HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  bcseqi Structured version   Visualization version   GIF version

Theorem bcseqi 30368
Description: Equality case of Bunjakovaskij-Cauchy-Schwarz inequality. Specifically, in the equality case the two vectors are collinear. Compare bcsiHIL 30428. (Contributed by NM, 16-Jul-2001.) (New usage is discouraged.)
Hypotheses
Ref Expression
normlem7t.1 𝐴 ∈ ℋ
normlem7t.2 𝐵 ∈ ℋ
Assertion
Ref Expression
bcseqi (((𝐴 ·ih 𝐵) · (𝐵 ·ih 𝐴)) = ((𝐴 ·ih 𝐴) · (𝐵 ·ih 𝐵)) ↔ ((𝐵 ·ih 𝐵) · 𝐴) = ((𝐴 ·ih 𝐵) · 𝐵))

Proof of Theorem bcseqi
StepHypRef Expression
1 normlem7t.2 . . . . . . . 8 𝐵 ∈ ℋ
21, 1hicli 30329 . . . . . . 7 (𝐵 ·ih 𝐵) ∈ ℂ
3 normlem7t.1 . . . . . . 7 𝐴 ∈ ℋ
42, 3hvmulcli 30262 . . . . . 6 ((𝐵 ·ih 𝐵) · 𝐴) ∈ ℋ
53, 1hicli 30329 . . . . . . 7 (𝐴 ·ih 𝐵) ∈ ℂ
65, 1hvmulcli 30262 . . . . . 6 ((𝐴 ·ih 𝐵) · 𝐵) ∈ ℋ
74, 6, 4, 6normlem9 30366 . . . . 5 ((((𝐵 ·ih 𝐵) · 𝐴) − ((𝐴 ·ih 𝐵) · 𝐵)) ·ih (((𝐵 ·ih 𝐵) · 𝐴) − ((𝐴 ·ih 𝐵) · 𝐵))) = (((((𝐵 ·ih 𝐵) · 𝐴) ·ih ((𝐵 ·ih 𝐵) · 𝐴)) + (((𝐴 ·ih 𝐵) · 𝐵) ·ih ((𝐴 ·ih 𝐵) · 𝐵))) − ((((𝐵 ·ih 𝐵) · 𝐴) ·ih ((𝐴 ·ih 𝐵) · 𝐵)) + (((𝐴 ·ih 𝐵) · 𝐵) ·ih ((𝐵 ·ih 𝐵) · 𝐴))))
8 oveq1 7415 . . . . . . . . . 10 (((𝐴 ·ih 𝐵) · (𝐵 ·ih 𝐴)) = ((𝐴 ·ih 𝐴) · (𝐵 ·ih 𝐵)) → (((𝐴 ·ih 𝐵) · (𝐵 ·ih 𝐴)) · (𝐵 ·ih 𝐵)) = (((𝐴 ·ih 𝐴) · (𝐵 ·ih 𝐵)) · (𝐵 ·ih 𝐵)))
98eqcomd 2738 . . . . . . . . 9 (((𝐴 ·ih 𝐵) · (𝐵 ·ih 𝐴)) = ((𝐴 ·ih 𝐴) · (𝐵 ·ih 𝐵)) → (((𝐴 ·ih 𝐴) · (𝐵 ·ih 𝐵)) · (𝐵 ·ih 𝐵)) = (((𝐴 ·ih 𝐵) · (𝐵 ·ih 𝐴)) · (𝐵 ·ih 𝐵)))
10 his5 30334 . . . . . . . . . . 11 (((𝐵 ·ih 𝐵) ∈ ℂ ∧ ((𝐵 ·ih 𝐵) · 𝐴) ∈ ℋ ∧ 𝐴 ∈ ℋ) → (((𝐵 ·ih 𝐵) · 𝐴) ·ih ((𝐵 ·ih 𝐵) · 𝐴)) = ((∗‘(𝐵 ·ih 𝐵)) · (((𝐵 ·ih 𝐵) · 𝐴) ·ih 𝐴)))
112, 4, 3, 10mp3an 1461 . . . . . . . . . 10 (((𝐵 ·ih 𝐵) · 𝐴) ·ih ((𝐵 ·ih 𝐵) · 𝐴)) = ((∗‘(𝐵 ·ih 𝐵)) · (((𝐵 ·ih 𝐵) · 𝐴) ·ih 𝐴))
12 hiidrcl 30343 . . . . . . . . . . . 12 (𝐵 ∈ ℋ → (𝐵 ·ih 𝐵) ∈ ℝ)
13 cjre 15085 . . . . . . . . . . . 12 ((𝐵 ·ih 𝐵) ∈ ℝ → (∗‘(𝐵 ·ih 𝐵)) = (𝐵 ·ih 𝐵))
141, 12, 13mp2b 10 . . . . . . . . . . 11 (∗‘(𝐵 ·ih 𝐵)) = (𝐵 ·ih 𝐵)
15 ax-his3 30332 . . . . . . . . . . . 12 (((𝐵 ·ih 𝐵) ∈ ℂ ∧ 𝐴 ∈ ℋ ∧ 𝐴 ∈ ℋ) → (((𝐵 ·ih 𝐵) · 𝐴) ·ih 𝐴) = ((𝐵 ·ih 𝐵) · (𝐴 ·ih 𝐴)))
162, 3, 3, 15mp3an 1461 . . . . . . . . . . 11 (((𝐵 ·ih 𝐵) · 𝐴) ·ih 𝐴) = ((𝐵 ·ih 𝐵) · (𝐴 ·ih 𝐴))
1714, 16oveq12i 7420 . . . . . . . . . 10 ((∗‘(𝐵 ·ih 𝐵)) · (((𝐵 ·ih 𝐵) · 𝐴) ·ih 𝐴)) = ((𝐵 ·ih 𝐵) · ((𝐵 ·ih 𝐵) · (𝐴 ·ih 𝐴)))
183, 3hicli 30329 . . . . . . . . . . . . 13 (𝐴 ·ih 𝐴) ∈ ℂ
192, 18mulcli 11220 . . . . . . . . . . . 12 ((𝐵 ·ih 𝐵) · (𝐴 ·ih 𝐴)) ∈ ℂ
202, 19mulcomi 11221 . . . . . . . . . . 11 ((𝐵 ·ih 𝐵) · ((𝐵 ·ih 𝐵) · (𝐴 ·ih 𝐴))) = (((𝐵 ·ih 𝐵) · (𝐴 ·ih 𝐴)) · (𝐵 ·ih 𝐵))
2118, 2mulcomi 11221 . . . . . . . . . . . 12 ((𝐴 ·ih 𝐴) · (𝐵 ·ih 𝐵)) = ((𝐵 ·ih 𝐵) · (𝐴 ·ih 𝐴))
2221oveq1i 7418 . . . . . . . . . . 11 (((𝐴 ·ih 𝐴) · (𝐵 ·ih 𝐵)) · (𝐵 ·ih 𝐵)) = (((𝐵 ·ih 𝐵) · (𝐴 ·ih 𝐴)) · (𝐵 ·ih 𝐵))
2320, 22eqtr4i 2763 . . . . . . . . . 10 ((𝐵 ·ih 𝐵) · ((𝐵 ·ih 𝐵) · (𝐴 ·ih 𝐴))) = (((𝐴 ·ih 𝐴) · (𝐵 ·ih 𝐵)) · (𝐵 ·ih 𝐵))
2411, 17, 233eqtri 2764 . . . . . . . . 9 (((𝐵 ·ih 𝐵) · 𝐴) ·ih ((𝐵 ·ih 𝐵) · 𝐴)) = (((𝐴 ·ih 𝐴) · (𝐵 ·ih 𝐵)) · (𝐵 ·ih 𝐵))
25 his5 30334 . . . . . . . . . . 11 (((𝐴 ·ih 𝐵) ∈ ℂ ∧ ((𝐵 ·ih 𝐵) · 𝐴) ∈ ℋ ∧ 𝐵 ∈ ℋ) → (((𝐵 ·ih 𝐵) · 𝐴) ·ih ((𝐴 ·ih 𝐵) · 𝐵)) = ((∗‘(𝐴 ·ih 𝐵)) · (((𝐵 ·ih 𝐵) · 𝐴) ·ih 𝐵)))
265, 4, 1, 25mp3an 1461 . . . . . . . . . 10 (((𝐵 ·ih 𝐵) · 𝐴) ·ih ((𝐴 ·ih 𝐵) · 𝐵)) = ((∗‘(𝐴 ·ih 𝐵)) · (((𝐵 ·ih 𝐵) · 𝐴) ·ih 𝐵))
271, 3his1i 30348 . . . . . . . . . . . 12 (𝐵 ·ih 𝐴) = (∗‘(𝐴 ·ih 𝐵))
2827eqcomi 2741 . . . . . . . . . . 11 (∗‘(𝐴 ·ih 𝐵)) = (𝐵 ·ih 𝐴)
29 ax-his3 30332 . . . . . . . . . . . 12 (((𝐵 ·ih 𝐵) ∈ ℂ ∧ 𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ) → (((𝐵 ·ih 𝐵) · 𝐴) ·ih 𝐵) = ((𝐵 ·ih 𝐵) · (𝐴 ·ih 𝐵)))
302, 3, 1, 29mp3an 1461 . . . . . . . . . . 11 (((𝐵 ·ih 𝐵) · 𝐴) ·ih 𝐵) = ((𝐵 ·ih 𝐵) · (𝐴 ·ih 𝐵))
3128, 30oveq12i 7420 . . . . . . . . . 10 ((∗‘(𝐴 ·ih 𝐵)) · (((𝐵 ·ih 𝐵) · 𝐴) ·ih 𝐵)) = ((𝐵 ·ih 𝐴) · ((𝐵 ·ih 𝐵) · (𝐴 ·ih 𝐵)))
321, 3hicli 30329 . . . . . . . . . . . 12 (𝐵 ·ih 𝐴) ∈ ℂ
332, 5mulcli 11220 . . . . . . . . . . . 12 ((𝐵 ·ih 𝐵) · (𝐴 ·ih 𝐵)) ∈ ℂ
3432, 33mulcomi 11221 . . . . . . . . . . 11 ((𝐵 ·ih 𝐴) · ((𝐵 ·ih 𝐵) · (𝐴 ·ih 𝐵))) = (((𝐵 ·ih 𝐵) · (𝐴 ·ih 𝐵)) · (𝐵 ·ih 𝐴))
352, 5, 32mulassi 11224 . . . . . . . . . . 11 (((𝐵 ·ih 𝐵) · (𝐴 ·ih 𝐵)) · (𝐵 ·ih 𝐴)) = ((𝐵 ·ih 𝐵) · ((𝐴 ·ih 𝐵) · (𝐵 ·ih 𝐴)))
365, 32mulcli 11220 . . . . . . . . . . . 12 ((𝐴 ·ih 𝐵) · (𝐵 ·ih 𝐴)) ∈ ℂ
372, 36mulcomi 11221 . . . . . . . . . . 11 ((𝐵 ·ih 𝐵) · ((𝐴 ·ih 𝐵) · (𝐵 ·ih 𝐴))) = (((𝐴 ·ih 𝐵) · (𝐵 ·ih 𝐴)) · (𝐵 ·ih 𝐵))
3834, 35, 373eqtri 2764 . . . . . . . . . 10 ((𝐵 ·ih 𝐴) · ((𝐵 ·ih 𝐵) · (𝐴 ·ih 𝐵))) = (((𝐴 ·ih 𝐵) · (𝐵 ·ih 𝐴)) · (𝐵 ·ih 𝐵))
3926, 31, 383eqtri 2764 . . . . . . . . 9 (((𝐵 ·ih 𝐵) · 𝐴) ·ih ((𝐴 ·ih 𝐵) · 𝐵)) = (((𝐴 ·ih 𝐵) · (𝐵 ·ih 𝐴)) · (𝐵 ·ih 𝐵))
409, 24, 393eqtr4g 2797 . . . . . . . 8 (((𝐴 ·ih 𝐵) · (𝐵 ·ih 𝐴)) = ((𝐴 ·ih 𝐴) · (𝐵 ·ih 𝐵)) → (((𝐵 ·ih 𝐵) · 𝐴) ·ih ((𝐵 ·ih 𝐵) · 𝐴)) = (((𝐵 ·ih 𝐵) · 𝐴) ·ih ((𝐴 ·ih 𝐵) · 𝐵)))
41 ax-his3 30332 . . . . . . . . . . . 12 (((𝐴 ·ih 𝐵) ∈ ℂ ∧ 𝐵 ∈ ℋ ∧ 𝐴 ∈ ℋ) → (((𝐴 ·ih 𝐵) · 𝐵) ·ih 𝐴) = ((𝐴 ·ih 𝐵) · (𝐵 ·ih 𝐴)))
425, 1, 3, 41mp3an 1461 . . . . . . . . . . 11 (((𝐴 ·ih 𝐵) · 𝐵) ·ih 𝐴) = ((𝐴 ·ih 𝐵) · (𝐵 ·ih 𝐴))
4314, 42oveq12i 7420 . . . . . . . . . 10 ((∗‘(𝐵 ·ih 𝐵)) · (((𝐴 ·ih 𝐵) · 𝐵) ·ih 𝐴)) = ((𝐵 ·ih 𝐵) · ((𝐴 ·ih 𝐵) · (𝐵 ·ih 𝐴)))
44 his5 30334 . . . . . . . . . . 11 (((𝐵 ·ih 𝐵) ∈ ℂ ∧ ((𝐴 ·ih 𝐵) · 𝐵) ∈ ℋ ∧ 𝐴 ∈ ℋ) → (((𝐴 ·ih 𝐵) · 𝐵) ·ih ((𝐵 ·ih 𝐵) · 𝐴)) = ((∗‘(𝐵 ·ih 𝐵)) · (((𝐴 ·ih 𝐵) · 𝐵) ·ih 𝐴)))
452, 6, 3, 44mp3an 1461 . . . . . . . . . 10 (((𝐴 ·ih 𝐵) · 𝐵) ·ih ((𝐵 ·ih 𝐵) · 𝐴)) = ((∗‘(𝐵 ·ih 𝐵)) · (((𝐴 ·ih 𝐵) · 𝐵) ·ih 𝐴))
46 his5 30334 . . . . . . . . . . . 12 (((𝐴 ·ih 𝐵) ∈ ℂ ∧ ((𝐴 ·ih 𝐵) · 𝐵) ∈ ℋ ∧ 𝐵 ∈ ℋ) → (((𝐴 ·ih 𝐵) · 𝐵) ·ih ((𝐴 ·ih 𝐵) · 𝐵)) = ((∗‘(𝐴 ·ih 𝐵)) · (((𝐴 ·ih 𝐵) · 𝐵) ·ih 𝐵)))
475, 6, 1, 46mp3an 1461 . . . . . . . . . . 11 (((𝐴 ·ih 𝐵) · 𝐵) ·ih ((𝐴 ·ih 𝐵) · 𝐵)) = ((∗‘(𝐴 ·ih 𝐵)) · (((𝐴 ·ih 𝐵) · 𝐵) ·ih 𝐵))
48 ax-his3 30332 . . . . . . . . . . . . 13 (((𝐴 ·ih 𝐵) ∈ ℂ ∧ 𝐵 ∈ ℋ ∧ 𝐵 ∈ ℋ) → (((𝐴 ·ih 𝐵) · 𝐵) ·ih 𝐵) = ((𝐴 ·ih 𝐵) · (𝐵 ·ih 𝐵)))
495, 1, 1, 48mp3an 1461 . . . . . . . . . . . 12 (((𝐴 ·ih 𝐵) · 𝐵) ·ih 𝐵) = ((𝐴 ·ih 𝐵) · (𝐵 ·ih 𝐵))
5028, 49oveq12i 7420 . . . . . . . . . . 11 ((∗‘(𝐴 ·ih 𝐵)) · (((𝐴 ·ih 𝐵) · 𝐵) ·ih 𝐵)) = ((𝐵 ·ih 𝐴) · ((𝐴 ·ih 𝐵) · (𝐵 ·ih 𝐵)))
515, 2mulcli 11220 . . . . . . . . . . . . 13 ((𝐴 ·ih 𝐵) · (𝐵 ·ih 𝐵)) ∈ ℂ
5232, 51mulcomi 11221 . . . . . . . . . . . 12 ((𝐵 ·ih 𝐴) · ((𝐴 ·ih 𝐵) · (𝐵 ·ih 𝐵))) = (((𝐴 ·ih 𝐵) · (𝐵 ·ih 𝐵)) · (𝐵 ·ih 𝐴))
535, 2, 32mul32i 11409 . . . . . . . . . . . 12 (((𝐴 ·ih 𝐵) · (𝐵 ·ih 𝐵)) · (𝐵 ·ih 𝐴)) = (((𝐴 ·ih 𝐵) · (𝐵 ·ih 𝐴)) · (𝐵 ·ih 𝐵))
5436, 2mulcomi 11221 . . . . . . . . . . . 12 (((𝐴 ·ih 𝐵) · (𝐵 ·ih 𝐴)) · (𝐵 ·ih 𝐵)) = ((𝐵 ·ih 𝐵) · ((𝐴 ·ih 𝐵) · (𝐵 ·ih 𝐴)))
5552, 53, 543eqtri 2764 . . . . . . . . . . 11 ((𝐵 ·ih 𝐴) · ((𝐴 ·ih 𝐵) · (𝐵 ·ih 𝐵))) = ((𝐵 ·ih 𝐵) · ((𝐴 ·ih 𝐵) · (𝐵 ·ih 𝐴)))
5647, 50, 553eqtri 2764 . . . . . . . . . 10 (((𝐴 ·ih 𝐵) · 𝐵) ·ih ((𝐴 ·ih 𝐵) · 𝐵)) = ((𝐵 ·ih 𝐵) · ((𝐴 ·ih 𝐵) · (𝐵 ·ih 𝐴)))
5743, 45, 563eqtr4ri 2771 . . . . . . . . 9 (((𝐴 ·ih 𝐵) · 𝐵) ·ih ((𝐴 ·ih 𝐵) · 𝐵)) = (((𝐴 ·ih 𝐵) · 𝐵) ·ih ((𝐵 ·ih 𝐵) · 𝐴))
5857a1i 11 . . . . . . . 8 (((𝐴 ·ih 𝐵) · (𝐵 ·ih 𝐴)) = ((𝐴 ·ih 𝐴) · (𝐵 ·ih 𝐵)) → (((𝐴 ·ih 𝐵) · 𝐵) ·ih ((𝐴 ·ih 𝐵) · 𝐵)) = (((𝐴 ·ih 𝐵) · 𝐵) ·ih ((𝐵 ·ih 𝐵) · 𝐴)))
5940, 58oveq12d 7426 . . . . . . 7 (((𝐴 ·ih 𝐵) · (𝐵 ·ih 𝐴)) = ((𝐴 ·ih 𝐴) · (𝐵 ·ih 𝐵)) → ((((𝐵 ·ih 𝐵) · 𝐴) ·ih ((𝐵 ·ih 𝐵) · 𝐴)) + (((𝐴 ·ih 𝐵) · 𝐵) ·ih ((𝐴 ·ih 𝐵) · 𝐵))) = ((((𝐵 ·ih 𝐵) · 𝐴) ·ih ((𝐴 ·ih 𝐵) · 𝐵)) + (((𝐴 ·ih 𝐵) · 𝐵) ·ih ((𝐵 ·ih 𝐵) · 𝐴))))
6059oveq1d 7423 . . . . . 6 (((𝐴 ·ih 𝐵) · (𝐵 ·ih 𝐴)) = ((𝐴 ·ih 𝐴) · (𝐵 ·ih 𝐵)) → (((((𝐵 ·ih 𝐵) · 𝐴) ·ih ((𝐵 ·ih 𝐵) · 𝐴)) + (((𝐴 ·ih 𝐵) · 𝐵) ·ih ((𝐴 ·ih 𝐵) · 𝐵))) − ((((𝐵 ·ih 𝐵) · 𝐴) ·ih ((𝐴 ·ih 𝐵) · 𝐵)) + (((𝐴 ·ih 𝐵) · 𝐵) ·ih ((𝐵 ·ih 𝐵) · 𝐴)))) = (((((𝐵 ·ih 𝐵) · 𝐴) ·ih ((𝐴 ·ih 𝐵) · 𝐵)) + (((𝐴 ·ih 𝐵) · 𝐵) ·ih ((𝐵 ·ih 𝐵) · 𝐴))) − ((((𝐵 ·ih 𝐵) · 𝐴) ·ih ((𝐴 ·ih 𝐵) · 𝐵)) + (((𝐴 ·ih 𝐵) · 𝐵) ·ih ((𝐵 ·ih 𝐵) · 𝐴)))))
614, 6hicli 30329 . . . . . . . 8 (((𝐵 ·ih 𝐵) · 𝐴) ·ih ((𝐴 ·ih 𝐵) · 𝐵)) ∈ ℂ
626, 4hicli 30329 . . . . . . . 8 (((𝐴 ·ih 𝐵) · 𝐵) ·ih ((𝐵 ·ih 𝐵) · 𝐴)) ∈ ℂ
6361, 62addcli 11219 . . . . . . 7 ((((𝐵 ·ih 𝐵) · 𝐴) ·ih ((𝐴 ·ih 𝐵) · 𝐵)) + (((𝐴 ·ih 𝐵) · 𝐵) ·ih ((𝐵 ·ih 𝐵) · 𝐴))) ∈ ℂ
6463subidi 11530 . . . . . 6 (((((𝐵 ·ih 𝐵) · 𝐴) ·ih ((𝐴 ·ih 𝐵) · 𝐵)) + (((𝐴 ·ih 𝐵) · 𝐵) ·ih ((𝐵 ·ih 𝐵) · 𝐴))) − ((((𝐵 ·ih 𝐵) · 𝐴) ·ih ((𝐴 ·ih 𝐵) · 𝐵)) + (((𝐴 ·ih 𝐵) · 𝐵) ·ih ((𝐵 ·ih 𝐵) · 𝐴)))) = 0
6560, 64eqtrdi 2788 . . . . 5 (((𝐴 ·ih 𝐵) · (𝐵 ·ih 𝐴)) = ((𝐴 ·ih 𝐴) · (𝐵 ·ih 𝐵)) → (((((𝐵 ·ih 𝐵) · 𝐴) ·ih ((𝐵 ·ih 𝐵) · 𝐴)) + (((𝐴 ·ih 𝐵) · 𝐵) ·ih ((𝐴 ·ih 𝐵) · 𝐵))) − ((((𝐵 ·ih 𝐵) · 𝐴) ·ih ((𝐴 ·ih 𝐵) · 𝐵)) + (((𝐴 ·ih 𝐵) · 𝐵) ·ih ((𝐵 ·ih 𝐵) · 𝐴)))) = 0)
667, 65eqtrid 2784 . . . 4 (((𝐴 ·ih 𝐵) · (𝐵 ·ih 𝐴)) = ((𝐴 ·ih 𝐴) · (𝐵 ·ih 𝐵)) → ((((𝐵 ·ih 𝐵) · 𝐴) − ((𝐴 ·ih 𝐵) · 𝐵)) ·ih (((𝐵 ·ih 𝐵) · 𝐴) − ((𝐴 ·ih 𝐵) · 𝐵))) = 0)
674, 6hvsubcli 30269 . . . . 5 (((𝐵 ·ih 𝐵) · 𝐴) − ((𝐴 ·ih 𝐵) · 𝐵)) ∈ ℋ
68 his6 30347 . . . . 5 ((((𝐵 ·ih 𝐵) · 𝐴) − ((𝐴 ·ih 𝐵) · 𝐵)) ∈ ℋ → (((((𝐵 ·ih 𝐵) · 𝐴) − ((𝐴 ·ih 𝐵) · 𝐵)) ·ih (((𝐵 ·ih 𝐵) · 𝐴) − ((𝐴 ·ih 𝐵) · 𝐵))) = 0 ↔ (((𝐵 ·ih 𝐵) · 𝐴) − ((𝐴 ·ih 𝐵) · 𝐵)) = 0))
6967, 68ax-mp 5 . . . 4 (((((𝐵 ·ih 𝐵) · 𝐴) − ((𝐴 ·ih 𝐵) · 𝐵)) ·ih (((𝐵 ·ih 𝐵) · 𝐴) − ((𝐴 ·ih 𝐵) · 𝐵))) = 0 ↔ (((𝐵 ·ih 𝐵) · 𝐴) − ((𝐴 ·ih 𝐵) · 𝐵)) = 0)
7066, 69sylib 217 . . 3 (((𝐴 ·ih 𝐵) · (𝐵 ·ih 𝐴)) = ((𝐴 ·ih 𝐴) · (𝐵 ·ih 𝐵)) → (((𝐵 ·ih 𝐵) · 𝐴) − ((𝐴 ·ih 𝐵) · 𝐵)) = 0)
714, 6hvsubeq0i 30311 . . 3 ((((𝐵 ·ih 𝐵) · 𝐴) − ((𝐴 ·ih 𝐵) · 𝐵)) = 0 ↔ ((𝐵 ·ih 𝐵) · 𝐴) = ((𝐴 ·ih 𝐵) · 𝐵))
7270, 71sylib 217 . 2 (((𝐴 ·ih 𝐵) · (𝐵 ·ih 𝐴)) = ((𝐴 ·ih 𝐴) · (𝐵 ·ih 𝐵)) → ((𝐵 ·ih 𝐵) · 𝐴) = ((𝐴 ·ih 𝐵) · 𝐵))
73 oveq1 7415 . . . 4 (((𝐵 ·ih 𝐵) · 𝐴) = ((𝐴 ·ih 𝐵) · 𝐵) → (((𝐵 ·ih 𝐵) · 𝐴) ·ih 𝐴) = (((𝐴 ·ih 𝐵) · 𝐵) ·ih 𝐴))
7421, 16eqtr4i 2763 . . . 4 ((𝐴 ·ih 𝐴) · (𝐵 ·ih 𝐵)) = (((𝐵 ·ih 𝐵) · 𝐴) ·ih 𝐴)
7542eqcomi 2741 . . . 4 ((𝐴 ·ih 𝐵) · (𝐵 ·ih 𝐴)) = (((𝐴 ·ih 𝐵) · 𝐵) ·ih 𝐴)
7673, 74, 753eqtr4g 2797 . . 3 (((𝐵 ·ih 𝐵) · 𝐴) = ((𝐴 ·ih 𝐵) · 𝐵) → ((𝐴 ·ih 𝐴) · (𝐵 ·ih 𝐵)) = ((𝐴 ·ih 𝐵) · (𝐵 ·ih 𝐴)))
7776eqcomd 2738 . 2 (((𝐵 ·ih 𝐵) · 𝐴) = ((𝐴 ·ih 𝐵) · 𝐵) → ((𝐴 ·ih 𝐵) · (𝐵 ·ih 𝐴)) = ((𝐴 ·ih 𝐴) · (𝐵 ·ih 𝐵)))
7872, 77impbii 208 1 (((𝐴 ·ih 𝐵) · (𝐵 ·ih 𝐴)) = ((𝐴 ·ih 𝐴) · (𝐵 ·ih 𝐵)) ↔ ((𝐵 ·ih 𝐵) · 𝐴) = ((𝐴 ·ih 𝐵) · 𝐵))
Colors of variables: wff setvar class
Syntax hints:  wb 205   = wceq 1541  wcel 2106  cfv 6543  (class class class)co 7408  cc 11107  cr 11108  0cc0 11109   + caddc 11112   · cmul 11114  cmin 11443  ccj 15042  chba 30167   · csm 30169   ·ih csp 30170  0c0v 30172   cmv 30173
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2703  ax-sep 5299  ax-nul 5306  ax-pow 5363  ax-pr 5427  ax-un 7724  ax-resscn 11166  ax-1cn 11167  ax-icn 11168  ax-addcl 11169  ax-addrcl 11170  ax-mulcl 11171  ax-mulrcl 11172  ax-mulcom 11173  ax-addass 11174  ax-mulass 11175  ax-distr 11176  ax-i2m1 11177  ax-1ne0 11178  ax-1rid 11179  ax-rnegex 11180  ax-rrecex 11181  ax-cnre 11182  ax-pre-lttri 11183  ax-pre-lttrn 11184  ax-pre-ltadd 11185  ax-pre-mulgt0 11186  ax-hfvadd 30248  ax-hvcom 30249  ax-hvass 30250  ax-hv0cl 30251  ax-hvaddid 30252  ax-hfvmul 30253  ax-hvmulid 30254  ax-hvdistr2 30257  ax-hvmul0 30258  ax-hfi 30327  ax-his1 30330  ax-his2 30331  ax-his3 30332  ax-his4 30333
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2534  df-eu 2563  df-clab 2710  df-cleq 2724  df-clel 2810  df-nfc 2885  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-rmo 3376  df-reu 3377  df-rab 3433  df-v 3476  df-sbc 3778  df-csb 3894  df-dif 3951  df-un 3953  df-in 3955  df-ss 3965  df-nul 4323  df-if 4529  df-pw 4604  df-sn 4629  df-pr 4631  df-op 4635  df-uni 4909  df-iun 4999  df-br 5149  df-opab 5211  df-mpt 5232  df-id 5574  df-po 5588  df-so 5589  df-xp 5682  df-rel 5683  df-cnv 5684  df-co 5685  df-dm 5686  df-rn 5687  df-res 5688  df-ima 5689  df-iota 6495  df-fun 6545  df-fn 6546  df-f 6547  df-f1 6548  df-fo 6549  df-f1o 6550  df-fv 6551  df-riota 7364  df-ov 7411  df-oprab 7412  df-mpo 7413  df-er 8702  df-en 8939  df-dom 8940  df-sdom 8941  df-pnf 11249  df-mnf 11250  df-xr 11251  df-ltxr 11252  df-le 11253  df-sub 11445  df-neg 11446  df-div 11871  df-2 12274  df-cj 15045  df-re 15046  df-im 15047  df-hvsub 30219
This theorem is referenced by:  h1de2i  30801
  Copyright terms: Public domain W3C validator