HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  lnopunilem1 Structured version   Visualization version   GIF version

Theorem lnopunilem1 30273
Description: Lemma for lnopunii 30275. (Contributed by NM, 14-May-2005.) (New usage is discouraged.)
Hypotheses
Ref Expression
lnopunilem.1 𝑇 ∈ LinOp
lnopunilem.2 𝑥 ∈ ℋ (norm‘(𝑇𝑥)) = (norm𝑥)
lnopunilem.3 𝐴 ∈ ℋ
lnopunilem.4 𝐵 ∈ ℋ
lnopunilem1.5 𝐶 ∈ ℂ
Assertion
Ref Expression
lnopunilem1 (ℜ‘(𝐶 · ((𝑇𝐴) ·ih (𝑇𝐵)))) = (ℜ‘(𝐶 · (𝐴 ·ih 𝐵)))
Distinct variable group:   𝑥,𝑇
Allowed substitution hints:   𝐴(𝑥)   𝐵(𝑥)   𝐶(𝑥)

Proof of Theorem lnopunilem1
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 lnopunilem1.5 . . . 4 𝐶 ∈ ℂ
2 lnopunilem.3 . . . . . 6 𝐴 ∈ ℋ
3 lnopunilem.1 . . . . . . . 8 𝑇 ∈ LinOp
43lnopfi 30232 . . . . . . 7 𝑇: ℋ⟶ ℋ
54ffvelrni 6942 . . . . . 6 (𝐴 ∈ ℋ → (𝑇𝐴) ∈ ℋ)
62, 5ax-mp 5 . . . . 5 (𝑇𝐴) ∈ ℋ
7 lnopunilem.4 . . . . . 6 𝐵 ∈ ℋ
84ffvelrni 6942 . . . . . 6 (𝐵 ∈ ℋ → (𝑇𝐵) ∈ ℋ)
97, 8ax-mp 5 . . . . 5 (𝑇𝐵) ∈ ℋ
106, 9hicli 29344 . . . 4 ((𝑇𝐴) ·ih (𝑇𝐵)) ∈ ℂ
111, 10mulcli 10913 . . 3 (𝐶 · ((𝑇𝐴) ·ih (𝑇𝐵))) ∈ ℂ
12 reval 14745 . . 3 ((𝐶 · ((𝑇𝐴) ·ih (𝑇𝐵))) ∈ ℂ → (ℜ‘(𝐶 · ((𝑇𝐴) ·ih (𝑇𝐵)))) = (((𝐶 · ((𝑇𝐴) ·ih (𝑇𝐵))) + (∗‘(𝐶 · ((𝑇𝐴) ·ih (𝑇𝐵))))) / 2))
1311, 12ax-mp 5 . 2 (ℜ‘(𝐶 · ((𝑇𝐴) ·ih (𝑇𝐵)))) = (((𝐶 · ((𝑇𝐴) ·ih (𝑇𝐵))) + (∗‘(𝐶 · ((𝑇𝐴) ·ih (𝑇𝐵))))) / 2)
142, 7hicli 29344 . . . . 5 (𝐴 ·ih 𝐵) ∈ ℂ
151, 14mulcli 10913 . . . 4 (𝐶 · (𝐴 ·ih 𝐵)) ∈ ℂ
16 reval 14745 . . . 4 ((𝐶 · (𝐴 ·ih 𝐵)) ∈ ℂ → (ℜ‘(𝐶 · (𝐴 ·ih 𝐵))) = (((𝐶 · (𝐴 ·ih 𝐵)) + (∗‘(𝐶 · (𝐴 ·ih 𝐵)))) / 2))
1715, 16ax-mp 5 . . 3 (ℜ‘(𝐶 · (𝐴 ·ih 𝐵))) = (((𝐶 · (𝐴 ·ih 𝐵)) + (∗‘(𝐶 · (𝐴 ·ih 𝐵)))) / 2)
18 lnopunilem.2 . . . . . . . . . . . . 13 𝑥 ∈ ℋ (norm‘(𝑇𝑥)) = (norm𝑥)
19 2fveq3 6761 . . . . . . . . . . . . . . 15 (𝑥 = 𝑦 → (norm‘(𝑇𝑥)) = (norm‘(𝑇𝑦)))
20 fveq2 6756 . . . . . . . . . . . . . . 15 (𝑥 = 𝑦 → (norm𝑥) = (norm𝑦))
2119, 20eqeq12d 2754 . . . . . . . . . . . . . 14 (𝑥 = 𝑦 → ((norm‘(𝑇𝑥)) = (norm𝑥) ↔ (norm‘(𝑇𝑦)) = (norm𝑦)))
2221cbvralvw 3372 . . . . . . . . . . . . 13 (∀𝑥 ∈ ℋ (norm‘(𝑇𝑥)) = (norm𝑥) ↔ ∀𝑦 ∈ ℋ (norm‘(𝑇𝑦)) = (norm𝑦))
2318, 22mpbi 229 . . . . . . . . . . . 12 𝑦 ∈ ℋ (norm‘(𝑇𝑦)) = (norm𝑦)
24 oveq1 7262 . . . . . . . . . . . . . 14 ((norm‘(𝑇𝑦)) = (norm𝑦) → ((norm‘(𝑇𝑦))↑2) = ((norm𝑦)↑2))
254ffvelrni 6942 . . . . . . . . . . . . . . . 16 (𝑦 ∈ ℋ → (𝑇𝑦) ∈ ℋ)
26 normsq 29397 . . . . . . . . . . . . . . . 16 ((𝑇𝑦) ∈ ℋ → ((norm‘(𝑇𝑦))↑2) = ((𝑇𝑦) ·ih (𝑇𝑦)))
2725, 26syl 17 . . . . . . . . . . . . . . 15 (𝑦 ∈ ℋ → ((norm‘(𝑇𝑦))↑2) = ((𝑇𝑦) ·ih (𝑇𝑦)))
28 normsq 29397 . . . . . . . . . . . . . . 15 (𝑦 ∈ ℋ → ((norm𝑦)↑2) = (𝑦 ·ih 𝑦))
2927, 28eqeq12d 2754 . . . . . . . . . . . . . 14 (𝑦 ∈ ℋ → (((norm‘(𝑇𝑦))↑2) = ((norm𝑦)↑2) ↔ ((𝑇𝑦) ·ih (𝑇𝑦)) = (𝑦 ·ih 𝑦)))
3024, 29syl5ib 243 . . . . . . . . . . . . 13 (𝑦 ∈ ℋ → ((norm‘(𝑇𝑦)) = (norm𝑦) → ((𝑇𝑦) ·ih (𝑇𝑦)) = (𝑦 ·ih 𝑦)))
3130ralimia 3084 . . . . . . . . . . . 12 (∀𝑦 ∈ ℋ (norm‘(𝑇𝑦)) = (norm𝑦) → ∀𝑦 ∈ ℋ ((𝑇𝑦) ·ih (𝑇𝑦)) = (𝑦 ·ih 𝑦))
3223, 31ax-mp 5 . . . . . . . . . . 11 𝑦 ∈ ℋ ((𝑇𝑦) ·ih (𝑇𝑦)) = (𝑦 ·ih 𝑦)
33 fveq2 6756 . . . . . . . . . . . . . 14 (𝑦 = 𝐴 → (𝑇𝑦) = (𝑇𝐴))
3433, 33oveq12d 7273 . . . . . . . . . . . . 13 (𝑦 = 𝐴 → ((𝑇𝑦) ·ih (𝑇𝑦)) = ((𝑇𝐴) ·ih (𝑇𝐴)))
35 id 22 . . . . . . . . . . . . . 14 (𝑦 = 𝐴𝑦 = 𝐴)
3635, 35oveq12d 7273 . . . . . . . . . . . . 13 (𝑦 = 𝐴 → (𝑦 ·ih 𝑦) = (𝐴 ·ih 𝐴))
3734, 36eqeq12d 2754 . . . . . . . . . . . 12 (𝑦 = 𝐴 → (((𝑇𝑦) ·ih (𝑇𝑦)) = (𝑦 ·ih 𝑦) ↔ ((𝑇𝐴) ·ih (𝑇𝐴)) = (𝐴 ·ih 𝐴)))
3837rspcv 3547 . . . . . . . . . . 11 (𝐴 ∈ ℋ → (∀𝑦 ∈ ℋ ((𝑇𝑦) ·ih (𝑇𝑦)) = (𝑦 ·ih 𝑦) → ((𝑇𝐴) ·ih (𝑇𝐴)) = (𝐴 ·ih 𝐴)))
392, 32, 38mp2 9 . . . . . . . . . 10 ((𝑇𝐴) ·ih (𝑇𝐴)) = (𝐴 ·ih 𝐴)
4039oveq2i 7266 . . . . . . . . 9 ((∗‘𝐶) · ((𝑇𝐴) ·ih (𝑇𝐴))) = ((∗‘𝐶) · (𝐴 ·ih 𝐴))
4140oveq2i 7266 . . . . . . . 8 (𝐶 · ((∗‘𝐶) · ((𝑇𝐴) ·ih (𝑇𝐴)))) = (𝐶 · ((∗‘𝐶) · (𝐴 ·ih 𝐴)))
42 fveq2 6756 . . . . . . . . . . . 12 (𝑦 = 𝐵 → (𝑇𝑦) = (𝑇𝐵))
4342, 42oveq12d 7273 . . . . . . . . . . 11 (𝑦 = 𝐵 → ((𝑇𝑦) ·ih (𝑇𝑦)) = ((𝑇𝐵) ·ih (𝑇𝐵)))
44 id 22 . . . . . . . . . . . 12 (𝑦 = 𝐵𝑦 = 𝐵)
4544, 44oveq12d 7273 . . . . . . . . . . 11 (𝑦 = 𝐵 → (𝑦 ·ih 𝑦) = (𝐵 ·ih 𝐵))
4643, 45eqeq12d 2754 . . . . . . . . . 10 (𝑦 = 𝐵 → (((𝑇𝑦) ·ih (𝑇𝑦)) = (𝑦 ·ih 𝑦) ↔ ((𝑇𝐵) ·ih (𝑇𝐵)) = (𝐵 ·ih 𝐵)))
4746rspcv 3547 . . . . . . . . 9 (𝐵 ∈ ℋ → (∀𝑦 ∈ ℋ ((𝑇𝑦) ·ih (𝑇𝑦)) = (𝑦 ·ih 𝑦) → ((𝑇𝐵) ·ih (𝑇𝐵)) = (𝐵 ·ih 𝐵)))
487, 32, 47mp2 9 . . . . . . . 8 ((𝑇𝐵) ·ih (𝑇𝐵)) = (𝐵 ·ih 𝐵)
4941, 48oveq12i 7267 . . . . . . 7 ((𝐶 · ((∗‘𝐶) · ((𝑇𝐴) ·ih (𝑇𝐴)))) + ((𝑇𝐵) ·ih (𝑇𝐵))) = ((𝐶 · ((∗‘𝐶) · (𝐴 ·ih 𝐴))) + (𝐵 ·ih 𝐵))
5049oveq1i 7265 . . . . . 6 (((𝐶 · ((∗‘𝐶) · ((𝑇𝐴) ·ih (𝑇𝐴)))) + ((𝑇𝐵) ·ih (𝑇𝐵))) + ((𝐶 · ((𝑇𝐴) ·ih (𝑇𝐵))) + (∗‘(𝐶 · ((𝑇𝐴) ·ih (𝑇𝐵)))))) = (((𝐶 · ((∗‘𝐶) · (𝐴 ·ih 𝐴))) + (𝐵 ·ih 𝐵)) + ((𝐶 · ((𝑇𝐴) ·ih (𝑇𝐵))) + (∗‘(𝐶 · ((𝑇𝐴) ·ih (𝑇𝐵))))))
511cjcli 14808 . . . . . . . . . 10 (∗‘𝐶) ∈ ℂ
526, 6hicli 29344 . . . . . . . . . 10 ((𝑇𝐴) ·ih (𝑇𝐴)) ∈ ℂ
5351, 52mulcli 10913 . . . . . . . . 9 ((∗‘𝐶) · ((𝑇𝐴) ·ih (𝑇𝐴))) ∈ ℂ
541, 53mulcli 10913 . . . . . . . 8 (𝐶 · ((∗‘𝐶) · ((𝑇𝐴) ·ih (𝑇𝐴)))) ∈ ℂ
559, 9hicli 29344 . . . . . . . 8 ((𝑇𝐵) ·ih (𝑇𝐵)) ∈ ℂ
5611cjcli 14808 . . . . . . . 8 (∗‘(𝐶 · ((𝑇𝐴) ·ih (𝑇𝐵)))) ∈ ℂ
5754, 55, 11, 56add42i 11130 . . . . . . 7 (((𝐶 · ((∗‘𝐶) · ((𝑇𝐴) ·ih (𝑇𝐴)))) + ((𝑇𝐵) ·ih (𝑇𝐵))) + ((𝐶 · ((𝑇𝐴) ·ih (𝑇𝐵))) + (∗‘(𝐶 · ((𝑇𝐴) ·ih (𝑇𝐵)))))) = (((𝐶 · ((∗‘𝐶) · ((𝑇𝐴) ·ih (𝑇𝐴)))) + (𝐶 · ((𝑇𝐴) ·ih (𝑇𝐵)))) + ((∗‘(𝐶 · ((𝑇𝐴) ·ih (𝑇𝐵)))) + ((𝑇𝐵) ·ih (𝑇𝐵))))
582, 2hicli 29344 . . . . . . . . . . 11 (𝐴 ·ih 𝐴) ∈ ℂ
5951, 58mulcli 10913 . . . . . . . . . 10 ((∗‘𝐶) · (𝐴 ·ih 𝐴)) ∈ ℂ
601, 59mulcli 10913 . . . . . . . . 9 (𝐶 · ((∗‘𝐶) · (𝐴 ·ih 𝐴))) ∈ ℂ
617, 7hicli 29344 . . . . . . . . 9 (𝐵 ·ih 𝐵) ∈ ℂ
6215cjcli 14808 . . . . . . . . 9 (∗‘(𝐶 · (𝐴 ·ih 𝐵))) ∈ ℂ
6360, 61, 15, 62add42i 11130 . . . . . . . 8 (((𝐶 · ((∗‘𝐶) · (𝐴 ·ih 𝐴))) + (𝐵 ·ih 𝐵)) + ((𝐶 · (𝐴 ·ih 𝐵)) + (∗‘(𝐶 · (𝐴 ·ih 𝐵))))) = (((𝐶 · ((∗‘𝐶) · (𝐴 ·ih 𝐴))) + (𝐶 · (𝐴 ·ih 𝐵))) + ((∗‘(𝐶 · (𝐴 ·ih 𝐵))) + (𝐵 ·ih 𝐵)))
641, 2hvmulcli 29277 . . . . . . . . . . . 12 (𝐶 · 𝐴) ∈ ℋ
6564, 7hvaddcli 29281 . . . . . . . . . . 11 ((𝐶 · 𝐴) + 𝐵) ∈ ℋ
66 fveq2 6756 . . . . . . . . . . . . . 14 (𝑦 = ((𝐶 · 𝐴) + 𝐵) → (𝑇𝑦) = (𝑇‘((𝐶 · 𝐴) + 𝐵)))
6766, 66oveq12d 7273 . . . . . . . . . . . . 13 (𝑦 = ((𝐶 · 𝐴) + 𝐵) → ((𝑇𝑦) ·ih (𝑇𝑦)) = ((𝑇‘((𝐶 · 𝐴) + 𝐵)) ·ih (𝑇‘((𝐶 · 𝐴) + 𝐵))))
68 id 22 . . . . . . . . . . . . . 14 (𝑦 = ((𝐶 · 𝐴) + 𝐵) → 𝑦 = ((𝐶 · 𝐴) + 𝐵))
6968, 68oveq12d 7273 . . . . . . . . . . . . 13 (𝑦 = ((𝐶 · 𝐴) + 𝐵) → (𝑦 ·ih 𝑦) = (((𝐶 · 𝐴) + 𝐵) ·ih ((𝐶 · 𝐴) + 𝐵)))
7067, 69eqeq12d 2754 . . . . . . . . . . . 12 (𝑦 = ((𝐶 · 𝐴) + 𝐵) → (((𝑇𝑦) ·ih (𝑇𝑦)) = (𝑦 ·ih 𝑦) ↔ ((𝑇‘((𝐶 · 𝐴) + 𝐵)) ·ih (𝑇‘((𝐶 · 𝐴) + 𝐵))) = (((𝐶 · 𝐴) + 𝐵) ·ih ((𝐶 · 𝐴) + 𝐵))))
7170rspcv 3547 . . . . . . . . . . 11 (((𝐶 · 𝐴) + 𝐵) ∈ ℋ → (∀𝑦 ∈ ℋ ((𝑇𝑦) ·ih (𝑇𝑦)) = (𝑦 ·ih 𝑦) → ((𝑇‘((𝐶 · 𝐴) + 𝐵)) ·ih (𝑇‘((𝐶 · 𝐴) + 𝐵))) = (((𝐶 · 𝐴) + 𝐵) ·ih ((𝐶 · 𝐴) + 𝐵))))
7265, 32, 71mp2 9 . . . . . . . . . 10 ((𝑇‘((𝐶 · 𝐴) + 𝐵)) ·ih (𝑇‘((𝐶 · 𝐴) + 𝐵))) = (((𝐶 · 𝐴) + 𝐵) ·ih ((𝐶 · 𝐴) + 𝐵))
73 ax-his2 29346 . . . . . . . . . . 11 (((𝐶 · 𝐴) ∈ ℋ ∧ 𝐵 ∈ ℋ ∧ ((𝐶 · 𝐴) + 𝐵) ∈ ℋ) → (((𝐶 · 𝐴) + 𝐵) ·ih ((𝐶 · 𝐴) + 𝐵)) = (((𝐶 · 𝐴) ·ih ((𝐶 · 𝐴) + 𝐵)) + (𝐵 ·ih ((𝐶 · 𝐴) + 𝐵))))
7464, 7, 65, 73mp3an 1459 . . . . . . . . . 10 (((𝐶 · 𝐴) + 𝐵) ·ih ((𝐶 · 𝐴) + 𝐵)) = (((𝐶 · 𝐴) ·ih ((𝐶 · 𝐴) + 𝐵)) + (𝐵 ·ih ((𝐶 · 𝐴) + 𝐵)))
75 ax-his3 29347 . . . . . . . . . . . . 13 ((𝐶 ∈ ℂ ∧ 𝐴 ∈ ℋ ∧ ((𝐶 · 𝐴) + 𝐵) ∈ ℋ) → ((𝐶 · 𝐴) ·ih ((𝐶 · 𝐴) + 𝐵)) = (𝐶 · (𝐴 ·ih ((𝐶 · 𝐴) + 𝐵))))
761, 2, 65, 75mp3an 1459 . . . . . . . . . . . 12 ((𝐶 · 𝐴) ·ih ((𝐶 · 𝐴) + 𝐵)) = (𝐶 · (𝐴 ·ih ((𝐶 · 𝐴) + 𝐵)))
77 his7 29353 . . . . . . . . . . . . . . 15 ((𝐴 ∈ ℋ ∧ (𝐶 · 𝐴) ∈ ℋ ∧ 𝐵 ∈ ℋ) → (𝐴 ·ih ((𝐶 · 𝐴) + 𝐵)) = ((𝐴 ·ih (𝐶 · 𝐴)) + (𝐴 ·ih 𝐵)))
782, 64, 7, 77mp3an 1459 . . . . . . . . . . . . . 14 (𝐴 ·ih ((𝐶 · 𝐴) + 𝐵)) = ((𝐴 ·ih (𝐶 · 𝐴)) + (𝐴 ·ih 𝐵))
79 his5 29349 . . . . . . . . . . . . . . . 16 ((𝐶 ∈ ℂ ∧ 𝐴 ∈ ℋ ∧ 𝐴 ∈ ℋ) → (𝐴 ·ih (𝐶 · 𝐴)) = ((∗‘𝐶) · (𝐴 ·ih 𝐴)))
801, 2, 2, 79mp3an 1459 . . . . . . . . . . . . . . 15 (𝐴 ·ih (𝐶 · 𝐴)) = ((∗‘𝐶) · (𝐴 ·ih 𝐴))
8180oveq1i 7265 . . . . . . . . . . . . . 14 ((𝐴 ·ih (𝐶 · 𝐴)) + (𝐴 ·ih 𝐵)) = (((∗‘𝐶) · (𝐴 ·ih 𝐴)) + (𝐴 ·ih 𝐵))
8278, 81eqtri 2766 . . . . . . . . . . . . 13 (𝐴 ·ih ((𝐶 · 𝐴) + 𝐵)) = (((∗‘𝐶) · (𝐴 ·ih 𝐴)) + (𝐴 ·ih 𝐵))
8382oveq2i 7266 . . . . . . . . . . . 12 (𝐶 · (𝐴 ·ih ((𝐶 · 𝐴) + 𝐵))) = (𝐶 · (((∗‘𝐶) · (𝐴 ·ih 𝐴)) + (𝐴 ·ih 𝐵)))
841, 59, 14adddii 10918 . . . . . . . . . . . 12 (𝐶 · (((∗‘𝐶) · (𝐴 ·ih 𝐴)) + (𝐴 ·ih 𝐵))) = ((𝐶 · ((∗‘𝐶) · (𝐴 ·ih 𝐴))) + (𝐶 · (𝐴 ·ih 𝐵)))
8576, 83, 843eqtri 2770 . . . . . . . . . . 11 ((𝐶 · 𝐴) ·ih ((𝐶 · 𝐴) + 𝐵)) = ((𝐶 · ((∗‘𝐶) · (𝐴 ·ih 𝐴))) + (𝐶 · (𝐴 ·ih 𝐵)))
86 his7 29353 . . . . . . . . . . . . 13 ((𝐵 ∈ ℋ ∧ (𝐶 · 𝐴) ∈ ℋ ∧ 𝐵 ∈ ℋ) → (𝐵 ·ih ((𝐶 · 𝐴) + 𝐵)) = ((𝐵 ·ih (𝐶 · 𝐴)) + (𝐵 ·ih 𝐵)))
877, 64, 7, 86mp3an 1459 . . . . . . . . . . . 12 (𝐵 ·ih ((𝐶 · 𝐴) + 𝐵)) = ((𝐵 ·ih (𝐶 · 𝐴)) + (𝐵 ·ih 𝐵))
88 his5 29349 . . . . . . . . . . . . . . 15 ((𝐶 ∈ ℂ ∧ 𝐵 ∈ ℋ ∧ 𝐴 ∈ ℋ) → (𝐵 ·ih (𝐶 · 𝐴)) = ((∗‘𝐶) · (𝐵 ·ih 𝐴)))
891, 7, 2, 88mp3an 1459 . . . . . . . . . . . . . 14 (𝐵 ·ih (𝐶 · 𝐴)) = ((∗‘𝐶) · (𝐵 ·ih 𝐴))
901, 14cjmuli 14828 . . . . . . . . . . . . . . 15 (∗‘(𝐶 · (𝐴 ·ih 𝐵))) = ((∗‘𝐶) · (∗‘(𝐴 ·ih 𝐵)))
917, 2his1i 29363 . . . . . . . . . . . . . . . 16 (𝐵 ·ih 𝐴) = (∗‘(𝐴 ·ih 𝐵))
9291oveq2i 7266 . . . . . . . . . . . . . . 15 ((∗‘𝐶) · (𝐵 ·ih 𝐴)) = ((∗‘𝐶) · (∗‘(𝐴 ·ih 𝐵)))
9390, 92eqtr4i 2769 . . . . . . . . . . . . . 14 (∗‘(𝐶 · (𝐴 ·ih 𝐵))) = ((∗‘𝐶) · (𝐵 ·ih 𝐴))
9489, 93eqtr4i 2769 . . . . . . . . . . . . 13 (𝐵 ·ih (𝐶 · 𝐴)) = (∗‘(𝐶 · (𝐴 ·ih 𝐵)))
9594oveq1i 7265 . . . . . . . . . . . 12 ((𝐵 ·ih (𝐶 · 𝐴)) + (𝐵 ·ih 𝐵)) = ((∗‘(𝐶 · (𝐴 ·ih 𝐵))) + (𝐵 ·ih 𝐵))
9687, 95eqtri 2766 . . . . . . . . . . 11 (𝐵 ·ih ((𝐶 · 𝐴) + 𝐵)) = ((∗‘(𝐶 · (𝐴 ·ih 𝐵))) + (𝐵 ·ih 𝐵))
9785, 96oveq12i 7267 . . . . . . . . . 10 (((𝐶 · 𝐴) ·ih ((𝐶 · 𝐴) + 𝐵)) + (𝐵 ·ih ((𝐶 · 𝐴) + 𝐵))) = (((𝐶 · ((∗‘𝐶) · (𝐴 ·ih 𝐴))) + (𝐶 · (𝐴 ·ih 𝐵))) + ((∗‘(𝐶 · (𝐴 ·ih 𝐵))) + (𝐵 ·ih 𝐵)))
9872, 74, 973eqtrri 2771 . . . . . . . . 9 (((𝐶 · ((∗‘𝐶) · (𝐴 ·ih 𝐴))) + (𝐶 · (𝐴 ·ih 𝐵))) + ((∗‘(𝐶 · (𝐴 ·ih 𝐵))) + (𝐵 ·ih 𝐵))) = ((𝑇‘((𝐶 · 𝐴) + 𝐵)) ·ih (𝑇‘((𝐶 · 𝐴) + 𝐵)))
993lnopli 30231 . . . . . . . . . . . 12 ((𝐶 ∈ ℂ ∧ 𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ) → (𝑇‘((𝐶 · 𝐴) + 𝐵)) = ((𝐶 · (𝑇𝐴)) + (𝑇𝐵)))
1001, 2, 7, 99mp3an 1459 . . . . . . . . . . 11 (𝑇‘((𝐶 · 𝐴) + 𝐵)) = ((𝐶 · (𝑇𝐴)) + (𝑇𝐵))
101100, 100oveq12i 7267 . . . . . . . . . 10 ((𝑇‘((𝐶 · 𝐴) + 𝐵)) ·ih (𝑇‘((𝐶 · 𝐴) + 𝐵))) = (((𝐶 · (𝑇𝐴)) + (𝑇𝐵)) ·ih ((𝐶 · (𝑇𝐴)) + (𝑇𝐵)))
1021, 6hvmulcli 29277 . . . . . . . . . . 11 (𝐶 · (𝑇𝐴)) ∈ ℋ
103102, 9hvaddcli 29281 . . . . . . . . . . 11 ((𝐶 · (𝑇𝐴)) + (𝑇𝐵)) ∈ ℋ
104 ax-his2 29346 . . . . . . . . . . 11 (((𝐶 · (𝑇𝐴)) ∈ ℋ ∧ (𝑇𝐵) ∈ ℋ ∧ ((𝐶 · (𝑇𝐴)) + (𝑇𝐵)) ∈ ℋ) → (((𝐶 · (𝑇𝐴)) + (𝑇𝐵)) ·ih ((𝐶 · (𝑇𝐴)) + (𝑇𝐵))) = (((𝐶 · (𝑇𝐴)) ·ih ((𝐶 · (𝑇𝐴)) + (𝑇𝐵))) + ((𝑇𝐵) ·ih ((𝐶 · (𝑇𝐴)) + (𝑇𝐵)))))
105102, 9, 103, 104mp3an 1459 . . . . . . . . . 10 (((𝐶 · (𝑇𝐴)) + (𝑇𝐵)) ·ih ((𝐶 · (𝑇𝐴)) + (𝑇𝐵))) = (((𝐶 · (𝑇𝐴)) ·ih ((𝐶 · (𝑇𝐴)) + (𝑇𝐵))) + ((𝑇𝐵) ·ih ((𝐶 · (𝑇𝐴)) + (𝑇𝐵))))
106101, 105eqtri 2766 . . . . . . . . 9 ((𝑇‘((𝐶 · 𝐴) + 𝐵)) ·ih (𝑇‘((𝐶 · 𝐴) + 𝐵))) = (((𝐶 · (𝑇𝐴)) ·ih ((𝐶 · (𝑇𝐴)) + (𝑇𝐵))) + ((𝑇𝐵) ·ih ((𝐶 · (𝑇𝐴)) + (𝑇𝐵))))
107 ax-his3 29347 . . . . . . . . . . . 12 ((𝐶 ∈ ℂ ∧ (𝑇𝐴) ∈ ℋ ∧ ((𝐶 · (𝑇𝐴)) + (𝑇𝐵)) ∈ ℋ) → ((𝐶 · (𝑇𝐴)) ·ih ((𝐶 · (𝑇𝐴)) + (𝑇𝐵))) = (𝐶 · ((𝑇𝐴) ·ih ((𝐶 · (𝑇𝐴)) + (𝑇𝐵)))))
1081, 6, 103, 107mp3an 1459 . . . . . . . . . . 11 ((𝐶 · (𝑇𝐴)) ·ih ((𝐶 · (𝑇𝐴)) + (𝑇𝐵))) = (𝐶 · ((𝑇𝐴) ·ih ((𝐶 · (𝑇𝐴)) + (𝑇𝐵))))
109 his7 29353 . . . . . . . . . . . . . 14 (((𝑇𝐴) ∈ ℋ ∧ (𝐶 · (𝑇𝐴)) ∈ ℋ ∧ (𝑇𝐵) ∈ ℋ) → ((𝑇𝐴) ·ih ((𝐶 · (𝑇𝐴)) + (𝑇𝐵))) = (((𝑇𝐴) ·ih (𝐶 · (𝑇𝐴))) + ((𝑇𝐴) ·ih (𝑇𝐵))))
1106, 102, 9, 109mp3an 1459 . . . . . . . . . . . . 13 ((𝑇𝐴) ·ih ((𝐶 · (𝑇𝐴)) + (𝑇𝐵))) = (((𝑇𝐴) ·ih (𝐶 · (𝑇𝐴))) + ((𝑇𝐴) ·ih (𝑇𝐵)))
111 his5 29349 . . . . . . . . . . . . . . 15 ((𝐶 ∈ ℂ ∧ (𝑇𝐴) ∈ ℋ ∧ (𝑇𝐴) ∈ ℋ) → ((𝑇𝐴) ·ih (𝐶 · (𝑇𝐴))) = ((∗‘𝐶) · ((𝑇𝐴) ·ih (𝑇𝐴))))
1121, 6, 6, 111mp3an 1459 . . . . . . . . . . . . . 14 ((𝑇𝐴) ·ih (𝐶 · (𝑇𝐴))) = ((∗‘𝐶) · ((𝑇𝐴) ·ih (𝑇𝐴)))
113112oveq1i 7265 . . . . . . . . . . . . 13 (((𝑇𝐴) ·ih (𝐶 · (𝑇𝐴))) + ((𝑇𝐴) ·ih (𝑇𝐵))) = (((∗‘𝐶) · ((𝑇𝐴) ·ih (𝑇𝐴))) + ((𝑇𝐴) ·ih (𝑇𝐵)))
114110, 113eqtri 2766 . . . . . . . . . . . 12 ((𝑇𝐴) ·ih ((𝐶 · (𝑇𝐴)) + (𝑇𝐵))) = (((∗‘𝐶) · ((𝑇𝐴) ·ih (𝑇𝐴))) + ((𝑇𝐴) ·ih (𝑇𝐵)))
115114oveq2i 7266 . . . . . . . . . . 11 (𝐶 · ((𝑇𝐴) ·ih ((𝐶 · (𝑇𝐴)) + (𝑇𝐵)))) = (𝐶 · (((∗‘𝐶) · ((𝑇𝐴) ·ih (𝑇𝐴))) + ((𝑇𝐴) ·ih (𝑇𝐵))))
1161, 53, 10adddii 10918 . . . . . . . . . . 11 (𝐶 · (((∗‘𝐶) · ((𝑇𝐴) ·ih (𝑇𝐴))) + ((𝑇𝐴) ·ih (𝑇𝐵)))) = ((𝐶 · ((∗‘𝐶) · ((𝑇𝐴) ·ih (𝑇𝐴)))) + (𝐶 · ((𝑇𝐴) ·ih (𝑇𝐵))))
117108, 115, 1163eqtri 2770 . . . . . . . . . 10 ((𝐶 · (𝑇𝐴)) ·ih ((𝐶 · (𝑇𝐴)) + (𝑇𝐵))) = ((𝐶 · ((∗‘𝐶) · ((𝑇𝐴) ·ih (𝑇𝐴)))) + (𝐶 · ((𝑇𝐴) ·ih (𝑇𝐵))))
118 his7 29353 . . . . . . . . . . . 12 (((𝑇𝐵) ∈ ℋ ∧ (𝐶 · (𝑇𝐴)) ∈ ℋ ∧ (𝑇𝐵) ∈ ℋ) → ((𝑇𝐵) ·ih ((𝐶 · (𝑇𝐴)) + (𝑇𝐵))) = (((𝑇𝐵) ·ih (𝐶 · (𝑇𝐴))) + ((𝑇𝐵) ·ih (𝑇𝐵))))
1199, 102, 9, 118mp3an 1459 . . . . . . . . . . 11 ((𝑇𝐵) ·ih ((𝐶 · (𝑇𝐴)) + (𝑇𝐵))) = (((𝑇𝐵) ·ih (𝐶 · (𝑇𝐴))) + ((𝑇𝐵) ·ih (𝑇𝐵)))
120 his5 29349 . . . . . . . . . . . . . 14 ((𝐶 ∈ ℂ ∧ (𝑇𝐵) ∈ ℋ ∧ (𝑇𝐴) ∈ ℋ) → ((𝑇𝐵) ·ih (𝐶 · (𝑇𝐴))) = ((∗‘𝐶) · ((𝑇𝐵) ·ih (𝑇𝐴))))
1211, 9, 6, 120mp3an 1459 . . . . . . . . . . . . 13 ((𝑇𝐵) ·ih (𝐶 · (𝑇𝐴))) = ((∗‘𝐶) · ((𝑇𝐵) ·ih (𝑇𝐴)))
1221, 10cjmuli 14828 . . . . . . . . . . . . . 14 (∗‘(𝐶 · ((𝑇𝐴) ·ih (𝑇𝐵)))) = ((∗‘𝐶) · (∗‘((𝑇𝐴) ·ih (𝑇𝐵))))
1239, 6his1i 29363 . . . . . . . . . . . . . . 15 ((𝑇𝐵) ·ih (𝑇𝐴)) = (∗‘((𝑇𝐴) ·ih (𝑇𝐵)))
124123oveq2i 7266 . . . . . . . . . . . . . 14 ((∗‘𝐶) · ((𝑇𝐵) ·ih (𝑇𝐴))) = ((∗‘𝐶) · (∗‘((𝑇𝐴) ·ih (𝑇𝐵))))
125122, 124eqtr4i 2769 . . . . . . . . . . . . 13 (∗‘(𝐶 · ((𝑇𝐴) ·ih (𝑇𝐵)))) = ((∗‘𝐶) · ((𝑇𝐵) ·ih (𝑇𝐴)))
126121, 125eqtr4i 2769 . . . . . . . . . . . 12 ((𝑇𝐵) ·ih (𝐶 · (𝑇𝐴))) = (∗‘(𝐶 · ((𝑇𝐴) ·ih (𝑇𝐵))))
127126oveq1i 7265 . . . . . . . . . . 11 (((𝑇𝐵) ·ih (𝐶 · (𝑇𝐴))) + ((𝑇𝐵) ·ih (𝑇𝐵))) = ((∗‘(𝐶 · ((𝑇𝐴) ·ih (𝑇𝐵)))) + ((𝑇𝐵) ·ih (𝑇𝐵)))
128119, 127eqtri 2766 . . . . . . . . . 10 ((𝑇𝐵) ·ih ((𝐶 · (𝑇𝐴)) + (𝑇𝐵))) = ((∗‘(𝐶 · ((𝑇𝐴) ·ih (𝑇𝐵)))) + ((𝑇𝐵) ·ih (𝑇𝐵)))
129117, 128oveq12i 7267 . . . . . . . . 9 (((𝐶 · (𝑇𝐴)) ·ih ((𝐶 · (𝑇𝐴)) + (𝑇𝐵))) + ((𝑇𝐵) ·ih ((𝐶 · (𝑇𝐴)) + (𝑇𝐵)))) = (((𝐶 · ((∗‘𝐶) · ((𝑇𝐴) ·ih (𝑇𝐴)))) + (𝐶 · ((𝑇𝐴) ·ih (𝑇𝐵)))) + ((∗‘(𝐶 · ((𝑇𝐴) ·ih (𝑇𝐵)))) + ((𝑇𝐵) ·ih (𝑇𝐵))))
13098, 106, 1293eqtrri 2771 . . . . . . . 8 (((𝐶 · ((∗‘𝐶) · ((𝑇𝐴) ·ih (𝑇𝐴)))) + (𝐶 · ((𝑇𝐴) ·ih (𝑇𝐵)))) + ((∗‘(𝐶 · ((𝑇𝐴) ·ih (𝑇𝐵)))) + ((𝑇𝐵) ·ih (𝑇𝐵)))) = (((𝐶 · ((∗‘𝐶) · (𝐴 ·ih 𝐴))) + (𝐶 · (𝐴 ·ih 𝐵))) + ((∗‘(𝐶 · (𝐴 ·ih 𝐵))) + (𝐵 ·ih 𝐵)))
13163, 130eqtr4i 2769 . . . . . . 7 (((𝐶 · ((∗‘𝐶) · (𝐴 ·ih 𝐴))) + (𝐵 ·ih 𝐵)) + ((𝐶 · (𝐴 ·ih 𝐵)) + (∗‘(𝐶 · (𝐴 ·ih 𝐵))))) = (((𝐶 · ((∗‘𝐶) · ((𝑇𝐴) ·ih (𝑇𝐴)))) + (𝐶 · ((𝑇𝐴) ·ih (𝑇𝐵)))) + ((∗‘(𝐶 · ((𝑇𝐴) ·ih (𝑇𝐵)))) + ((𝑇𝐵) ·ih (𝑇𝐵))))
13257, 131eqtr4i 2769 . . . . . 6 (((𝐶 · ((∗‘𝐶) · ((𝑇𝐴) ·ih (𝑇𝐴)))) + ((𝑇𝐵) ·ih (𝑇𝐵))) + ((𝐶 · ((𝑇𝐴) ·ih (𝑇𝐵))) + (∗‘(𝐶 · ((𝑇𝐴) ·ih (𝑇𝐵)))))) = (((𝐶 · ((∗‘𝐶) · (𝐴 ·ih 𝐴))) + (𝐵 ·ih 𝐵)) + ((𝐶 · (𝐴 ·ih 𝐵)) + (∗‘(𝐶 · (𝐴 ·ih 𝐵)))))
13350, 132eqtr3i 2768 . . . . 5 (((𝐶 · ((∗‘𝐶) · (𝐴 ·ih 𝐴))) + (𝐵 ·ih 𝐵)) + ((𝐶 · ((𝑇𝐴) ·ih (𝑇𝐵))) + (∗‘(𝐶 · ((𝑇𝐴) ·ih (𝑇𝐵)))))) = (((𝐶 · ((∗‘𝐶) · (𝐴 ·ih 𝐴))) + (𝐵 ·ih 𝐵)) + ((𝐶 · (𝐴 ·ih 𝐵)) + (∗‘(𝐶 · (𝐴 ·ih 𝐵)))))
13460, 61addcli 10912 . . . . . 6 ((𝐶 · ((∗‘𝐶) · (𝐴 ·ih 𝐴))) + (𝐵 ·ih 𝐵)) ∈ ℂ
13511, 56addcli 10912 . . . . . 6 ((𝐶 · ((𝑇𝐴) ·ih (𝑇𝐵))) + (∗‘(𝐶 · ((𝑇𝐴) ·ih (𝑇𝐵))))) ∈ ℂ
13615, 62addcli 10912 . . . . . 6 ((𝐶 · (𝐴 ·ih 𝐵)) + (∗‘(𝐶 · (𝐴 ·ih 𝐵)))) ∈ ℂ
137134, 135, 136addcani 11098 . . . . 5 ((((𝐶 · ((∗‘𝐶) · (𝐴 ·ih 𝐴))) + (𝐵 ·ih 𝐵)) + ((𝐶 · ((𝑇𝐴) ·ih (𝑇𝐵))) + (∗‘(𝐶 · ((𝑇𝐴) ·ih (𝑇𝐵)))))) = (((𝐶 · ((∗‘𝐶) · (𝐴 ·ih 𝐴))) + (𝐵 ·ih 𝐵)) + ((𝐶 · (𝐴 ·ih 𝐵)) + (∗‘(𝐶 · (𝐴 ·ih 𝐵))))) ↔ ((𝐶 · ((𝑇𝐴) ·ih (𝑇𝐵))) + (∗‘(𝐶 · ((𝑇𝐴) ·ih (𝑇𝐵))))) = ((𝐶 · (𝐴 ·ih 𝐵)) + (∗‘(𝐶 · (𝐴 ·ih 𝐵)))))
138133, 137mpbi 229 . . . 4 ((𝐶 · ((𝑇𝐴) ·ih (𝑇𝐵))) + (∗‘(𝐶 · ((𝑇𝐴) ·ih (𝑇𝐵))))) = ((𝐶 · (𝐴 ·ih 𝐵)) + (∗‘(𝐶 · (𝐴 ·ih 𝐵))))
139138oveq1i 7265 . . 3 (((𝐶 · ((𝑇𝐴) ·ih (𝑇𝐵))) + (∗‘(𝐶 · ((𝑇𝐴) ·ih (𝑇𝐵))))) / 2) = (((𝐶 · (𝐴 ·ih 𝐵)) + (∗‘(𝐶 · (𝐴 ·ih 𝐵)))) / 2)
14017, 139eqtr4i 2769 . 2 (ℜ‘(𝐶 · (𝐴 ·ih 𝐵))) = (((𝐶 · ((𝑇𝐴) ·ih (𝑇𝐵))) + (∗‘(𝐶 · ((𝑇𝐴) ·ih (𝑇𝐵))))) / 2)
14113, 140eqtr4i 2769 1 (ℜ‘(𝐶 · ((𝑇𝐴) ·ih (𝑇𝐵)))) = (ℜ‘(𝐶 · (𝐴 ·ih 𝐵)))
Colors of variables: wff setvar class
Syntax hints:   = wceq 1539  wcel 2108  wral 3063  cfv 6418  (class class class)co 7255  cc 10800   + caddc 10805   · cmul 10807   / cdiv 11562  2c2 11958  cexp 13710  ccj 14735  cre 14736  chba 29182   + cva 29183   · csm 29184   ·ih csp 29185  normcno 29186  LinOpclo 29210
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566  ax-cnex 10858  ax-resscn 10859  ax-1cn 10860  ax-icn 10861  ax-addcl 10862  ax-addrcl 10863  ax-mulcl 10864  ax-mulrcl 10865  ax-mulcom 10866  ax-addass 10867  ax-mulass 10868  ax-distr 10869  ax-i2m1 10870  ax-1ne0 10871  ax-1rid 10872  ax-rnegex 10873  ax-rrecex 10874  ax-cnre 10875  ax-pre-lttri 10876  ax-pre-lttrn 10877  ax-pre-ltadd 10878  ax-pre-mulgt0 10879  ax-pre-sup 10880  ax-hilex 29262  ax-hfvadd 29263  ax-hv0cl 29266  ax-hfvmul 29268  ax-hvmul0 29273  ax-hfi 29342  ax-his1 29345  ax-his2 29346  ax-his3 29347  ax-his4 29348
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-nel 3049  df-ral 3068  df-rex 3069  df-reu 3070  df-rmo 3071  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-pss 3902  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-tp 4563  df-op 4565  df-uni 4837  df-iun 4923  df-br 5071  df-opab 5133  df-mpt 5154  df-tr 5188  df-id 5480  df-eprel 5486  df-po 5494  df-so 5495  df-fr 5535  df-we 5537  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-pred 6191  df-ord 6254  df-on 6255  df-lim 6256  df-suc 6257  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-riota 7212  df-ov 7258  df-oprab 7259  df-mpo 7260  df-om 7688  df-2nd 7805  df-frecs 8068  df-wrecs 8099  df-recs 8173  df-rdg 8212  df-er 8456  df-map 8575  df-en 8692  df-dom 8693  df-sdom 8694  df-sup 9131  df-pnf 10942  df-mnf 10943  df-xr 10944  df-ltxr 10945  df-le 10946  df-sub 11137  df-neg 11138  df-div 11563  df-nn 11904  df-2 11966  df-3 11967  df-n0 12164  df-z 12250  df-uz 12512  df-rp 12660  df-seq 13650  df-exp 13711  df-cj 14738  df-re 14739  df-im 14740  df-sqrt 14874  df-hnorm 29231  df-lnop 30104
This theorem is referenced by:  lnopunilem2  30274
  Copyright terms: Public domain W3C validator