HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  normlem2 Structured version   Visualization version   GIF version

Theorem normlem2 28886
Description: Lemma used to derive properties of norm. Part of Theorem 3.3(ii) of [Beran] p. 97. (Contributed by NM, 27-Jul-1999.) (New usage is discouraged.)
Hypotheses
Ref Expression
normlem1.1 𝑆 ∈ ℂ
normlem1.2 𝐹 ∈ ℋ
normlem1.3 𝐺 ∈ ℋ
normlem2.4 𝐵 = -(((∗‘𝑆) · (𝐹 ·ih 𝐺)) + (𝑆 · (𝐺 ·ih 𝐹)))
Assertion
Ref Expression
normlem2 𝐵 ∈ ℝ

Proof of Theorem normlem2
StepHypRef Expression
1 normlem2.4 . 2 𝐵 = -(((∗‘𝑆) · (𝐹 ·ih 𝐺)) + (𝑆 · (𝐺 ·ih 𝐹)))
2 normlem1.1 . . . . . . . . 9 𝑆 ∈ ℂ
32cjcli 14523 . . . . . . . 8 (∗‘𝑆) ∈ ℂ
4 normlem1.2 . . . . . . . . 9 𝐹 ∈ ℋ
5 normlem1.3 . . . . . . . . 9 𝐺 ∈ ℋ
64, 5hicli 28856 . . . . . . . 8 (𝐹 ·ih 𝐺) ∈ ℂ
73, 6mulcli 10641 . . . . . . 7 ((∗‘𝑆) · (𝐹 ·ih 𝐺)) ∈ ℂ
85, 4hicli 28856 . . . . . . . 8 (𝐺 ·ih 𝐹) ∈ ℂ
92, 8mulcli 10641 . . . . . . 7 (𝑆 · (𝐺 ·ih 𝐹)) ∈ ℂ
107, 9cjaddi 14542 . . . . . 6 (∗‘(((∗‘𝑆) · (𝐹 ·ih 𝐺)) + (𝑆 · (𝐺 ·ih 𝐹)))) = ((∗‘((∗‘𝑆) · (𝐹 ·ih 𝐺))) + (∗‘(𝑆 · (𝐺 ·ih 𝐹))))
112cjcji 14525 . . . . . . . . . 10 (∗‘(∗‘𝑆)) = 𝑆
1211eqcomi 2829 . . . . . . . . 9 𝑆 = (∗‘(∗‘𝑆))
135, 4his1i 28875 . . . . . . . . 9 (𝐺 ·ih 𝐹) = (∗‘(𝐹 ·ih 𝐺))
1412, 13oveq12i 7161 . . . . . . . 8 (𝑆 · (𝐺 ·ih 𝐹)) = ((∗‘(∗‘𝑆)) · (∗‘(𝐹 ·ih 𝐺)))
153, 6cjmuli 14543 . . . . . . . 8 (∗‘((∗‘𝑆) · (𝐹 ·ih 𝐺))) = ((∗‘(∗‘𝑆)) · (∗‘(𝐹 ·ih 𝐺)))
1614, 15eqtr4i 2846 . . . . . . 7 (𝑆 · (𝐺 ·ih 𝐹)) = (∗‘((∗‘𝑆) · (𝐹 ·ih 𝐺)))
174, 5his1i 28875 . . . . . . . . 9 (𝐹 ·ih 𝐺) = (∗‘(𝐺 ·ih 𝐹))
1817oveq2i 7160 . . . . . . . 8 ((∗‘𝑆) · (𝐹 ·ih 𝐺)) = ((∗‘𝑆) · (∗‘(𝐺 ·ih 𝐹)))
192, 8cjmuli 14543 . . . . . . . 8 (∗‘(𝑆 · (𝐺 ·ih 𝐹))) = ((∗‘𝑆) · (∗‘(𝐺 ·ih 𝐹)))
2018, 19eqtr4i 2846 . . . . . . 7 ((∗‘𝑆) · (𝐹 ·ih 𝐺)) = (∗‘(𝑆 · (𝐺 ·ih 𝐹)))
2116, 20oveq12i 7161 . . . . . 6 ((𝑆 · (𝐺 ·ih 𝐹)) + ((∗‘𝑆) · (𝐹 ·ih 𝐺))) = ((∗‘((∗‘𝑆) · (𝐹 ·ih 𝐺))) + (∗‘(𝑆 · (𝐺 ·ih 𝐹))))
2210, 21eqtr4i 2846 . . . . 5 (∗‘(((∗‘𝑆) · (𝐹 ·ih 𝐺)) + (𝑆 · (𝐺 ·ih 𝐹)))) = ((𝑆 · (𝐺 ·ih 𝐹)) + ((∗‘𝑆) · (𝐹 ·ih 𝐺)))
237, 9addcomi 10824 . . . . 5 (((∗‘𝑆) · (𝐹 ·ih 𝐺)) + (𝑆 · (𝐺 ·ih 𝐹))) = ((𝑆 · (𝐺 ·ih 𝐹)) + ((∗‘𝑆) · (𝐹 ·ih 𝐺)))
2422, 23eqtr4i 2846 . . . 4 (∗‘(((∗‘𝑆) · (𝐹 ·ih 𝐺)) + (𝑆 · (𝐺 ·ih 𝐹)))) = (((∗‘𝑆) · (𝐹 ·ih 𝐺)) + (𝑆 · (𝐺 ·ih 𝐹)))
257, 9addcli 10640 . . . . 5 (((∗‘𝑆) · (𝐹 ·ih 𝐺)) + (𝑆 · (𝐺 ·ih 𝐹))) ∈ ℂ
2625cjrebi 14528 . . . 4 ((((∗‘𝑆) · (𝐹 ·ih 𝐺)) + (𝑆 · (𝐺 ·ih 𝐹))) ∈ ℝ ↔ (∗‘(((∗‘𝑆) · (𝐹 ·ih 𝐺)) + (𝑆 · (𝐺 ·ih 𝐹)))) = (((∗‘𝑆) · (𝐹 ·ih 𝐺)) + (𝑆 · (𝐺 ·ih 𝐹))))
2724, 26mpbir 233 . . 3 (((∗‘𝑆) · (𝐹 ·ih 𝐺)) + (𝑆 · (𝐺 ·ih 𝐹))) ∈ ℝ
2827renegcli 10940 . 2 -(((∗‘𝑆) · (𝐹 ·ih 𝐺)) + (𝑆 · (𝐺 ·ih 𝐹))) ∈ ℝ
291, 28eqeltri 2908 1 𝐵 ∈ ℝ
Colors of variables: wff setvar class
Syntax hints:   = wceq 1536  wcel 2113  cfv 6348  (class class class)co 7149  cc 10528  cr 10529   + caddc 10533   · cmul 10535  -cneg 10864  ccj 14450  chba 28694   ·ih csp 28697
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1969  ax-7 2014  ax-8 2115  ax-9 2123  ax-10 2144  ax-11 2160  ax-12 2176  ax-ext 2792  ax-sep 5196  ax-nul 5203  ax-pow 5259  ax-pr 5323  ax-un 7454  ax-resscn 10587  ax-1cn 10588  ax-icn 10589  ax-addcl 10590  ax-addrcl 10591  ax-mulcl 10592  ax-mulrcl 10593  ax-mulcom 10594  ax-addass 10595  ax-mulass 10596  ax-distr 10597  ax-i2m1 10598  ax-1ne0 10599  ax-1rid 10600  ax-rnegex 10601  ax-rrecex 10602  ax-cnre 10603  ax-pre-lttri 10604  ax-pre-lttrn 10605  ax-pre-ltadd 10606  ax-pre-mulgt0 10607  ax-hfi 28854  ax-his1 28857
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1083  df-3an 1084  df-tru 1539  df-ex 1780  df-nf 1784  df-sb 2069  df-mo 2621  df-eu 2653  df-clab 2799  df-cleq 2813  df-clel 2892  df-nfc 2962  df-ne 3016  df-nel 3123  df-ral 3142  df-rex 3143  df-reu 3144  df-rmo 3145  df-rab 3146  df-v 3493  df-sbc 3769  df-csb 3877  df-dif 3932  df-un 3934  df-in 3936  df-ss 3945  df-nul 4285  df-if 4461  df-pw 4534  df-sn 4561  df-pr 4563  df-op 4567  df-uni 4832  df-iun 4914  df-br 5060  df-opab 5122  df-mpt 5140  df-id 5453  df-po 5467  df-so 5468  df-xp 5554  df-rel 5555  df-cnv 5556  df-co 5557  df-dm 5558  df-rn 5559  df-res 5560  df-ima 5561  df-iota 6307  df-fun 6350  df-fn 6351  df-f 6352  df-f1 6353  df-fo 6354  df-f1o 6355  df-fv 6356  df-riota 7107  df-ov 7152  df-oprab 7153  df-mpo 7154  df-er 8282  df-en 8503  df-dom 8504  df-sdom 8505  df-pnf 10670  df-mnf 10671  df-xr 10672  df-ltxr 10673  df-le 10674  df-sub 10865  df-neg 10866  df-div 11291  df-2 11694  df-cj 14453  df-re 14454  df-im 14455
This theorem is referenced by:  normlem3  28887  normlem6  28890  normlem7  28891  norm-ii-i  28912
  Copyright terms: Public domain W3C validator