| Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > HSE Home > Th. List > normlem2 | Structured version Visualization version GIF version | ||
| Description: Lemma used to derive properties of norm. Part of Theorem 3.3(ii) of [Beran] p. 97. (Contributed by NM, 27-Jul-1999.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| normlem1.1 | ⊢ 𝑆 ∈ ℂ |
| normlem1.2 | ⊢ 𝐹 ∈ ℋ |
| normlem1.3 | ⊢ 𝐺 ∈ ℋ |
| normlem2.4 | ⊢ 𝐵 = -(((∗‘𝑆) · (𝐹 ·ih 𝐺)) + (𝑆 · (𝐺 ·ih 𝐹))) |
| Ref | Expression |
|---|---|
| normlem2 | ⊢ 𝐵 ∈ ℝ |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | normlem2.4 | . 2 ⊢ 𝐵 = -(((∗‘𝑆) · (𝐹 ·ih 𝐺)) + (𝑆 · (𝐺 ·ih 𝐹))) | |
| 2 | normlem1.1 | . . . . . . . . 9 ⊢ 𝑆 ∈ ℂ | |
| 3 | 2 | cjcli 15076 | . . . . . . . 8 ⊢ (∗‘𝑆) ∈ ℂ |
| 4 | normlem1.2 | . . . . . . . . 9 ⊢ 𝐹 ∈ ℋ | |
| 5 | normlem1.3 | . . . . . . . . 9 ⊢ 𝐺 ∈ ℋ | |
| 6 | 4, 5 | hicli 31061 | . . . . . . . 8 ⊢ (𝐹 ·ih 𝐺) ∈ ℂ |
| 7 | 3, 6 | mulcli 11119 | . . . . . . 7 ⊢ ((∗‘𝑆) · (𝐹 ·ih 𝐺)) ∈ ℂ |
| 8 | 5, 4 | hicli 31061 | . . . . . . . 8 ⊢ (𝐺 ·ih 𝐹) ∈ ℂ |
| 9 | 2, 8 | mulcli 11119 | . . . . . . 7 ⊢ (𝑆 · (𝐺 ·ih 𝐹)) ∈ ℂ |
| 10 | 7, 9 | cjaddi 15095 | . . . . . 6 ⊢ (∗‘(((∗‘𝑆) · (𝐹 ·ih 𝐺)) + (𝑆 · (𝐺 ·ih 𝐹)))) = ((∗‘((∗‘𝑆) · (𝐹 ·ih 𝐺))) + (∗‘(𝑆 · (𝐺 ·ih 𝐹)))) |
| 11 | 2 | cjcji 15078 | . . . . . . . . . 10 ⊢ (∗‘(∗‘𝑆)) = 𝑆 |
| 12 | 11 | eqcomi 2740 | . . . . . . . . 9 ⊢ 𝑆 = (∗‘(∗‘𝑆)) |
| 13 | 5, 4 | his1i 31080 | . . . . . . . . 9 ⊢ (𝐺 ·ih 𝐹) = (∗‘(𝐹 ·ih 𝐺)) |
| 14 | 12, 13 | oveq12i 7358 | . . . . . . . 8 ⊢ (𝑆 · (𝐺 ·ih 𝐹)) = ((∗‘(∗‘𝑆)) · (∗‘(𝐹 ·ih 𝐺))) |
| 15 | 3, 6 | cjmuli 15096 | . . . . . . . 8 ⊢ (∗‘((∗‘𝑆) · (𝐹 ·ih 𝐺))) = ((∗‘(∗‘𝑆)) · (∗‘(𝐹 ·ih 𝐺))) |
| 16 | 14, 15 | eqtr4i 2757 | . . . . . . 7 ⊢ (𝑆 · (𝐺 ·ih 𝐹)) = (∗‘((∗‘𝑆) · (𝐹 ·ih 𝐺))) |
| 17 | 4, 5 | his1i 31080 | . . . . . . . . 9 ⊢ (𝐹 ·ih 𝐺) = (∗‘(𝐺 ·ih 𝐹)) |
| 18 | 17 | oveq2i 7357 | . . . . . . . 8 ⊢ ((∗‘𝑆) · (𝐹 ·ih 𝐺)) = ((∗‘𝑆) · (∗‘(𝐺 ·ih 𝐹))) |
| 19 | 2, 8 | cjmuli 15096 | . . . . . . . 8 ⊢ (∗‘(𝑆 · (𝐺 ·ih 𝐹))) = ((∗‘𝑆) · (∗‘(𝐺 ·ih 𝐹))) |
| 20 | 18, 19 | eqtr4i 2757 | . . . . . . 7 ⊢ ((∗‘𝑆) · (𝐹 ·ih 𝐺)) = (∗‘(𝑆 · (𝐺 ·ih 𝐹))) |
| 21 | 16, 20 | oveq12i 7358 | . . . . . 6 ⊢ ((𝑆 · (𝐺 ·ih 𝐹)) + ((∗‘𝑆) · (𝐹 ·ih 𝐺))) = ((∗‘((∗‘𝑆) · (𝐹 ·ih 𝐺))) + (∗‘(𝑆 · (𝐺 ·ih 𝐹)))) |
| 22 | 10, 21 | eqtr4i 2757 | . . . . 5 ⊢ (∗‘(((∗‘𝑆) · (𝐹 ·ih 𝐺)) + (𝑆 · (𝐺 ·ih 𝐹)))) = ((𝑆 · (𝐺 ·ih 𝐹)) + ((∗‘𝑆) · (𝐹 ·ih 𝐺))) |
| 23 | 7, 9 | addcomi 11304 | . . . . 5 ⊢ (((∗‘𝑆) · (𝐹 ·ih 𝐺)) + (𝑆 · (𝐺 ·ih 𝐹))) = ((𝑆 · (𝐺 ·ih 𝐹)) + ((∗‘𝑆) · (𝐹 ·ih 𝐺))) |
| 24 | 22, 23 | eqtr4i 2757 | . . . 4 ⊢ (∗‘(((∗‘𝑆) · (𝐹 ·ih 𝐺)) + (𝑆 · (𝐺 ·ih 𝐹)))) = (((∗‘𝑆) · (𝐹 ·ih 𝐺)) + (𝑆 · (𝐺 ·ih 𝐹))) |
| 25 | 7, 9 | addcli 11118 | . . . . 5 ⊢ (((∗‘𝑆) · (𝐹 ·ih 𝐺)) + (𝑆 · (𝐺 ·ih 𝐹))) ∈ ℂ |
| 26 | 25 | cjrebi 15081 | . . . 4 ⊢ ((((∗‘𝑆) · (𝐹 ·ih 𝐺)) + (𝑆 · (𝐺 ·ih 𝐹))) ∈ ℝ ↔ (∗‘(((∗‘𝑆) · (𝐹 ·ih 𝐺)) + (𝑆 · (𝐺 ·ih 𝐹)))) = (((∗‘𝑆) · (𝐹 ·ih 𝐺)) + (𝑆 · (𝐺 ·ih 𝐹)))) |
| 27 | 24, 26 | mpbir 231 | . . 3 ⊢ (((∗‘𝑆) · (𝐹 ·ih 𝐺)) + (𝑆 · (𝐺 ·ih 𝐹))) ∈ ℝ |
| 28 | 27 | renegcli 11422 | . 2 ⊢ -(((∗‘𝑆) · (𝐹 ·ih 𝐺)) + (𝑆 · (𝐺 ·ih 𝐹))) ∈ ℝ |
| 29 | 1, 28 | eqeltri 2827 | 1 ⊢ 𝐵 ∈ ℝ |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1541 ∈ wcel 2111 ‘cfv 6481 (class class class)co 7346 ℂcc 11004 ℝcr 11005 + caddc 11009 · cmul 11011 -cneg 11345 ∗ccj 15003 ℋchba 30899 ·ih csp 30902 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-sep 5232 ax-nul 5242 ax-pow 5301 ax-pr 5368 ax-un 7668 ax-resscn 11063 ax-1cn 11064 ax-icn 11065 ax-addcl 11066 ax-addrcl 11067 ax-mulcl 11068 ax-mulrcl 11069 ax-mulcom 11070 ax-addass 11071 ax-mulass 11072 ax-distr 11073 ax-i2m1 11074 ax-1ne0 11075 ax-1rid 11076 ax-rnegex 11077 ax-rrecex 11078 ax-cnre 11079 ax-pre-lttri 11080 ax-pre-lttrn 11081 ax-pre-ltadd 11082 ax-pre-mulgt0 11083 ax-hfi 31059 ax-his1 31062 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-nel 3033 df-ral 3048 df-rex 3057 df-rmo 3346 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3737 df-csb 3846 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-pss 3917 df-nul 4281 df-if 4473 df-pw 4549 df-sn 4574 df-pr 4576 df-op 4580 df-uni 4857 df-iun 4941 df-br 5090 df-opab 5152 df-mpt 5171 df-tr 5197 df-id 5509 df-eprel 5514 df-po 5522 df-so 5523 df-fr 5567 df-we 5569 df-xp 5620 df-rel 5621 df-cnv 5622 df-co 5623 df-dm 5624 df-rn 5625 df-res 5626 df-ima 5627 df-pred 6248 df-ord 6309 df-on 6310 df-lim 6311 df-suc 6312 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-f1 6486 df-fo 6487 df-f1o 6488 df-fv 6489 df-riota 7303 df-ov 7349 df-oprab 7350 df-mpo 7351 df-om 7797 df-2nd 7922 df-frecs 8211 df-wrecs 8242 df-recs 8291 df-rdg 8329 df-er 8622 df-en 8870 df-dom 8871 df-sdom 8872 df-pnf 11148 df-mnf 11149 df-xr 11150 df-ltxr 11151 df-le 11152 df-sub 11346 df-neg 11347 df-div 11775 df-nn 12126 df-2 12188 df-cj 15006 df-re 15007 df-im 15008 |
| This theorem is referenced by: normlem3 31092 normlem6 31095 normlem7 31096 norm-ii-i 31117 |
| Copyright terms: Public domain | W3C validator |