| Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > HSE Home > Th. List > normlem2 | Structured version Visualization version GIF version | ||
| Description: Lemma used to derive properties of norm. Part of Theorem 3.3(ii) of [Beran] p. 97. (Contributed by NM, 27-Jul-1999.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| normlem1.1 | ⊢ 𝑆 ∈ ℂ |
| normlem1.2 | ⊢ 𝐹 ∈ ℋ |
| normlem1.3 | ⊢ 𝐺 ∈ ℋ |
| normlem2.4 | ⊢ 𝐵 = -(((∗‘𝑆) · (𝐹 ·ih 𝐺)) + (𝑆 · (𝐺 ·ih 𝐹))) |
| Ref | Expression |
|---|---|
| normlem2 | ⊢ 𝐵 ∈ ℝ |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | normlem2.4 | . 2 ⊢ 𝐵 = -(((∗‘𝑆) · (𝐹 ·ih 𝐺)) + (𝑆 · (𝐺 ·ih 𝐹))) | |
| 2 | normlem1.1 | . . . . . . . . 9 ⊢ 𝑆 ∈ ℂ | |
| 3 | 2 | cjcli 15186 | . . . . . . . 8 ⊢ (∗‘𝑆) ∈ ℂ |
| 4 | normlem1.2 | . . . . . . . . 9 ⊢ 𝐹 ∈ ℋ | |
| 5 | normlem1.3 | . . . . . . . . 9 ⊢ 𝐺 ∈ ℋ | |
| 6 | 4, 5 | hicli 31008 | . . . . . . . 8 ⊢ (𝐹 ·ih 𝐺) ∈ ℂ |
| 7 | 3, 6 | mulcli 11240 | . . . . . . 7 ⊢ ((∗‘𝑆) · (𝐹 ·ih 𝐺)) ∈ ℂ |
| 8 | 5, 4 | hicli 31008 | . . . . . . . 8 ⊢ (𝐺 ·ih 𝐹) ∈ ℂ |
| 9 | 2, 8 | mulcli 11240 | . . . . . . 7 ⊢ (𝑆 · (𝐺 ·ih 𝐹)) ∈ ℂ |
| 10 | 7, 9 | cjaddi 15205 | . . . . . 6 ⊢ (∗‘(((∗‘𝑆) · (𝐹 ·ih 𝐺)) + (𝑆 · (𝐺 ·ih 𝐹)))) = ((∗‘((∗‘𝑆) · (𝐹 ·ih 𝐺))) + (∗‘(𝑆 · (𝐺 ·ih 𝐹)))) |
| 11 | 2 | cjcji 15188 | . . . . . . . . . 10 ⊢ (∗‘(∗‘𝑆)) = 𝑆 |
| 12 | 11 | eqcomi 2744 | . . . . . . . . 9 ⊢ 𝑆 = (∗‘(∗‘𝑆)) |
| 13 | 5, 4 | his1i 31027 | . . . . . . . . 9 ⊢ (𝐺 ·ih 𝐹) = (∗‘(𝐹 ·ih 𝐺)) |
| 14 | 12, 13 | oveq12i 7415 | . . . . . . . 8 ⊢ (𝑆 · (𝐺 ·ih 𝐹)) = ((∗‘(∗‘𝑆)) · (∗‘(𝐹 ·ih 𝐺))) |
| 15 | 3, 6 | cjmuli 15206 | . . . . . . . 8 ⊢ (∗‘((∗‘𝑆) · (𝐹 ·ih 𝐺))) = ((∗‘(∗‘𝑆)) · (∗‘(𝐹 ·ih 𝐺))) |
| 16 | 14, 15 | eqtr4i 2761 | . . . . . . 7 ⊢ (𝑆 · (𝐺 ·ih 𝐹)) = (∗‘((∗‘𝑆) · (𝐹 ·ih 𝐺))) |
| 17 | 4, 5 | his1i 31027 | . . . . . . . . 9 ⊢ (𝐹 ·ih 𝐺) = (∗‘(𝐺 ·ih 𝐹)) |
| 18 | 17 | oveq2i 7414 | . . . . . . . 8 ⊢ ((∗‘𝑆) · (𝐹 ·ih 𝐺)) = ((∗‘𝑆) · (∗‘(𝐺 ·ih 𝐹))) |
| 19 | 2, 8 | cjmuli 15206 | . . . . . . . 8 ⊢ (∗‘(𝑆 · (𝐺 ·ih 𝐹))) = ((∗‘𝑆) · (∗‘(𝐺 ·ih 𝐹))) |
| 20 | 18, 19 | eqtr4i 2761 | . . . . . . 7 ⊢ ((∗‘𝑆) · (𝐹 ·ih 𝐺)) = (∗‘(𝑆 · (𝐺 ·ih 𝐹))) |
| 21 | 16, 20 | oveq12i 7415 | . . . . . 6 ⊢ ((𝑆 · (𝐺 ·ih 𝐹)) + ((∗‘𝑆) · (𝐹 ·ih 𝐺))) = ((∗‘((∗‘𝑆) · (𝐹 ·ih 𝐺))) + (∗‘(𝑆 · (𝐺 ·ih 𝐹)))) |
| 22 | 10, 21 | eqtr4i 2761 | . . . . 5 ⊢ (∗‘(((∗‘𝑆) · (𝐹 ·ih 𝐺)) + (𝑆 · (𝐺 ·ih 𝐹)))) = ((𝑆 · (𝐺 ·ih 𝐹)) + ((∗‘𝑆) · (𝐹 ·ih 𝐺))) |
| 23 | 7, 9 | addcomi 11424 | . . . . 5 ⊢ (((∗‘𝑆) · (𝐹 ·ih 𝐺)) + (𝑆 · (𝐺 ·ih 𝐹))) = ((𝑆 · (𝐺 ·ih 𝐹)) + ((∗‘𝑆) · (𝐹 ·ih 𝐺))) |
| 24 | 22, 23 | eqtr4i 2761 | . . . 4 ⊢ (∗‘(((∗‘𝑆) · (𝐹 ·ih 𝐺)) + (𝑆 · (𝐺 ·ih 𝐹)))) = (((∗‘𝑆) · (𝐹 ·ih 𝐺)) + (𝑆 · (𝐺 ·ih 𝐹))) |
| 25 | 7, 9 | addcli 11239 | . . . . 5 ⊢ (((∗‘𝑆) · (𝐹 ·ih 𝐺)) + (𝑆 · (𝐺 ·ih 𝐹))) ∈ ℂ |
| 26 | 25 | cjrebi 15191 | . . . 4 ⊢ ((((∗‘𝑆) · (𝐹 ·ih 𝐺)) + (𝑆 · (𝐺 ·ih 𝐹))) ∈ ℝ ↔ (∗‘(((∗‘𝑆) · (𝐹 ·ih 𝐺)) + (𝑆 · (𝐺 ·ih 𝐹)))) = (((∗‘𝑆) · (𝐹 ·ih 𝐺)) + (𝑆 · (𝐺 ·ih 𝐹)))) |
| 27 | 24, 26 | mpbir 231 | . . 3 ⊢ (((∗‘𝑆) · (𝐹 ·ih 𝐺)) + (𝑆 · (𝐺 ·ih 𝐹))) ∈ ℝ |
| 28 | 27 | renegcli 11542 | . 2 ⊢ -(((∗‘𝑆) · (𝐹 ·ih 𝐺)) + (𝑆 · (𝐺 ·ih 𝐹))) ∈ ℝ |
| 29 | 1, 28 | eqeltri 2830 | 1 ⊢ 𝐵 ∈ ℝ |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1540 ∈ wcel 2108 ‘cfv 6530 (class class class)co 7403 ℂcc 11125 ℝcr 11126 + caddc 11130 · cmul 11132 -cneg 11465 ∗ccj 15113 ℋchba 30846 ·ih csp 30849 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2707 ax-sep 5266 ax-nul 5276 ax-pow 5335 ax-pr 5402 ax-un 7727 ax-resscn 11184 ax-1cn 11185 ax-icn 11186 ax-addcl 11187 ax-addrcl 11188 ax-mulcl 11189 ax-mulrcl 11190 ax-mulcom 11191 ax-addass 11192 ax-mulass 11193 ax-distr 11194 ax-i2m1 11195 ax-1ne0 11196 ax-1rid 11197 ax-rnegex 11198 ax-rrecex 11199 ax-cnre 11200 ax-pre-lttri 11201 ax-pre-lttrn 11202 ax-pre-ltadd 11203 ax-pre-mulgt0 11204 ax-hfi 31006 ax-his1 31009 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2727 df-clel 2809 df-nfc 2885 df-ne 2933 df-nel 3037 df-ral 3052 df-rex 3061 df-rmo 3359 df-reu 3360 df-rab 3416 df-v 3461 df-sbc 3766 df-csb 3875 df-dif 3929 df-un 3931 df-in 3933 df-ss 3943 df-pss 3946 df-nul 4309 df-if 4501 df-pw 4577 df-sn 4602 df-pr 4604 df-op 4608 df-uni 4884 df-iun 4969 df-br 5120 df-opab 5182 df-mpt 5202 df-tr 5230 df-id 5548 df-eprel 5553 df-po 5561 df-so 5562 df-fr 5606 df-we 5608 df-xp 5660 df-rel 5661 df-cnv 5662 df-co 5663 df-dm 5664 df-rn 5665 df-res 5666 df-ima 5667 df-pred 6290 df-ord 6355 df-on 6356 df-lim 6357 df-suc 6358 df-iota 6483 df-fun 6532 df-fn 6533 df-f 6534 df-f1 6535 df-fo 6536 df-f1o 6537 df-fv 6538 df-riota 7360 df-ov 7406 df-oprab 7407 df-mpo 7408 df-om 7860 df-2nd 7987 df-frecs 8278 df-wrecs 8309 df-recs 8383 df-rdg 8422 df-er 8717 df-en 8958 df-dom 8959 df-sdom 8960 df-pnf 11269 df-mnf 11270 df-xr 11271 df-ltxr 11272 df-le 11273 df-sub 11466 df-neg 11467 df-div 11893 df-nn 12239 df-2 12301 df-cj 15116 df-re 15117 df-im 15118 |
| This theorem is referenced by: normlem3 31039 normlem6 31042 normlem7 31043 norm-ii-i 31064 |
| Copyright terms: Public domain | W3C validator |