HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  normlem2 Structured version   Visualization version   GIF version

Theorem normlem2 28880
Description: Lemma used to derive properties of norm. Part of Theorem 3.3(ii) of [Beran] p. 97. (Contributed by NM, 27-Jul-1999.) (New usage is discouraged.)
Hypotheses
Ref Expression
normlem1.1 𝑆 ∈ ℂ
normlem1.2 𝐹 ∈ ℋ
normlem1.3 𝐺 ∈ ℋ
normlem2.4 𝐵 = -(((∗‘𝑆) · (𝐹 ·ih 𝐺)) + (𝑆 · (𝐺 ·ih 𝐹)))
Assertion
Ref Expression
normlem2 𝐵 ∈ ℝ

Proof of Theorem normlem2
StepHypRef Expression
1 normlem2.4 . 2 𝐵 = -(((∗‘𝑆) · (𝐹 ·ih 𝐺)) + (𝑆 · (𝐺 ·ih 𝐹)))
2 normlem1.1 . . . . . . . . 9 𝑆 ∈ ℂ
32cjcli 14520 . . . . . . . 8 (∗‘𝑆) ∈ ℂ
4 normlem1.2 . . . . . . . . 9 𝐹 ∈ ℋ
5 normlem1.3 . . . . . . . . 9 𝐺 ∈ ℋ
64, 5hicli 28850 . . . . . . . 8 (𝐹 ·ih 𝐺) ∈ ℂ
73, 6mulcli 10640 . . . . . . 7 ((∗‘𝑆) · (𝐹 ·ih 𝐺)) ∈ ℂ
85, 4hicli 28850 . . . . . . . 8 (𝐺 ·ih 𝐹) ∈ ℂ
92, 8mulcli 10640 . . . . . . 7 (𝑆 · (𝐺 ·ih 𝐹)) ∈ ℂ
107, 9cjaddi 14539 . . . . . 6 (∗‘(((∗‘𝑆) · (𝐹 ·ih 𝐺)) + (𝑆 · (𝐺 ·ih 𝐹)))) = ((∗‘((∗‘𝑆) · (𝐹 ·ih 𝐺))) + (∗‘(𝑆 · (𝐺 ·ih 𝐹))))
112cjcji 14522 . . . . . . . . . 10 (∗‘(∗‘𝑆)) = 𝑆
1211eqcomi 2828 . . . . . . . . 9 𝑆 = (∗‘(∗‘𝑆))
135, 4his1i 28869 . . . . . . . . 9 (𝐺 ·ih 𝐹) = (∗‘(𝐹 ·ih 𝐺))
1412, 13oveq12i 7160 . . . . . . . 8 (𝑆 · (𝐺 ·ih 𝐹)) = ((∗‘(∗‘𝑆)) · (∗‘(𝐹 ·ih 𝐺)))
153, 6cjmuli 14540 . . . . . . . 8 (∗‘((∗‘𝑆) · (𝐹 ·ih 𝐺))) = ((∗‘(∗‘𝑆)) · (∗‘(𝐹 ·ih 𝐺)))
1614, 15eqtr4i 2845 . . . . . . 7 (𝑆 · (𝐺 ·ih 𝐹)) = (∗‘((∗‘𝑆) · (𝐹 ·ih 𝐺)))
174, 5his1i 28869 . . . . . . . . 9 (𝐹 ·ih 𝐺) = (∗‘(𝐺 ·ih 𝐹))
1817oveq2i 7159 . . . . . . . 8 ((∗‘𝑆) · (𝐹 ·ih 𝐺)) = ((∗‘𝑆) · (∗‘(𝐺 ·ih 𝐹)))
192, 8cjmuli 14540 . . . . . . . 8 (∗‘(𝑆 · (𝐺 ·ih 𝐹))) = ((∗‘𝑆) · (∗‘(𝐺 ·ih 𝐹)))
2018, 19eqtr4i 2845 . . . . . . 7 ((∗‘𝑆) · (𝐹 ·ih 𝐺)) = (∗‘(𝑆 · (𝐺 ·ih 𝐹)))
2116, 20oveq12i 7160 . . . . . 6 ((𝑆 · (𝐺 ·ih 𝐹)) + ((∗‘𝑆) · (𝐹 ·ih 𝐺))) = ((∗‘((∗‘𝑆) · (𝐹 ·ih 𝐺))) + (∗‘(𝑆 · (𝐺 ·ih 𝐹))))
2210, 21eqtr4i 2845 . . . . 5 (∗‘(((∗‘𝑆) · (𝐹 ·ih 𝐺)) + (𝑆 · (𝐺 ·ih 𝐹)))) = ((𝑆 · (𝐺 ·ih 𝐹)) + ((∗‘𝑆) · (𝐹 ·ih 𝐺)))
237, 9addcomi 10823 . . . . 5 (((∗‘𝑆) · (𝐹 ·ih 𝐺)) + (𝑆 · (𝐺 ·ih 𝐹))) = ((𝑆 · (𝐺 ·ih 𝐹)) + ((∗‘𝑆) · (𝐹 ·ih 𝐺)))
2422, 23eqtr4i 2845 . . . 4 (∗‘(((∗‘𝑆) · (𝐹 ·ih 𝐺)) + (𝑆 · (𝐺 ·ih 𝐹)))) = (((∗‘𝑆) · (𝐹 ·ih 𝐺)) + (𝑆 · (𝐺 ·ih 𝐹)))
257, 9addcli 10639 . . . . 5 (((∗‘𝑆) · (𝐹 ·ih 𝐺)) + (𝑆 · (𝐺 ·ih 𝐹))) ∈ ℂ
2625cjrebi 14525 . . . 4 ((((∗‘𝑆) · (𝐹 ·ih 𝐺)) + (𝑆 · (𝐺 ·ih 𝐹))) ∈ ℝ ↔ (∗‘(((∗‘𝑆) · (𝐹 ·ih 𝐺)) + (𝑆 · (𝐺 ·ih 𝐹)))) = (((∗‘𝑆) · (𝐹 ·ih 𝐺)) + (𝑆 · (𝐺 ·ih 𝐹))))
2724, 26mpbir 233 . . 3 (((∗‘𝑆) · (𝐹 ·ih 𝐺)) + (𝑆 · (𝐺 ·ih 𝐹))) ∈ ℝ
2827renegcli 10939 . 2 -(((∗‘𝑆) · (𝐹 ·ih 𝐺)) + (𝑆 · (𝐺 ·ih 𝐹))) ∈ ℝ
291, 28eqeltri 2907 1 𝐵 ∈ ℝ
Colors of variables: wff setvar class
Syntax hints:   = wceq 1531  wcel 2108  cfv 6348  (class class class)co 7148  cc 10527  cr 10528   + caddc 10532   · cmul 10534  -cneg 10863  ccj 14447  chba 28688   ·ih csp 28691
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1905  ax-6 1964  ax-7 2009  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2154  ax-12 2170  ax-ext 2791  ax-sep 5194  ax-nul 5201  ax-pow 5257  ax-pr 5320  ax-un 7453  ax-resscn 10586  ax-1cn 10587  ax-icn 10588  ax-addcl 10589  ax-addrcl 10590  ax-mulcl 10591  ax-mulrcl 10592  ax-mulcom 10593  ax-addass 10594  ax-mulass 10595  ax-distr 10596  ax-i2m1 10597  ax-1ne0 10598  ax-1rid 10599  ax-rnegex 10600  ax-rrecex 10601  ax-cnre 10602  ax-pre-lttri 10603  ax-pre-lttrn 10604  ax-pre-ltadd 10605  ax-pre-mulgt0 10606  ax-hfi 28848  ax-his1 28851
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1083  df-3an 1084  df-tru 1534  df-ex 1775  df-nf 1779  df-sb 2064  df-mo 2616  df-eu 2648  df-clab 2798  df-cleq 2812  df-clel 2891  df-nfc 2961  df-ne 3015  df-nel 3122  df-ral 3141  df-rex 3142  df-reu 3143  df-rmo 3144  df-rab 3145  df-v 3495  df-sbc 3771  df-csb 3882  df-dif 3937  df-un 3939  df-in 3941  df-ss 3950  df-nul 4290  df-if 4466  df-pw 4539  df-sn 4560  df-pr 4562  df-op 4566  df-uni 4831  df-iun 4912  df-br 5058  df-opab 5120  df-mpt 5138  df-id 5453  df-po 5467  df-so 5468  df-xp 5554  df-rel 5555  df-cnv 5556  df-co 5557  df-dm 5558  df-rn 5559  df-res 5560  df-ima 5561  df-iota 6307  df-fun 6350  df-fn 6351  df-f 6352  df-f1 6353  df-fo 6354  df-f1o 6355  df-fv 6356  df-riota 7106  df-ov 7151  df-oprab 7152  df-mpo 7153  df-er 8281  df-en 8502  df-dom 8503  df-sdom 8504  df-pnf 10669  df-mnf 10670  df-xr 10671  df-ltxr 10672  df-le 10673  df-sub 10864  df-neg 10865  df-div 11290  df-2 11692  df-cj 14450  df-re 14451  df-im 14452
This theorem is referenced by:  normlem3  28881  normlem6  28884  normlem7  28885  norm-ii-i  28906
  Copyright terms: Public domain W3C validator