31067 . . . . . . . . . . . 12 (𝐵 ·ih 𝐴) ∈ ℂ
332, 5mulcli 11247 . . . . . . . . . . . 12 ((𝐵 ·ih 𝐵) · (𝐴 ·ih 𝐵)) ∈ ℂ
3432, 33mulcomi 11248 . . . . . . . . . . 11 ((𝐵 ·ih 𝐴) · ((𝐵 ·ih 𝐵) · (𝐴 ·ih 𝐵))) = (((𝐵 ·ih 𝐵) · (𝐴 ·ih 𝐵)) · (𝐵 ·ih 𝐴))
352, 5, 32mulassi 11251 . . . . . . . . . . 11 (((𝐵 ·ih 𝐵) · (𝐴 ·ih 𝐵)) · (𝐵 ·ih 𝐴)) = ((𝐵 ·ih 𝐵) · ((𝐴 ·ih 𝐵) · (𝐵 ·ih 𝐴)))
365, 32mulcli 11247 . . . . . . . . . . . 12 ((𝐴 ·ih 𝐵) · (𝐵 ·ih 𝐴)) ∈ ℂ
372, 36mulcomi 11248 . . . . . . . . . . 11 ((𝐵 ·ih 𝐵) · ((𝐴 ·ih 𝐵) · (𝐵 ·ih 𝐴))) = (((𝐴 ·ih 𝐵) · (𝐵 ·ih 𝐴)) · (𝐵 ·ih 𝐵))
3834, 35, 373eqtri 2763 . . . . . . . . . 10 ((𝐵 ·ih 𝐴) · ((𝐵 ·ih 𝐵) · (𝐴 ·ih 𝐵))) = (((𝐴 ·ih 𝐵) · (𝐵 ·ih 𝐴)) · (𝐵 ·ih 𝐵))
3926, 31, 383eqtri 2763 . . . . . . . . 9 (((𝐵 ·ih 𝐵) · 𝐴) ·ih ((𝐴 ·ih 𝐵) · 𝐵)) = (((𝐴 ·ih 𝐵) · (𝐵 ·ih 𝐴)) · (𝐵 ·ih 𝐵))
409, 24, 393eqtr4g 2796 . . . . . . . 8 (((𝐴 ·ih 𝐵) · (𝐵 ·ih 𝐴)) = ((𝐴 ·ih 𝐴) · (𝐵 ·ih 𝐵)) → (((𝐵 ·ih 𝐵) · 𝐴) ·ih ((𝐵 ·ih 𝐵) · 𝐴)) = (((𝐵 ·ih 𝐵) · 𝐴) ·ih ((𝐴 ·ih 𝐵) · 𝐵)))
41 ax-his3 31070 . . . . . . . . . . . 12 (((𝐴 ·ih 𝐵) ∈ ℂ ∧ 𝐵 ∈ ℋ ∧ 𝐴 ∈ ℋ) → (((𝐴 ·ih 𝐵) · 𝐵) ·ih 𝐴) = ((𝐴 ·ih 𝐵) · (𝐵 ·ih 𝐴)))
425, 1, 3, 41mp3an 1463 . . . . . . . . . . 11 (((𝐴 ·ih 𝐵) · 𝐵) ·ih 𝐴) = ((𝐴 ·ih 𝐵) · (𝐵 ·ih 𝐴))
4314, 42oveq12i 7422 . . . . . . . . . 10 ((∗‘(𝐵 ·ih 𝐵)) · (((𝐴 ·ih 𝐵) · 𝐵) ·ih 𝐴)) = ((𝐵 ·ih 𝐵) · ((𝐴 ·ih 𝐵) · (𝐵 ·ih 𝐴)))
44 his5 31072 . . . . . . . . . . 11 (((𝐵 ·ih 𝐵) ∈ ℂ ∧ ((𝐴 ·ih 𝐵) · 𝐵) ∈ ℋ ∧ 𝐴 ∈ ℋ) → (((𝐴 ·ih 𝐵) · 𝐵) ·ih ((𝐵 ·ih 𝐵) · 𝐴)) = ((∗‘(𝐵 ·ih 𝐵)) · (((𝐴 ·ih 𝐵) · 𝐵) ·ih 𝐴)))
452, 6, 3, 44mp3an 1463 . . . . . . . . . 10 (((𝐴 ·ih 𝐵) · 𝐵) ·ih ((𝐵 ·ih 𝐵) · 𝐴)) = ((∗‘(𝐵 ·ih 𝐵)) · (((𝐴 ·ih 𝐵) · 𝐵) ·ih 𝐴))
46 his5 31072 . . . . . . . . . . . 12 (((𝐴 ·ih 𝐵) ∈ ℂ ∧ ((𝐴 ·ih 𝐵) · 𝐵) ∈ ℋ ∧ 𝐵 ∈ ℋ) → (((𝐴 ·ih 𝐵) · 𝐵) ·ih ((𝐴 ·ih 𝐵) · 𝐵)) = ((∗‘(𝐴 ·ih 𝐵)) · (((𝐴 ·ih 𝐵) · 𝐵) ·ih 𝐵)))
475, 6, 1, 46mp3an 1463 . . . . . . . . . . 11 (((𝐴 ·ih 𝐵) · 𝐵) ·ih ((𝐴 ·ih 𝐵) · 𝐵)) = ((∗‘(𝐴 ·ih 𝐵)) · (((𝐴 ·ih 𝐵) · 𝐵) ·ih 𝐵))
48 ax-his3 31070 . . . . . . . . . . . . 13 (((𝐴 ·ih 𝐵) ∈ ℂ ∧ 𝐵 ∈ ℋ ∧ 𝐵 ∈ ℋ) → (((𝐴 ·ih 𝐵) · 𝐵) ·ih 𝐵) = ((𝐴 ·ih 𝐵) · (𝐵 ·ih 𝐵)))
495, 1, 1, 48mp3an 1463 . . . . . . . . . . . 12 (((𝐴 ·ih 𝐵) · 𝐵) ·ih 𝐵) = ((𝐴 ·ih 𝐵) · (𝐵 ·ih 𝐵))
5028, 49oveq12i 7422 . . . . . . . . . . 11 ((∗‘(𝐴 ·ih 𝐵)) · (((𝐴 ·ih 𝐵) · 𝐵) ·ih 𝐵)) = ((𝐵 ·ih 𝐴) · ((𝐴 ·ih 𝐵) · (𝐵 ·ih 𝐵)))
515, 2mulcli 11247 . . . . . . . . . . . . 13 ((𝐴 ·ih 𝐵) · (𝐵 ·ih 𝐵)) ∈ ℂ
5232, 51mulcomi 11248 . . . . . . . . . . . 12 ((𝐵 ·ih 𝐴) · ((𝐴 ·ih 𝐵) · (𝐵 ·ih 𝐵))) = (((𝐴 ·ih 𝐵) · (𝐵 ·ih 𝐵)) · (𝐵 ·ih 𝐴))
535, 2, 32mul32i 11436 . . . . . . . . . . . 12 (((𝐴 ·ih 𝐵) · (𝐵 ·ih 𝐵)) · (𝐵 ·ih 𝐴)) = (((𝐴 ·ih 𝐵) · (𝐵 ·ih 𝐴)) · (𝐵 ·ih 𝐵))
5436, 2mulcomi 11248 . . . . . . . . . . . 12 (((𝐴 ·ih 𝐵) · (𝐵 ·ih 𝐴)) · (𝐵 ·ih 𝐵)) = ((𝐵 ·ih 𝐵) · ((𝐴 ·ih 𝐵) · (𝐵 ·ih 𝐴)))
5552, 53, 543eqtri 2763 . . . . . . . . . . 11 ((𝐵 ·ih 𝐴) · ((𝐴 ·ih 𝐵) · (𝐵 ·ih 𝐵))) = ((𝐵 ·ih 𝐵) · ((𝐴 ·ih 𝐵) · (𝐵 ·ih 𝐴)))
5647, 50, 553eqtri 2763 . . . . . . . . . 10 (((𝐴 ·ih 𝐵) · 𝐵) ·ih ((𝐴 ·ih 𝐵) · 𝐵)) = ((𝐵 ·ih 𝐵) · ((𝐴 ·ih 𝐵) · (𝐵 ·ih 𝐴)))
5743, 45, 563eqtr4ri 2770 . . . . . . . . 9 (((𝐴 ·ih 𝐵) · 𝐵) ·ih ((𝐴 ·ih 𝐵) · 𝐵)) = (((𝐴 ·ih 𝐵) · 𝐵) ·ih ((𝐵 ·ih 𝐵) · 𝐴))
5857a1i 11 . . . . . . . 8 (((𝐴 ·ih 𝐵) · (𝐵 ·ih 𝐴)) = ((𝐴 ·ih 𝐴) · (𝐵 ·ih 𝐵)) → (((𝐴 ·ih 𝐵) · 𝐵) ·ih ((𝐴 ·ih 𝐵) · 𝐵)) = (((𝐴 ·ih 𝐵) · 𝐵) ·ih ((𝐵 ·ih 𝐵) · 𝐴)))
5940, 58oveq12d 7428 . . . . . . 7 (((𝐴 ·ih 𝐵) · (𝐵 ·ih 𝐴)) = ((𝐴 ·ih 𝐴) · (𝐵 ·ih 𝐵)) → ((((𝐵 ·ih 𝐵) · 𝐴) ·ih ((𝐵 ·ih 𝐵) · 𝐴)) + (((𝐴 ·ih 𝐵) · 𝐵) ·ih ((𝐴 ·ih 𝐵) · 𝐵))) = ((((𝐵 ·ih 𝐵) · 𝐴) ·ih ((𝐴 ·ih 𝐵) · 𝐵)) + (((𝐴 ·ih 𝐵) · 𝐵) ·ih ((𝐵 ·ih 𝐵) · 𝐴))))
6059oveq1d 7425 . . . . . 6 (((𝐴 ·ih 𝐵) · (𝐵 ·ih 𝐴)) = ((𝐴 ·ih 𝐴) · (𝐵 ·ih 𝐵)) → (((((𝐵 ·ih 𝐵) · 𝐴) ·ih ((𝐵 ·ih 𝐵) · 𝐴)) + (((𝐴 ·ih 𝐵) · 𝐵) ·ih ((𝐴 ·ih 𝐵) · 𝐵))) − ((((𝐵 ·ih 𝐵) · 𝐴) ·ih ((𝐴 ·ih 𝐵) · 𝐵)) + (((𝐴 ·ih 𝐵) · 𝐵) ·ih ((𝐵 ·ih 𝐵) · 𝐴)))) = (((((𝐵 ·ih 𝐵) · 𝐴) ·ih ((𝐴 ·ih 𝐵) · 𝐵)) + (((𝐴 ·ih 𝐵) · 𝐵) ·ih ((𝐵 ·ih 𝐵) · 𝐴))) − ((((𝐵 ·ih 𝐵) · 𝐴) ·ih ((𝐴 ·ih 𝐵) · 𝐵)) + (((𝐴 ·ih 𝐵) · 𝐵) ·ih ((𝐵 ·ih 𝐵) · 𝐴)))))
614, 6hicli 31067 . . . . . . . 8 (((𝐵 ·ih 𝐵) · 𝐴) ·ih ((𝐴 ·ih 𝐵) · 𝐵)) ∈ ℂ
626, 4hicli 31067 . . . . . . . 8 (((𝐴 ·ih 𝐵) · 𝐵) ·ih ((𝐵 ·ih 𝐵) · 𝐴)) ∈ ℂ
6361, 62addcli 11246 . . . . . . 7 ((((𝐵 ·ih 𝐵) · 𝐴) ·ih ((𝐴 ·ih 𝐵) · 𝐵)) + (((𝐴 ·ih 𝐵) · 𝐵) ·ih ((𝐵 ·ih 𝐵) · 𝐴))) ∈ ℂ
6463subidi 11559 . . . . . 6 (((((𝐵 ·ih 𝐵) · 𝐴) ·ih ((𝐴 ·ih 𝐵) · 𝐵)) + (((𝐴 ·ih 𝐵) · 𝐵) ·ih ((𝐵 ·ih 𝐵) · 𝐴))) − ((((𝐵 ·ih 𝐵) · 𝐴) ·ih ((𝐴 ·ih 𝐵) · 𝐵)) + (((𝐴 ·ih 𝐵) · 𝐵) ·ih ((𝐵 ·ih 𝐵) · 𝐴)))) = 0
6560, 64eqtrdi 2787 . . . . 5 (((𝐴 ·ih 𝐵) · (𝐵 ·ih 𝐴)) = ((𝐴 ·ih 𝐴) · (𝐵 ·ih 𝐵)) → (((((𝐵 ·ih 𝐵) · 𝐴) ·ih ((𝐵 ·ih 𝐵) · 𝐴)) + (((𝐴 ·ih 𝐵) · 𝐵) ·ih ((𝐴 ·ih 𝐵) · 𝐵))) − ((((𝐵 ·ih 𝐵) · 𝐴) ·ih ((𝐴 ·ih 𝐵) · 𝐵)) + (((𝐴 ·ih 𝐵) · 𝐵) ·ih ((𝐵 ·ih 𝐵) · 𝐴)))) = 0)
667, 65eqtrid 2783 . . . 4 (((𝐴 ·ih 𝐵) · (𝐵 ·ih 𝐴)) = ((𝐴 ·ih 𝐴) · (𝐵 ·ih 𝐵)) → ((((𝐵 ·ih 𝐵) · 𝐴) − ((𝐴 ·ih 𝐵) · 𝐵)) ·ih (((𝐵 ·ih 𝐵) · 𝐴) − ((𝐴 ·ih 𝐵) · 𝐵))) = 0)
674, 6hvsubcli 31007 . . . . 5 (((𝐵 ·ih 𝐵) · 𝐴) − ((𝐴 ·ih 𝐵) · 𝐵)) ∈ ℋ
68 his6 31085 . . . . 5 ((((𝐵 ·ih 𝐵) · 𝐴) − ((𝐴 ·ih 𝐵) · 𝐵)) ∈ ℋ → (((((𝐵 ·ih 𝐵) · 𝐴) − ((𝐴 ·ih 𝐵) · 𝐵)) ·ih (((𝐵 ·ih 𝐵) · 𝐴) − ((𝐴 ·ih 𝐵) · 𝐵))) = 0 ↔ (((𝐵 ·ih 𝐵) · 𝐴) − ((𝐴 ·ih 𝐵) · 𝐵)) = 0))
6967, 68ax-mp 5 . . . 4 (((((𝐵 ·ih 𝐵) · 𝐴) − ((𝐴 ·ih 𝐵) · 𝐵)) ·ih (((𝐵 ·ih 𝐵) · 𝐴) − ((𝐴 ·ih 𝐵) · 𝐵))) = 0 ↔ (((𝐵 ·ih 𝐵) · 𝐴) − ((𝐴 ·ih 𝐵) · 𝐵)) = 0)
7066, 69sylib 218 . . 3 (((𝐴 ·ih 𝐵) · (𝐵 ·ih 𝐴)) = ((𝐴 ·ih 𝐴) · (𝐵 ·ih 𝐵)) → (((𝐵 ·ih 𝐵) · 𝐴) − ((𝐴 ·ih 𝐵) · 𝐵)) = 0)
714, 6hvsubeq0i 31049 . . 3 ((((𝐵 ·ih 𝐵) · 𝐴) − ((𝐴 ·ih 𝐵) · 𝐵)) = 0 ↔ ((𝐵 ·ih 𝐵) · 𝐴) = ((𝐴 ·ih 𝐵) · 𝐵))
7270, 71sylib 218 . 2 (((𝐴 ·ih 𝐵) · (𝐵 ·ih 𝐴)) = ((𝐴 ·ih 𝐴) · (𝐵 ·ih 𝐵)) → ((𝐵 ·ih 𝐵) · 𝐴) = ((𝐴 ·ih 𝐵) · 𝐵))
73 oveq1 7417 . . . 4 (((𝐵 ·ih 𝐵) · 𝐴) = ((𝐴 ·ih 𝐵) · 𝐵) → (((𝐵 ·ih 𝐵) · 𝐴) ·ih 𝐴) = (((𝐴 ·ih 𝐵) · 𝐵) ·ih 𝐴))
7421, 16eqtr4i 2762 . . . 4 ((𝐴 ·ih 𝐴) · (𝐵 ·ih 𝐵)) = (((𝐵 ·ih 𝐵) · 𝐴) ·ih 𝐴)
7542eqcomi 2745 . . . 4 ((𝐴 ·ih 𝐵) · (𝐵 ·ih 𝐴)) = (((𝐴 ·ih 𝐵) · 𝐵) ·ih 𝐴)
7673, 74, 753eqtr4g 2796 . . 3 (((𝐵 ·ih 𝐵) · 𝐴) = ((𝐴 ·ih 𝐵) · 𝐵) → ((𝐴 ·ih 𝐴) · (𝐵 ·ih 𝐵)) = ((𝐴 ·ih 𝐵) · (𝐵 ·ih 𝐴)))
7776eqcomd 2742 . 2 (((𝐵 ·ih 𝐵) · 𝐴) = ((𝐴 ·ih 𝐵) · 𝐵) → ((𝐴 ·ih 𝐵) · (𝐵 ·ih 𝐴)) = ((𝐴 ·ih 𝐴) · (𝐵 ·ih 𝐵)))
7872, 77impbii 209 1 (((𝐴 ·ih 𝐵) · (𝐵 ·ih 𝐴)) = ((𝐴 ·ih 𝐴) · (𝐵 ·ih 𝐵)) ↔ ((𝐵 ·ih 𝐵) · 𝐴) = ((𝐴 ·ih 𝐵) · 𝐵))
Colors of variables: wff setvar class
Syntax hints:  wb 206   = wceq 1540  wcel 2109  cfv 6536  (class class class)co 7410  cc 11132  cr 11133  0cc0 11134   + caddc 11137   · cmul 11139  cmin 11471  ccj 15120  chba 30905   · csm 30907   ·ih csp 30908  0c0v 30910   cmv 30911
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2708  ax-sep 5271  ax-nul 5281  ax-pow 5340  ax-pr 5407  ax-un 7734  ax-resscn 11191  ax-1cn 11192  ax-icn 11193  ax-addcl 11194  ax-addrcl 11195  ax-mulcl 11196  ax-mulrcl 11197  ax-mulcom 11198  ax-addass 11199  ax-mulass 11200  ax-distr 11201  ax-i2m1 11202  ax-1ne0 11203  ax-1rid 11204  ax-rnegex 11205  ax-rrecex 11206  ax-cnre 11207  ax-pre-lttri 11208  ax-pre-lttrn 11209  ax-pre-ltadd 11210  ax-pre-mulgt0 11211  ax-hfvadd 30986  ax-hvcom 30987  ax-hvass 30988  ax-hv0cl 30989  ax-hvaddid 30990  ax-hfvmul 30991  ax-hvmulid 30992  ax-hvdistr2 30995  ax-hvmul0 30996  ax-hfi 31065  ax-his1 31068  ax-his2 31069  ax-his3 31070  ax-his4 31071
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2728  df-clel 2810  df-nfc 2886  df-ne 2934  df-nel 3038  df-ral 3053  df-rex 3062  df-rmo 3364  df-reu 3365  df-rab 3421  df-v 3466  df-sbc 3771  df-csb 3880  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-pss 3951  df-nul 4314  df-if 4506  df-pw 4582  df-sn 4607  df-pr 4609  df-op 4613  df-uni 4889  df-iun 4974  df-br 5125  df-opab 5187  df-mpt 5207  df-tr 5235  df-id 5553  df-eprel 5558  df-po 5566  df-so 5567  df-fr 5611  df-we 5613  df-xp 5665  df-rel 5666  df-cnv 5667  df-co 5668  df-dm 5669  df-rn 5670  df-res 5671  df-ima 5672  df-pred 6295  df-ord 6360  df-on 6361  df-lim 6362  df-suc 6363  df-iota 6489  df-fun 6538  df-fn 6539  df-f 6540  df-f1 6541  df-fo 6542  df-f1o 6543  df-fv 6544  df-riota 7367  df-ov 7413  df-oprab 7414  df-mpo 7415  df-om 7867  df-2nd 7994  df-frecs 8285  df-wrecs 8316  df-recs 8390  df-rdg 8429  df-er 8724  df-en 8965  df-dom 8966  df-sdom 8967  df-pnf 11276  df-mnf 11277  df-xr 11278  df-ltxr 11279  df-le 11280  df-sub 11473  df-neg 11474  df-div 11900  df-nn 12246  df-2 12308  df-cj 15123  df-re 15124  df-im 15125  df-hvsub 30957
This theorem is referenced by:  h1de2i  31539
  Copyright terms: Public domain W3C validator