Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > HSE Home > Th. List > normlem2 | Structured version Visualization version GIF version |
Description: Lemma used to derive properties of norm. Part of Theorem 3.3(ii) of [Beran] p. 97. (Contributed by NM, 27-Jul-1999.) (New usage is discouraged.) |
Ref | Expression |
---|---|
normlem1.1 | ⊢ 𝑆 ∈ ℂ |
normlem1.2 | ⊢ 𝐹 ∈ ℋ |
normlem1.3 | ⊢ 𝐺 ∈ ℋ |
normlem2.4 | ⊢ 𝐵 = -(((∗‘𝑆) · (𝐹 ·ih 𝐺)) + (𝑆 · (𝐺 ·ih 𝐹))) |
Ref | Expression |
---|---|
normlem2 | ⊢ 𝐵 ∈ ℝ |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | normlem2.4 | . 2 ⊢ 𝐵 = -(((∗‘𝑆) · (𝐹 ·ih 𝐺)) + (𝑆 · (𝐺 ·ih 𝐹))) | |
2 | normlem1.1 | . . . . . . . . 9 ⊢ 𝑆 ∈ ℂ | |
3 | 2 | cjcli 14880 | . . . . . . . 8 ⊢ (∗‘𝑆) ∈ ℂ |
4 | normlem1.2 | . . . . . . . . 9 ⊢ 𝐹 ∈ ℋ | |
5 | normlem1.3 | . . . . . . . . 9 ⊢ 𝐺 ∈ ℋ | |
6 | 4, 5 | hicli 29443 | . . . . . . . 8 ⊢ (𝐹 ·ih 𝐺) ∈ ℂ |
7 | 3, 6 | mulcli 10982 | . . . . . . 7 ⊢ ((∗‘𝑆) · (𝐹 ·ih 𝐺)) ∈ ℂ |
8 | 5, 4 | hicli 29443 | . . . . . . . 8 ⊢ (𝐺 ·ih 𝐹) ∈ ℂ |
9 | 2, 8 | mulcli 10982 | . . . . . . 7 ⊢ (𝑆 · (𝐺 ·ih 𝐹)) ∈ ℂ |
10 | 7, 9 | cjaddi 14899 | . . . . . 6 ⊢ (∗‘(((∗‘𝑆) · (𝐹 ·ih 𝐺)) + (𝑆 · (𝐺 ·ih 𝐹)))) = ((∗‘((∗‘𝑆) · (𝐹 ·ih 𝐺))) + (∗‘(𝑆 · (𝐺 ·ih 𝐹)))) |
11 | 2 | cjcji 14882 | . . . . . . . . . 10 ⊢ (∗‘(∗‘𝑆)) = 𝑆 |
12 | 11 | eqcomi 2747 | . . . . . . . . 9 ⊢ 𝑆 = (∗‘(∗‘𝑆)) |
13 | 5, 4 | his1i 29462 | . . . . . . . . 9 ⊢ (𝐺 ·ih 𝐹) = (∗‘(𝐹 ·ih 𝐺)) |
14 | 12, 13 | oveq12i 7287 | . . . . . . . 8 ⊢ (𝑆 · (𝐺 ·ih 𝐹)) = ((∗‘(∗‘𝑆)) · (∗‘(𝐹 ·ih 𝐺))) |
15 | 3, 6 | cjmuli 14900 | . . . . . . . 8 ⊢ (∗‘((∗‘𝑆) · (𝐹 ·ih 𝐺))) = ((∗‘(∗‘𝑆)) · (∗‘(𝐹 ·ih 𝐺))) |
16 | 14, 15 | eqtr4i 2769 | . . . . . . 7 ⊢ (𝑆 · (𝐺 ·ih 𝐹)) = (∗‘((∗‘𝑆) · (𝐹 ·ih 𝐺))) |
17 | 4, 5 | his1i 29462 | . . . . . . . . 9 ⊢ (𝐹 ·ih 𝐺) = (∗‘(𝐺 ·ih 𝐹)) |
18 | 17 | oveq2i 7286 | . . . . . . . 8 ⊢ ((∗‘𝑆) · (𝐹 ·ih 𝐺)) = ((∗‘𝑆) · (∗‘(𝐺 ·ih 𝐹))) |
19 | 2, 8 | cjmuli 14900 | . . . . . . . 8 ⊢ (∗‘(𝑆 · (𝐺 ·ih 𝐹))) = ((∗‘𝑆) · (∗‘(𝐺 ·ih 𝐹))) |
20 | 18, 19 | eqtr4i 2769 | . . . . . . 7 ⊢ ((∗‘𝑆) · (𝐹 ·ih 𝐺)) = (∗‘(𝑆 · (𝐺 ·ih 𝐹))) |
21 | 16, 20 | oveq12i 7287 | . . . . . 6 ⊢ ((𝑆 · (𝐺 ·ih 𝐹)) + ((∗‘𝑆) · (𝐹 ·ih 𝐺))) = ((∗‘((∗‘𝑆) · (𝐹 ·ih 𝐺))) + (∗‘(𝑆 · (𝐺 ·ih 𝐹)))) |
22 | 10, 21 | eqtr4i 2769 | . . . . 5 ⊢ (∗‘(((∗‘𝑆) · (𝐹 ·ih 𝐺)) + (𝑆 · (𝐺 ·ih 𝐹)))) = ((𝑆 · (𝐺 ·ih 𝐹)) + ((∗‘𝑆) · (𝐹 ·ih 𝐺))) |
23 | 7, 9 | addcomi 11166 | . . . . 5 ⊢ (((∗‘𝑆) · (𝐹 ·ih 𝐺)) + (𝑆 · (𝐺 ·ih 𝐹))) = ((𝑆 · (𝐺 ·ih 𝐹)) + ((∗‘𝑆) · (𝐹 ·ih 𝐺))) |
24 | 22, 23 | eqtr4i 2769 | . . . 4 ⊢ (∗‘(((∗‘𝑆) · (𝐹 ·ih 𝐺)) + (𝑆 · (𝐺 ·ih 𝐹)))) = (((∗‘𝑆) · (𝐹 ·ih 𝐺)) + (𝑆 · (𝐺 ·ih 𝐹))) |
25 | 7, 9 | addcli 10981 | . . . . 5 ⊢ (((∗‘𝑆) · (𝐹 ·ih 𝐺)) + (𝑆 · (𝐺 ·ih 𝐹))) ∈ ℂ |
26 | 25 | cjrebi 14885 | . . . 4 ⊢ ((((∗‘𝑆) · (𝐹 ·ih 𝐺)) + (𝑆 · (𝐺 ·ih 𝐹))) ∈ ℝ ↔ (∗‘(((∗‘𝑆) · (𝐹 ·ih 𝐺)) + (𝑆 · (𝐺 ·ih 𝐹)))) = (((∗‘𝑆) · (𝐹 ·ih 𝐺)) + (𝑆 · (𝐺 ·ih 𝐹)))) |
27 | 24, 26 | mpbir 230 | . . 3 ⊢ (((∗‘𝑆) · (𝐹 ·ih 𝐺)) + (𝑆 · (𝐺 ·ih 𝐹))) ∈ ℝ |
28 | 27 | renegcli 11282 | . 2 ⊢ -(((∗‘𝑆) · (𝐹 ·ih 𝐺)) + (𝑆 · (𝐺 ·ih 𝐹))) ∈ ℝ |
29 | 1, 28 | eqeltri 2835 | 1 ⊢ 𝐵 ∈ ℝ |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1539 ∈ wcel 2106 ‘cfv 6433 (class class class)co 7275 ℂcc 10869 ℝcr 10870 + caddc 10874 · cmul 10876 -cneg 11206 ∗ccj 14807 ℋchba 29281 ·ih csp 29284 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-sep 5223 ax-nul 5230 ax-pow 5288 ax-pr 5352 ax-un 7588 ax-resscn 10928 ax-1cn 10929 ax-icn 10930 ax-addcl 10931 ax-addrcl 10932 ax-mulcl 10933 ax-mulrcl 10934 ax-mulcom 10935 ax-addass 10936 ax-mulass 10937 ax-distr 10938 ax-i2m1 10939 ax-1ne0 10940 ax-1rid 10941 ax-rnegex 10942 ax-rrecex 10943 ax-cnre 10944 ax-pre-lttri 10945 ax-pre-lttrn 10946 ax-pre-ltadd 10947 ax-pre-mulgt0 10948 ax-hfi 29441 ax-his1 29444 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ne 2944 df-nel 3050 df-ral 3069 df-rex 3070 df-rmo 3071 df-reu 3072 df-rab 3073 df-v 3434 df-sbc 3717 df-csb 3833 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-nul 4257 df-if 4460 df-pw 4535 df-sn 4562 df-pr 4564 df-op 4568 df-uni 4840 df-iun 4926 df-br 5075 df-opab 5137 df-mpt 5158 df-id 5489 df-po 5503 df-so 5504 df-xp 5595 df-rel 5596 df-cnv 5597 df-co 5598 df-dm 5599 df-rn 5600 df-res 5601 df-ima 5602 df-iota 6391 df-fun 6435 df-fn 6436 df-f 6437 df-f1 6438 df-fo 6439 df-f1o 6440 df-fv 6441 df-riota 7232 df-ov 7278 df-oprab 7279 df-mpo 7280 df-er 8498 df-en 8734 df-dom 8735 df-sdom 8736 df-pnf 11011 df-mnf 11012 df-xr 11013 df-ltxr 11014 df-le 11015 df-sub 11207 df-neg 11208 df-div 11633 df-2 12036 df-cj 14810 df-re 14811 df-im 14812 |
This theorem is referenced by: normlem3 29474 normlem6 29477 normlem7 29478 norm-ii-i 29499 |
Copyright terms: Public domain | W3C validator |