| Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > HSE Home > Th. List > normlem2 | Structured version Visualization version GIF version | ||
| Description: Lemma used to derive properties of norm. Part of Theorem 3.3(ii) of [Beran] p. 97. (Contributed by NM, 27-Jul-1999.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| normlem1.1 | ⊢ 𝑆 ∈ ℂ |
| normlem1.2 | ⊢ 𝐹 ∈ ℋ |
| normlem1.3 | ⊢ 𝐺 ∈ ℋ |
| normlem2.4 | ⊢ 𝐵 = -(((∗‘𝑆) · (𝐹 ·ih 𝐺)) + (𝑆 · (𝐺 ·ih 𝐹))) |
| Ref | Expression |
|---|---|
| normlem2 | ⊢ 𝐵 ∈ ℝ |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | normlem2.4 | . 2 ⊢ 𝐵 = -(((∗‘𝑆) · (𝐹 ·ih 𝐺)) + (𝑆 · (𝐺 ·ih 𝐹))) | |
| 2 | normlem1.1 | . . . . . . . . 9 ⊢ 𝑆 ∈ ℂ | |
| 3 | 2 | cjcli 15142 | . . . . . . . 8 ⊢ (∗‘𝑆) ∈ ℂ |
| 4 | normlem1.2 | . . . . . . . . 9 ⊢ 𝐹 ∈ ℋ | |
| 5 | normlem1.3 | . . . . . . . . 9 ⊢ 𝐺 ∈ ℋ | |
| 6 | 4, 5 | hicli 31017 | . . . . . . . 8 ⊢ (𝐹 ·ih 𝐺) ∈ ℂ |
| 7 | 3, 6 | mulcli 11188 | . . . . . . 7 ⊢ ((∗‘𝑆) · (𝐹 ·ih 𝐺)) ∈ ℂ |
| 8 | 5, 4 | hicli 31017 | . . . . . . . 8 ⊢ (𝐺 ·ih 𝐹) ∈ ℂ |
| 9 | 2, 8 | mulcli 11188 | . . . . . . 7 ⊢ (𝑆 · (𝐺 ·ih 𝐹)) ∈ ℂ |
| 10 | 7, 9 | cjaddi 15161 | . . . . . 6 ⊢ (∗‘(((∗‘𝑆) · (𝐹 ·ih 𝐺)) + (𝑆 · (𝐺 ·ih 𝐹)))) = ((∗‘((∗‘𝑆) · (𝐹 ·ih 𝐺))) + (∗‘(𝑆 · (𝐺 ·ih 𝐹)))) |
| 11 | 2 | cjcji 15144 | . . . . . . . . . 10 ⊢ (∗‘(∗‘𝑆)) = 𝑆 |
| 12 | 11 | eqcomi 2739 | . . . . . . . . 9 ⊢ 𝑆 = (∗‘(∗‘𝑆)) |
| 13 | 5, 4 | his1i 31036 | . . . . . . . . 9 ⊢ (𝐺 ·ih 𝐹) = (∗‘(𝐹 ·ih 𝐺)) |
| 14 | 12, 13 | oveq12i 7402 | . . . . . . . 8 ⊢ (𝑆 · (𝐺 ·ih 𝐹)) = ((∗‘(∗‘𝑆)) · (∗‘(𝐹 ·ih 𝐺))) |
| 15 | 3, 6 | cjmuli 15162 | . . . . . . . 8 ⊢ (∗‘((∗‘𝑆) · (𝐹 ·ih 𝐺))) = ((∗‘(∗‘𝑆)) · (∗‘(𝐹 ·ih 𝐺))) |
| 16 | 14, 15 | eqtr4i 2756 | . . . . . . 7 ⊢ (𝑆 · (𝐺 ·ih 𝐹)) = (∗‘((∗‘𝑆) · (𝐹 ·ih 𝐺))) |
| 17 | 4, 5 | his1i 31036 | . . . . . . . . 9 ⊢ (𝐹 ·ih 𝐺) = (∗‘(𝐺 ·ih 𝐹)) |
| 18 | 17 | oveq2i 7401 | . . . . . . . 8 ⊢ ((∗‘𝑆) · (𝐹 ·ih 𝐺)) = ((∗‘𝑆) · (∗‘(𝐺 ·ih 𝐹))) |
| 19 | 2, 8 | cjmuli 15162 | . . . . . . . 8 ⊢ (∗‘(𝑆 · (𝐺 ·ih 𝐹))) = ((∗‘𝑆) · (∗‘(𝐺 ·ih 𝐹))) |
| 20 | 18, 19 | eqtr4i 2756 | . . . . . . 7 ⊢ ((∗‘𝑆) · (𝐹 ·ih 𝐺)) = (∗‘(𝑆 · (𝐺 ·ih 𝐹))) |
| 21 | 16, 20 | oveq12i 7402 | . . . . . 6 ⊢ ((𝑆 · (𝐺 ·ih 𝐹)) + ((∗‘𝑆) · (𝐹 ·ih 𝐺))) = ((∗‘((∗‘𝑆) · (𝐹 ·ih 𝐺))) + (∗‘(𝑆 · (𝐺 ·ih 𝐹)))) |
| 22 | 10, 21 | eqtr4i 2756 | . . . . 5 ⊢ (∗‘(((∗‘𝑆) · (𝐹 ·ih 𝐺)) + (𝑆 · (𝐺 ·ih 𝐹)))) = ((𝑆 · (𝐺 ·ih 𝐹)) + ((∗‘𝑆) · (𝐹 ·ih 𝐺))) |
| 23 | 7, 9 | addcomi 11372 | . . . . 5 ⊢ (((∗‘𝑆) · (𝐹 ·ih 𝐺)) + (𝑆 · (𝐺 ·ih 𝐹))) = ((𝑆 · (𝐺 ·ih 𝐹)) + ((∗‘𝑆) · (𝐹 ·ih 𝐺))) |
| 24 | 22, 23 | eqtr4i 2756 | . . . 4 ⊢ (∗‘(((∗‘𝑆) · (𝐹 ·ih 𝐺)) + (𝑆 · (𝐺 ·ih 𝐹)))) = (((∗‘𝑆) · (𝐹 ·ih 𝐺)) + (𝑆 · (𝐺 ·ih 𝐹))) |
| 25 | 7, 9 | addcli 11187 | . . . . 5 ⊢ (((∗‘𝑆) · (𝐹 ·ih 𝐺)) + (𝑆 · (𝐺 ·ih 𝐹))) ∈ ℂ |
| 26 | 25 | cjrebi 15147 | . . . 4 ⊢ ((((∗‘𝑆) · (𝐹 ·ih 𝐺)) + (𝑆 · (𝐺 ·ih 𝐹))) ∈ ℝ ↔ (∗‘(((∗‘𝑆) · (𝐹 ·ih 𝐺)) + (𝑆 · (𝐺 ·ih 𝐹)))) = (((∗‘𝑆) · (𝐹 ·ih 𝐺)) + (𝑆 · (𝐺 ·ih 𝐹)))) |
| 27 | 24, 26 | mpbir 231 | . . 3 ⊢ (((∗‘𝑆) · (𝐹 ·ih 𝐺)) + (𝑆 · (𝐺 ·ih 𝐹))) ∈ ℝ |
| 28 | 27 | renegcli 11490 | . 2 ⊢ -(((∗‘𝑆) · (𝐹 ·ih 𝐺)) + (𝑆 · (𝐺 ·ih 𝐹))) ∈ ℝ |
| 29 | 1, 28 | eqeltri 2825 | 1 ⊢ 𝐵 ∈ ℝ |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1540 ∈ wcel 2109 ‘cfv 6514 (class class class)co 7390 ℂcc 11073 ℝcr 11074 + caddc 11078 · cmul 11080 -cneg 11413 ∗ccj 15069 ℋchba 30855 ·ih csp 30858 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-sep 5254 ax-nul 5264 ax-pow 5323 ax-pr 5390 ax-un 7714 ax-resscn 11132 ax-1cn 11133 ax-icn 11134 ax-addcl 11135 ax-addrcl 11136 ax-mulcl 11137 ax-mulrcl 11138 ax-mulcom 11139 ax-addass 11140 ax-mulass 11141 ax-distr 11142 ax-i2m1 11143 ax-1ne0 11144 ax-1rid 11145 ax-rnegex 11146 ax-rrecex 11147 ax-cnre 11148 ax-pre-lttri 11149 ax-pre-lttrn 11150 ax-pre-ltadd 11151 ax-pre-mulgt0 11152 ax-hfi 31015 ax-his1 31018 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-nel 3031 df-ral 3046 df-rex 3055 df-rmo 3356 df-reu 3357 df-rab 3409 df-v 3452 df-sbc 3757 df-csb 3866 df-dif 3920 df-un 3922 df-in 3924 df-ss 3934 df-pss 3937 df-nul 4300 df-if 4492 df-pw 4568 df-sn 4593 df-pr 4595 df-op 4599 df-uni 4875 df-iun 4960 df-br 5111 df-opab 5173 df-mpt 5192 df-tr 5218 df-id 5536 df-eprel 5541 df-po 5549 df-so 5550 df-fr 5594 df-we 5596 df-xp 5647 df-rel 5648 df-cnv 5649 df-co 5650 df-dm 5651 df-rn 5652 df-res 5653 df-ima 5654 df-pred 6277 df-ord 6338 df-on 6339 df-lim 6340 df-suc 6341 df-iota 6467 df-fun 6516 df-fn 6517 df-f 6518 df-f1 6519 df-fo 6520 df-f1o 6521 df-fv 6522 df-riota 7347 df-ov 7393 df-oprab 7394 df-mpo 7395 df-om 7846 df-2nd 7972 df-frecs 8263 df-wrecs 8294 df-recs 8343 df-rdg 8381 df-er 8674 df-en 8922 df-dom 8923 df-sdom 8924 df-pnf 11217 df-mnf 11218 df-xr 11219 df-ltxr 11220 df-le 11221 df-sub 11414 df-neg 11415 df-div 11843 df-nn 12194 df-2 12256 df-cj 15072 df-re 15073 df-im 15074 |
| This theorem is referenced by: normlem3 31048 normlem6 31051 normlem7 31052 norm-ii-i 31073 |
| Copyright terms: Public domain | W3C validator |