HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  lnopunilem1 Structured version   Visualization version   GIF version

Theorem lnopunilem1 29568
Description: Lemma for lnopunii 29570. (Contributed by NM, 14-May-2005.) (New usage is discouraged.)
Hypotheses
Ref Expression
lnopunilem.1 𝑇 ∈ LinOp
lnopunilem.2 𝑥 ∈ ℋ (norm‘(𝑇𝑥)) = (norm𝑥)
lnopunilem.3 𝐴 ∈ ℋ
lnopunilem.4 𝐵 ∈ ℋ
lnopunilem1.5 𝐶 ∈ ℂ
Assertion
Ref Expression
lnopunilem1 (ℜ‘(𝐶 · ((𝑇𝐴) ·ih (𝑇𝐵)))) = (ℜ‘(𝐶 · (𝐴 ·ih 𝐵)))
Distinct variable group:   𝑥,𝑇
Allowed substitution hints:   𝐴(𝑥)   𝐵(𝑥)   𝐶(𝑥)

Proof of Theorem lnopunilem1
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 lnopunilem1.5 . . . 4 𝐶 ∈ ℂ
2 lnopunilem.3 . . . . . 6 𝐴 ∈ ℋ
3 lnopunilem.1 . . . . . . . 8 𝑇 ∈ LinOp
43lnopfi 29527 . . . . . . 7 𝑇: ℋ⟶ ℋ
54ffvelrni 6675 . . . . . 6 (𝐴 ∈ ℋ → (𝑇𝐴) ∈ ℋ)
62, 5ax-mp 5 . . . . 5 (𝑇𝐴) ∈ ℋ
7 lnopunilem.4 . . . . . 6 𝐵 ∈ ℋ
84ffvelrni 6675 . . . . . 6 (𝐵 ∈ ℋ → (𝑇𝐵) ∈ ℋ)
97, 8ax-mp 5 . . . . 5 (𝑇𝐵) ∈ ℋ
106, 9hicli 28637 . . . 4 ((𝑇𝐴) ·ih (𝑇𝐵)) ∈ ℂ
111, 10mulcli 10447 . . 3 (𝐶 · ((𝑇𝐴) ·ih (𝑇𝐵))) ∈ ℂ
12 reval 14326 . . 3 ((𝐶 · ((𝑇𝐴) ·ih (𝑇𝐵))) ∈ ℂ → (ℜ‘(𝐶 · ((𝑇𝐴) ·ih (𝑇𝐵)))) = (((𝐶 · ((𝑇𝐴) ·ih (𝑇𝐵))) + (∗‘(𝐶 · ((𝑇𝐴) ·ih (𝑇𝐵))))) / 2))
1311, 12ax-mp 5 . 2 (ℜ‘(𝐶 · ((𝑇𝐴) ·ih (𝑇𝐵)))) = (((𝐶 · ((𝑇𝐴) ·ih (𝑇𝐵))) + (∗‘(𝐶 · ((𝑇𝐴) ·ih (𝑇𝐵))))) / 2)
142, 7hicli 28637 . . . . 5 (𝐴 ·ih 𝐵) ∈ ℂ
151, 14mulcli 10447 . . . 4 (𝐶 · (𝐴 ·ih 𝐵)) ∈ ℂ
16 reval 14326 . . . 4 ((𝐶 · (𝐴 ·ih 𝐵)) ∈ ℂ → (ℜ‘(𝐶 · (𝐴 ·ih 𝐵))) = (((𝐶 · (𝐴 ·ih 𝐵)) + (∗‘(𝐶 · (𝐴 ·ih 𝐵)))) / 2))
1715, 16ax-mp 5 . . 3 (ℜ‘(𝐶 · (𝐴 ·ih 𝐵))) = (((𝐶 · (𝐴 ·ih 𝐵)) + (∗‘(𝐶 · (𝐴 ·ih 𝐵)))) / 2)
18 lnopunilem.2 . . . . . . . . . . . . 13 𝑥 ∈ ℋ (norm‘(𝑇𝑥)) = (norm𝑥)
19 2fveq3 6504 . . . . . . . . . . . . . . 15 (𝑥 = 𝑦 → (norm‘(𝑇𝑥)) = (norm‘(𝑇𝑦)))
20 fveq2 6499 . . . . . . . . . . . . . . 15 (𝑥 = 𝑦 → (norm𝑥) = (norm𝑦))
2119, 20eqeq12d 2793 . . . . . . . . . . . . . 14 (𝑥 = 𝑦 → ((norm‘(𝑇𝑥)) = (norm𝑥) ↔ (norm‘(𝑇𝑦)) = (norm𝑦)))
2221cbvralv 3383 . . . . . . . . . . . . 13 (∀𝑥 ∈ ℋ (norm‘(𝑇𝑥)) = (norm𝑥) ↔ ∀𝑦 ∈ ℋ (norm‘(𝑇𝑦)) = (norm𝑦))
2318, 22mpbi 222 . . . . . . . . . . . 12 𝑦 ∈ ℋ (norm‘(𝑇𝑦)) = (norm𝑦)
24 oveq1 6983 . . . . . . . . . . . . . 14 ((norm‘(𝑇𝑦)) = (norm𝑦) → ((norm‘(𝑇𝑦))↑2) = ((norm𝑦)↑2))
254ffvelrni 6675 . . . . . . . . . . . . . . . 16 (𝑦 ∈ ℋ → (𝑇𝑦) ∈ ℋ)
26 normsq 28690 . . . . . . . . . . . . . . . 16 ((𝑇𝑦) ∈ ℋ → ((norm‘(𝑇𝑦))↑2) = ((𝑇𝑦) ·ih (𝑇𝑦)))
2725, 26syl 17 . . . . . . . . . . . . . . 15 (𝑦 ∈ ℋ → ((norm‘(𝑇𝑦))↑2) = ((𝑇𝑦) ·ih (𝑇𝑦)))
28 normsq 28690 . . . . . . . . . . . . . . 15 (𝑦 ∈ ℋ → ((norm𝑦)↑2) = (𝑦 ·ih 𝑦))
2927, 28eqeq12d 2793 . . . . . . . . . . . . . 14 (𝑦 ∈ ℋ → (((norm‘(𝑇𝑦))↑2) = ((norm𝑦)↑2) ↔ ((𝑇𝑦) ·ih (𝑇𝑦)) = (𝑦 ·ih 𝑦)))
3024, 29syl5ib 236 . . . . . . . . . . . . 13 (𝑦 ∈ ℋ → ((norm‘(𝑇𝑦)) = (norm𝑦) → ((𝑇𝑦) ·ih (𝑇𝑦)) = (𝑦 ·ih 𝑦)))
3130ralimia 3108 . . . . . . . . . . . 12 (∀𝑦 ∈ ℋ (norm‘(𝑇𝑦)) = (norm𝑦) → ∀𝑦 ∈ ℋ ((𝑇𝑦) ·ih (𝑇𝑦)) = (𝑦 ·ih 𝑦))
3223, 31ax-mp 5 . . . . . . . . . . 11 𝑦 ∈ ℋ ((𝑇𝑦) ·ih (𝑇𝑦)) = (𝑦 ·ih 𝑦)
33 fveq2 6499 . . . . . . . . . . . . . 14 (𝑦 = 𝐴 → (𝑇𝑦) = (𝑇𝐴))
3433, 33oveq12d 6994 . . . . . . . . . . . . 13 (𝑦 = 𝐴 → ((𝑇𝑦) ·ih (𝑇𝑦)) = ((𝑇𝐴) ·ih (𝑇𝐴)))
35 id 22 . . . . . . . . . . . . . 14 (𝑦 = 𝐴𝑦 = 𝐴)
3635, 35oveq12d 6994 . . . . . . . . . . . . 13 (𝑦 = 𝐴 → (𝑦 ·ih 𝑦) = (𝐴 ·ih 𝐴))
3734, 36eqeq12d 2793 . . . . . . . . . . . 12 (𝑦 = 𝐴 → (((𝑇𝑦) ·ih (𝑇𝑦)) = (𝑦 ·ih 𝑦) ↔ ((𝑇𝐴) ·ih (𝑇𝐴)) = (𝐴 ·ih 𝐴)))
3837rspcv 3531 . . . . . . . . . . 11 (𝐴 ∈ ℋ → (∀𝑦 ∈ ℋ ((𝑇𝑦) ·ih (𝑇𝑦)) = (𝑦 ·ih 𝑦) → ((𝑇𝐴) ·ih (𝑇𝐴)) = (𝐴 ·ih 𝐴)))
392, 32, 38mp2 9 . . . . . . . . . 10 ((𝑇𝐴) ·ih (𝑇𝐴)) = (𝐴 ·ih 𝐴)
4039oveq2i 6987 . . . . . . . . 9 ((∗‘𝐶) · ((𝑇𝐴) ·ih (𝑇𝐴))) = ((∗‘𝐶) · (𝐴 ·ih 𝐴))
4140oveq2i 6987 . . . . . . . 8 (𝐶 · ((∗‘𝐶) · ((𝑇𝐴) ·ih (𝑇𝐴)))) = (𝐶 · ((∗‘𝐶) · (𝐴 ·ih 𝐴)))
42 fveq2 6499 . . . . . . . . . . . 12 (𝑦 = 𝐵 → (𝑇𝑦) = (𝑇𝐵))
4342, 42oveq12d 6994 . . . . . . . . . . 11 (𝑦 = 𝐵 → ((𝑇𝑦) ·ih (𝑇𝑦)) = ((𝑇𝐵) ·ih (𝑇𝐵)))
44 id 22 . . . . . . . . . . . 12 (𝑦 = 𝐵𝑦 = 𝐵)
4544, 44oveq12d 6994 . . . . . . . . . . 11 (𝑦 = 𝐵 → (𝑦 ·ih 𝑦) = (𝐵 ·ih 𝐵))
4643, 45eqeq12d 2793 . . . . . . . . . 10 (𝑦 = 𝐵 → (((𝑇𝑦) ·ih (𝑇𝑦)) = (𝑦 ·ih 𝑦) ↔ ((𝑇𝐵) ·ih (𝑇𝐵)) = (𝐵 ·ih 𝐵)))
4746rspcv 3531 . . . . . . . . 9 (𝐵 ∈ ℋ → (∀𝑦 ∈ ℋ ((𝑇𝑦) ·ih (𝑇𝑦)) = (𝑦 ·ih 𝑦) → ((𝑇𝐵) ·ih (𝑇𝐵)) = (𝐵 ·ih 𝐵)))
487, 32, 47mp2 9 . . . . . . . 8 ((𝑇𝐵) ·ih (𝑇𝐵)) = (𝐵 ·ih 𝐵)
4941, 48oveq12i 6988 . . . . . . 7 ((𝐶 · ((∗‘𝐶) · ((𝑇𝐴) ·ih (𝑇𝐴)))) + ((𝑇𝐵) ·ih (𝑇𝐵))) = ((𝐶 · ((∗‘𝐶) · (𝐴 ·ih 𝐴))) + (𝐵 ·ih 𝐵))
5049oveq1i 6986 . . . . . 6 (((𝐶 · ((∗‘𝐶) · ((𝑇𝐴) ·ih (𝑇𝐴)))) + ((𝑇𝐵) ·ih (𝑇𝐵))) + ((𝐶 · ((𝑇𝐴) ·ih (𝑇𝐵))) + (∗‘(𝐶 · ((𝑇𝐴) ·ih (𝑇𝐵)))))) = (((𝐶 · ((∗‘𝐶) · (𝐴 ·ih 𝐴))) + (𝐵 ·ih 𝐵)) + ((𝐶 · ((𝑇𝐴) ·ih (𝑇𝐵))) + (∗‘(𝐶 · ((𝑇𝐴) ·ih (𝑇𝐵))))))
511cjcli 14389 . . . . . . . . . 10 (∗‘𝐶) ∈ ℂ
526, 6hicli 28637 . . . . . . . . . 10 ((𝑇𝐴) ·ih (𝑇𝐴)) ∈ ℂ
5351, 52mulcli 10447 . . . . . . . . 9 ((∗‘𝐶) · ((𝑇𝐴) ·ih (𝑇𝐴))) ∈ ℂ
541, 53mulcli 10447 . . . . . . . 8 (𝐶 · ((∗‘𝐶) · ((𝑇𝐴) ·ih (𝑇𝐴)))) ∈ ℂ
559, 9hicli 28637 . . . . . . . 8 ((𝑇𝐵) ·ih (𝑇𝐵)) ∈ ℂ
5611cjcli 14389 . . . . . . . 8 (∗‘(𝐶 · ((𝑇𝐴) ·ih (𝑇𝐵)))) ∈ ℂ
5754, 55, 11, 56add42i 10665 . . . . . . 7 (((𝐶 · ((∗‘𝐶) · ((𝑇𝐴) ·ih (𝑇𝐴)))) + ((𝑇𝐵) ·ih (𝑇𝐵))) + ((𝐶 · ((𝑇𝐴) ·ih (𝑇𝐵))) + (∗‘(𝐶 · ((𝑇𝐴) ·ih (𝑇𝐵)))))) = (((𝐶 · ((∗‘𝐶) · ((𝑇𝐴) ·ih (𝑇𝐴)))) + (𝐶 · ((𝑇𝐴) ·ih (𝑇𝐵)))) + ((∗‘(𝐶 · ((𝑇𝐴) ·ih (𝑇𝐵)))) + ((𝑇𝐵) ·ih (𝑇𝐵))))
582, 2hicli 28637 . . . . . . . . . . 11 (𝐴 ·ih 𝐴) ∈ ℂ
5951, 58mulcli 10447 . . . . . . . . . 10 ((∗‘𝐶) · (𝐴 ·ih 𝐴)) ∈ ℂ
601, 59mulcli 10447 . . . . . . . . 9 (𝐶 · ((∗‘𝐶) · (𝐴 ·ih 𝐴))) ∈ ℂ
617, 7hicli 28637 . . . . . . . . 9 (𝐵 ·ih 𝐵) ∈ ℂ
6215cjcli 14389 . . . . . . . . 9 (∗‘(𝐶 · (𝐴 ·ih 𝐵))) ∈ ℂ
6360, 61, 15, 62add42i 10665 . . . . . . . 8 (((𝐶 · ((∗‘𝐶) · (𝐴 ·ih 𝐴))) + (𝐵 ·ih 𝐵)) + ((𝐶 · (𝐴 ·ih 𝐵)) + (∗‘(𝐶 · (𝐴 ·ih 𝐵))))) = (((𝐶 · ((∗‘𝐶) · (𝐴 ·ih 𝐴))) + (𝐶 · (𝐴 ·ih 𝐵))) + ((∗‘(𝐶 · (𝐴 ·ih 𝐵))) + (𝐵 ·ih 𝐵)))
641, 2hvmulcli 28570 . . . . . . . . . . . 12 (𝐶 · 𝐴) ∈ ℋ
6564, 7hvaddcli 28574 . . . . . . . . . . 11 ((𝐶 · 𝐴) + 𝐵) ∈ ℋ
66 fveq2 6499 . . . . . . . . . . . . . 14 (𝑦 = ((𝐶 · 𝐴) + 𝐵) → (𝑇𝑦) = (𝑇‘((𝐶 · 𝐴) + 𝐵)))
6766, 66oveq12d 6994 . . . . . . . . . . . . 13 (𝑦 = ((𝐶 · 𝐴) + 𝐵) → ((𝑇𝑦) ·ih (𝑇𝑦)) = ((𝑇‘((𝐶 · 𝐴) + 𝐵)) ·ih (𝑇‘((𝐶 · 𝐴) + 𝐵))))
68 id 22 . . . . . . . . . . . . . 14 (𝑦 = ((𝐶 · 𝐴) + 𝐵) → 𝑦 = ((𝐶 · 𝐴) + 𝐵))
6968, 68oveq12d 6994 . . . . . . . . . . . . 13 (𝑦 = ((𝐶 · 𝐴) + 𝐵) → (𝑦 ·ih 𝑦) = (((𝐶 · 𝐴) + 𝐵) ·ih ((𝐶 · 𝐴) + 𝐵)))
7067, 69eqeq12d 2793 . . . . . . . . . . . 12 (𝑦 = ((𝐶 · 𝐴) + 𝐵) → (((𝑇𝑦) ·ih (𝑇𝑦)) = (𝑦 ·ih 𝑦) ↔ ((𝑇‘((𝐶 · 𝐴) + 𝐵)) ·ih (𝑇‘((𝐶 · 𝐴) + 𝐵))) = (((𝐶 · 𝐴) + 𝐵) ·ih ((𝐶 · 𝐴) + 𝐵))))
7170rspcv 3531 . . . . . . . . . . 11 (((𝐶 · 𝐴) + 𝐵) ∈ ℋ → (∀𝑦 ∈ ℋ ((𝑇𝑦) ·ih (𝑇𝑦)) = (𝑦 ·ih 𝑦) → ((𝑇‘((𝐶 · 𝐴) + 𝐵)) ·ih (𝑇‘((𝐶 · 𝐴) + 𝐵))) = (((𝐶 · 𝐴) + 𝐵) ·ih ((𝐶 · 𝐴) + 𝐵))))
7265, 32, 71mp2 9 . . . . . . . . . 10 ((𝑇‘((𝐶 · 𝐴) + 𝐵)) ·ih (𝑇‘((𝐶 · 𝐴) + 𝐵))) = (((𝐶 · 𝐴) + 𝐵) ·ih ((𝐶 · 𝐴) + 𝐵))
73 ax-his2 28639 . . . . . . . . . . 11 (((𝐶 · 𝐴) ∈ ℋ ∧ 𝐵 ∈ ℋ ∧ ((𝐶 · 𝐴) + 𝐵) ∈ ℋ) → (((𝐶 · 𝐴) + 𝐵) ·ih ((𝐶 · 𝐴) + 𝐵)) = (((𝐶 · 𝐴) ·ih ((𝐶 · 𝐴) + 𝐵)) + (𝐵 ·ih ((𝐶 · 𝐴) + 𝐵))))
7464, 7, 65, 73mp3an 1440 . . . . . . . . . 10 (((𝐶 · 𝐴) + 𝐵) ·ih ((𝐶 · 𝐴) + 𝐵)) = (((𝐶 · 𝐴) ·ih ((𝐶 · 𝐴) + 𝐵)) + (𝐵 ·ih ((𝐶 · 𝐴) + 𝐵)))
75 ax-his3 28640 . . . . . . . . . . . . 13 ((𝐶 ∈ ℂ ∧ 𝐴 ∈ ℋ ∧ ((𝐶 · 𝐴) + 𝐵) ∈ ℋ) → ((𝐶 · 𝐴) ·ih ((𝐶 · 𝐴) + 𝐵)) = (𝐶 · (𝐴 ·ih ((𝐶 · 𝐴) + 𝐵))))
761, 2, 65, 75mp3an 1440 . . . . . . . . . . . 12 ((𝐶 · 𝐴) ·ih ((𝐶 · 𝐴) + 𝐵)) = (𝐶 · (𝐴 ·ih ((𝐶 · 𝐴) + 𝐵)))
77 his7 28646 . . . . . . . . . . . . . . 15 ((𝐴 ∈ ℋ ∧ (𝐶 · 𝐴) ∈ ℋ ∧ 𝐵 ∈ ℋ) → (𝐴 ·ih ((𝐶 · 𝐴) + 𝐵)) = ((𝐴 ·ih (𝐶 · 𝐴)) + (𝐴 ·ih 𝐵)))
782, 64, 7, 77mp3an 1440 . . . . . . . . . . . . . 14 (𝐴 ·ih ((𝐶 · 𝐴) + 𝐵)) = ((𝐴 ·ih (𝐶 · 𝐴)) + (𝐴 ·ih 𝐵))
79 his5 28642 . . . . . . . . . . . . . . . 16 ((𝐶 ∈ ℂ ∧ 𝐴 ∈ ℋ ∧ 𝐴 ∈ ℋ) → (𝐴 ·ih (𝐶 · 𝐴)) = ((∗‘𝐶) · (𝐴 ·ih 𝐴)))
801, 2, 2, 79mp3an 1440 . . . . . . . . . . . . . . 15 (𝐴 ·ih (𝐶 · 𝐴)) = ((∗‘𝐶) · (𝐴 ·ih 𝐴))
8180oveq1i 6986 . . . . . . . . . . . . . 14 ((𝐴 ·ih (𝐶 · 𝐴)) + (𝐴 ·ih 𝐵)) = (((∗‘𝐶) · (𝐴 ·ih 𝐴)) + (𝐴 ·ih 𝐵))
8278, 81eqtri 2802 . . . . . . . . . . . . 13 (𝐴 ·ih ((𝐶 · 𝐴) + 𝐵)) = (((∗‘𝐶) · (𝐴 ·ih 𝐴)) + (𝐴 ·ih 𝐵))
8382oveq2i 6987 . . . . . . . . . . . 12 (𝐶 · (𝐴 ·ih ((𝐶 · 𝐴) + 𝐵))) = (𝐶 · (((∗‘𝐶) · (𝐴 ·ih 𝐴)) + (𝐴 ·ih 𝐵)))
841, 59, 14adddii 10452 . . . . . . . . . . . 12 (𝐶 · (((∗‘𝐶) · (𝐴 ·ih 𝐴)) + (𝐴 ·ih 𝐵))) = ((𝐶 · ((∗‘𝐶) · (𝐴 ·ih 𝐴))) + (𝐶 · (𝐴 ·ih 𝐵)))
8576, 83, 843eqtri 2806 . . . . . . . . . . 11 ((𝐶 · 𝐴) ·ih ((𝐶 · 𝐴) + 𝐵)) = ((𝐶 · ((∗‘𝐶) · (𝐴 ·ih 𝐴))) + (𝐶 · (𝐴 ·ih 𝐵)))
86 his7 28646 . . . . . . . . . . . . 13 ((𝐵 ∈ ℋ ∧ (𝐶 · 𝐴) ∈ ℋ ∧ 𝐵 ∈ ℋ) → (𝐵 ·ih ((𝐶 · 𝐴) + 𝐵)) = ((𝐵 ·ih (𝐶 · 𝐴)) + (𝐵 ·ih 𝐵)))
877, 64, 7, 86mp3an 1440 . . . . . . . . . . . 12 (𝐵 ·ih ((𝐶 · 𝐴) + 𝐵)) = ((𝐵 ·ih (𝐶 · 𝐴)) + (𝐵 ·ih 𝐵))
88 his5 28642 . . . . . . . . . . . . . . 15 ((𝐶 ∈ ℂ ∧ 𝐵 ∈ ℋ ∧ 𝐴 ∈ ℋ) → (𝐵 ·ih (𝐶 · 𝐴)) = ((∗‘𝐶) · (𝐵 ·ih 𝐴)))
891, 7, 2, 88mp3an 1440 . . . . . . . . . . . . . 14 (𝐵 ·ih (𝐶 · 𝐴)) = ((∗‘𝐶) · (𝐵 ·ih 𝐴))
901, 14cjmuli 14409 . . . . . . . . . . . . . . 15 (∗‘(𝐶 · (𝐴 ·ih 𝐵))) = ((∗‘𝐶) · (∗‘(𝐴 ·ih 𝐵)))
917, 2his1i 28656 . . . . . . . . . . . . . . . 16 (𝐵 ·ih 𝐴) = (∗‘(𝐴 ·ih 𝐵))
9291oveq2i 6987 . . . . . . . . . . . . . . 15 ((∗‘𝐶) · (𝐵 ·ih 𝐴)) = ((∗‘𝐶) · (∗‘(𝐴 ·ih 𝐵)))
9390, 92eqtr4i 2805 . . . . . . . . . . . . . 14 (∗‘(𝐶 · (𝐴 ·ih 𝐵))) = ((∗‘𝐶) · (𝐵 ·ih 𝐴))
9489, 93eqtr4i 2805 . . . . . . . . . . . . 13 (𝐵 ·ih (𝐶 · 𝐴)) = (∗‘(𝐶 · (𝐴 ·ih 𝐵)))
9594oveq1i 6986 . . . . . . . . . . . 12 ((𝐵 ·ih (𝐶 · 𝐴)) + (𝐵 ·ih 𝐵)) = ((∗‘(𝐶 · (𝐴 ·ih 𝐵))) + (𝐵 ·ih 𝐵))
9687, 95eqtri 2802 . . . . . . . . . . 11 (𝐵 ·ih ((𝐶 · 𝐴) + 𝐵)) = ((∗‘(𝐶 · (𝐴 ·ih 𝐵))) + (𝐵 ·ih 𝐵))
9785, 96oveq12i 6988 . . . . . . . . . 10 (((𝐶 · 𝐴) ·ih ((𝐶 · 𝐴) + 𝐵)) + (𝐵 ·ih ((𝐶 · 𝐴) + 𝐵))) = (((𝐶 · ((∗‘𝐶) · (𝐴 ·ih 𝐴))) + (𝐶 · (𝐴 ·ih 𝐵))) + ((∗‘(𝐶 · (𝐴 ·ih 𝐵))) + (𝐵 ·ih 𝐵)))
9872, 74, 973eqtrri 2807 . . . . . . . . 9 (((𝐶 · ((∗‘𝐶) · (𝐴 ·ih 𝐴))) + (𝐶 · (𝐴 ·ih 𝐵))) + ((∗‘(𝐶 · (𝐴 ·ih 𝐵))) + (𝐵 ·ih 𝐵))) = ((𝑇‘((𝐶 · 𝐴) + 𝐵)) ·ih (𝑇‘((𝐶 · 𝐴) + 𝐵)))
993lnopli 29526 . . . . . . . . . . . 12 ((𝐶 ∈ ℂ ∧ 𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ) → (𝑇‘((𝐶 · 𝐴) + 𝐵)) = ((𝐶 · (𝑇𝐴)) + (𝑇𝐵)))
1001, 2, 7, 99mp3an 1440 . . . . . . . . . . 11 (𝑇‘((𝐶 · 𝐴) + 𝐵)) = ((𝐶 · (𝑇𝐴)) + (𝑇𝐵))
101100, 100oveq12i 6988 . . . . . . . . . 10 ((𝑇‘((𝐶 · 𝐴) + 𝐵)) ·ih (𝑇‘((𝐶 · 𝐴) + 𝐵))) = (((𝐶 · (𝑇𝐴)) + (𝑇𝐵)) ·ih ((𝐶 · (𝑇𝐴)) + (𝑇𝐵)))
1021, 6hvmulcli 28570 . . . . . . . . . . 11 (𝐶 · (𝑇𝐴)) ∈ ℋ
103102, 9hvaddcli 28574 . . . . . . . . . . 11 ((𝐶 · (𝑇𝐴)) + (𝑇𝐵)) ∈ ℋ
104 ax-his2 28639 . . . . . . . . . . 11 (((𝐶 · (𝑇𝐴)) ∈ ℋ ∧ (𝑇𝐵) ∈ ℋ ∧ ((𝐶 · (𝑇𝐴)) + (𝑇𝐵)) ∈ ℋ) → (((𝐶 · (𝑇𝐴)) + (𝑇𝐵)) ·ih ((𝐶 · (𝑇𝐴)) + (𝑇𝐵))) = (((𝐶 · (𝑇𝐴)) ·ih ((𝐶 · (𝑇𝐴)) + (𝑇𝐵))) + ((𝑇𝐵) ·ih ((𝐶 · (𝑇𝐴)) + (𝑇𝐵)))))
105102, 9, 103, 104mp3an 1440 . . . . . . . . . 10 (((𝐶 · (𝑇𝐴)) + (𝑇𝐵)) ·ih ((𝐶 · (𝑇𝐴)) + (𝑇𝐵))) = (((𝐶 · (𝑇𝐴)) ·ih ((𝐶 · (𝑇𝐴)) + (𝑇𝐵))) + ((𝑇𝐵) ·ih ((𝐶 · (𝑇𝐴)) + (𝑇𝐵))))
106101, 105eqtri 2802 . . . . . . . . 9 ((𝑇‘((𝐶 · 𝐴) + 𝐵)) ·ih (𝑇‘((𝐶 · 𝐴) + 𝐵))) = (((𝐶 · (𝑇𝐴)) ·ih ((𝐶 · (𝑇𝐴)) + (𝑇𝐵))) + ((𝑇𝐵) ·ih ((𝐶 · (𝑇𝐴)) + (𝑇𝐵))))
107 ax-his3 28640 . . . . . . . . . . . 12 ((𝐶 ∈ ℂ ∧ (𝑇𝐴) ∈ ℋ ∧ ((𝐶 · (𝑇𝐴)) + (𝑇𝐵)) ∈ ℋ) → ((𝐶 · (𝑇𝐴)) ·ih ((𝐶 · (𝑇𝐴)) + (𝑇𝐵))) = (𝐶 · ((𝑇𝐴) ·ih ((𝐶 · (𝑇𝐴)) + (𝑇𝐵)))))
1081, 6, 103, 107mp3an 1440 . . . . . . . . . . 11 ((𝐶 · (𝑇𝐴)) ·ih ((𝐶 · (𝑇𝐴)) + (𝑇𝐵))) = (𝐶 · ((𝑇𝐴) ·ih ((𝐶 · (𝑇𝐴)) + (𝑇𝐵))))
109 his7 28646 . . . . . . . . . . . . . 14 (((𝑇𝐴) ∈ ℋ ∧ (𝐶 · (𝑇𝐴)) ∈ ℋ ∧ (𝑇𝐵) ∈ ℋ) → ((𝑇𝐴) ·ih ((𝐶 · (𝑇𝐴)) + (𝑇𝐵))) = (((𝑇𝐴) ·ih (𝐶 · (𝑇𝐴))) + ((𝑇𝐴) ·ih (𝑇𝐵))))
1106, 102, 9, 109mp3an 1440 . . . . . . . . . . . . 13 ((𝑇𝐴) ·ih ((𝐶 · (𝑇𝐴)) + (𝑇𝐵))) = (((𝑇𝐴) ·ih (𝐶 · (𝑇𝐴))) + ((𝑇𝐴) ·ih (𝑇𝐵)))
111 his5 28642 . . . . . . . . . . . . . . 15 ((𝐶 ∈ ℂ ∧ (𝑇𝐴) ∈ ℋ ∧ (𝑇𝐴) ∈ ℋ) → ((𝑇𝐴) ·ih (𝐶 · (𝑇𝐴))) = ((∗‘𝐶) · ((𝑇𝐴) ·ih (𝑇𝐴))))
1121, 6, 6, 111mp3an 1440 . . . . . . . . . . . . . 14 ((𝑇𝐴) ·ih (𝐶 · (𝑇𝐴))) = ((∗‘𝐶) · ((𝑇𝐴) ·ih (𝑇𝐴)))
113112oveq1i 6986 . . . . . . . . . . . . 13 (((𝑇𝐴) ·ih (𝐶 · (𝑇𝐴))) + ((𝑇𝐴) ·ih (𝑇𝐵))) = (((∗‘𝐶) · ((𝑇𝐴) ·ih (𝑇𝐴))) + ((𝑇𝐴) ·ih (𝑇𝐵)))
114110, 113eqtri 2802 . . . . . . . . . . . 12 ((𝑇𝐴) ·ih ((𝐶 · (𝑇𝐴)) + (𝑇𝐵))) = (((∗‘𝐶) · ((𝑇𝐴) ·ih (𝑇𝐴))) + ((𝑇𝐴) ·ih (𝑇𝐵)))
115114oveq2i 6987 . . . . . . . . . . 11 (𝐶 · ((𝑇𝐴) ·ih ((𝐶 · (𝑇𝐴)) + (𝑇𝐵)))) = (𝐶 · (((∗‘𝐶) · ((𝑇𝐴) ·ih (𝑇𝐴))) + ((𝑇𝐴) ·ih (𝑇𝐵))))
1161, 53, 10adddii 10452 . . . . . . . . . . 11 (𝐶 · (((∗‘𝐶) · ((𝑇𝐴) ·ih (𝑇𝐴))) + ((𝑇𝐴) ·ih (𝑇𝐵)))) = ((𝐶 · ((∗‘𝐶) · ((𝑇𝐴) ·ih (𝑇𝐴)))) + (𝐶 · ((𝑇𝐴) ·ih (𝑇𝐵))))
117108, 115, 1163eqtri 2806 . . . . . . . . . 10 ((𝐶 · (𝑇𝐴)) ·ih ((𝐶 · (𝑇𝐴)) + (𝑇𝐵))) = ((𝐶 · ((∗‘𝐶) · ((𝑇𝐴) ·ih (𝑇𝐴)))) + (𝐶 · ((𝑇𝐴) ·ih (𝑇𝐵))))
118 his7 28646 . . . . . . . . . . . 12 (((𝑇𝐵) ∈ ℋ ∧ (𝐶 · (𝑇𝐴)) ∈ ℋ ∧ (𝑇𝐵) ∈ ℋ) → ((𝑇𝐵) ·ih ((𝐶 · (𝑇𝐴)) + (𝑇𝐵))) = (((𝑇𝐵) ·ih (𝐶 · (𝑇𝐴))) + ((𝑇𝐵) ·ih (𝑇𝐵))))
1199, 102, 9, 118mp3an 1440 . . . . . . . . . . 11 ((𝑇𝐵) ·ih ((𝐶 · (𝑇𝐴)) + (𝑇𝐵))) = (((𝑇𝐵) ·ih (𝐶 · (𝑇𝐴))) + ((𝑇𝐵) ·ih (𝑇𝐵)))
120 his5 28642 . . . . . . . . . . . . . 14 ((𝐶 ∈ ℂ ∧ (𝑇𝐵) ∈ ℋ ∧ (𝑇𝐴) ∈ ℋ) → ((𝑇𝐵) ·ih (𝐶 · (𝑇𝐴))) = ((∗‘𝐶) · ((𝑇𝐵) ·ih (𝑇𝐴))))
1211, 9, 6, 120mp3an 1440 . . . . . . . . . . . . 13 ((𝑇𝐵) ·ih (𝐶 · (𝑇𝐴))) = ((∗‘𝐶) · ((𝑇𝐵) ·ih (𝑇𝐴)))
1221, 10cjmuli 14409 . . . . . . . . . . . . . 14 (∗‘(𝐶 · ((𝑇𝐴) ·ih (𝑇𝐵)))) = ((∗‘𝐶) · (∗‘((𝑇𝐴) ·ih (𝑇𝐵))))
1239, 6his1i 28656 . . . . . . . . . . . . . . 15 ((𝑇𝐵) ·ih (𝑇𝐴)) = (∗‘((𝑇𝐴) ·ih (𝑇𝐵)))
124123oveq2i 6987 . . . . . . . . . . . . . 14 ((∗‘𝐶) · ((𝑇𝐵) ·ih (𝑇𝐴))) = ((∗‘𝐶) · (∗‘((𝑇𝐴) ·ih (𝑇𝐵))))
125122, 124eqtr4i 2805 . . . . . . . . . . . . 13 (∗‘(𝐶 · ((𝑇𝐴) ·ih (𝑇𝐵)))) = ((∗‘𝐶) · ((𝑇𝐵) ·ih (𝑇𝐴)))
126121, 125eqtr4i 2805 . . . . . . . . . . . 12 ((𝑇𝐵) ·ih (𝐶 · (𝑇𝐴))) = (∗‘(𝐶 · ((𝑇𝐴) ·ih (𝑇𝐵))))
127126oveq1i 6986 . . . . . . . . . . 11 (((𝑇𝐵) ·ih (𝐶 · (𝑇𝐴))) + ((𝑇𝐵) ·ih (𝑇𝐵))) = ((∗‘(𝐶 · ((𝑇𝐴) ·ih (𝑇𝐵)))) + ((𝑇𝐵) ·ih (𝑇𝐵)))
128119, 127eqtri 2802 . . . . . . . . . 10 ((𝑇𝐵) ·ih ((𝐶 · (𝑇𝐴)) + (𝑇𝐵))) = ((∗‘(𝐶 · ((𝑇𝐴) ·ih (𝑇𝐵)))) + ((𝑇𝐵) ·ih (𝑇𝐵)))
129117, 128oveq12i 6988 . . . . . . . . 9 (((𝐶 · (𝑇𝐴)) ·ih ((𝐶 · (𝑇𝐴)) + (𝑇𝐵))) + ((𝑇𝐵) ·ih ((𝐶 · (𝑇𝐴)) + (𝑇𝐵)))) = (((𝐶 · ((∗‘𝐶) · ((𝑇𝐴) ·ih (𝑇𝐴)))) + (𝐶 · ((𝑇𝐴) ·ih (𝑇𝐵)))) + ((∗‘(𝐶 · ((𝑇𝐴) ·ih (𝑇𝐵)))) + ((𝑇𝐵) ·ih (𝑇𝐵))))
13098, 106, 1293eqtrri 2807 . . . . . . . 8 (((𝐶 · ((∗‘𝐶) · ((𝑇𝐴) ·ih (𝑇𝐴)))) + (𝐶 · ((𝑇𝐴) ·ih (𝑇𝐵)))) + ((∗‘(𝐶 · ((𝑇𝐴) ·ih (𝑇𝐵)))) + ((𝑇𝐵) ·ih (𝑇𝐵)))) = (((𝐶 · ((∗‘𝐶) · (𝐴 ·ih 𝐴))) + (𝐶 · (𝐴 ·ih 𝐵))) + ((∗‘(𝐶 · (𝐴 ·ih 𝐵))) + (𝐵 ·ih 𝐵)))
13163, 130eqtr4i 2805 . . . . . . 7 (((𝐶 · ((∗‘𝐶) · (𝐴 ·ih 𝐴))) + (𝐵 ·ih 𝐵)) + ((𝐶 · (𝐴 ·ih 𝐵)) + (∗‘(𝐶 · (𝐴 ·ih 𝐵))))) = (((𝐶 · ((∗‘𝐶) · ((𝑇𝐴) ·ih (𝑇𝐴)))) + (𝐶 · ((𝑇𝐴) ·ih (𝑇𝐵)))) + ((∗‘(𝐶 · ((𝑇𝐴) ·ih (𝑇𝐵)))) + ((𝑇𝐵) ·ih (𝑇𝐵))))
13257, 131eqtr4i 2805 . . . . . 6 (((𝐶 · ((∗‘𝐶) · ((𝑇𝐴) ·ih (𝑇𝐴)))) + ((𝑇𝐵) ·ih (𝑇𝐵))) + ((𝐶 · ((𝑇𝐴) ·ih (𝑇𝐵))) + (∗‘(𝐶 · ((𝑇𝐴) ·ih (𝑇𝐵)))))) = (((𝐶 · ((∗‘𝐶) · (𝐴 ·ih 𝐴))) + (𝐵 ·ih 𝐵)) + ((𝐶 · (𝐴 ·ih 𝐵)) + (∗‘(𝐶 · (𝐴 ·ih 𝐵)))))
13350, 132eqtr3i 2804 . . . . 5 (((𝐶 · ((∗‘𝐶) · (𝐴 ·ih 𝐴))) + (𝐵 ·ih 𝐵)) + ((𝐶 · ((𝑇𝐴) ·ih (𝑇𝐵))) + (∗‘(𝐶 · ((𝑇𝐴) ·ih (𝑇𝐵)))))) = (((𝐶 · ((∗‘𝐶) · (𝐴 ·ih 𝐴))) + (𝐵 ·ih 𝐵)) + ((𝐶 · (𝐴 ·ih 𝐵)) + (∗‘(𝐶 · (𝐴 ·ih 𝐵)))))
13460, 61addcli 10446 . . . . . 6 ((𝐶 · ((∗‘𝐶) · (𝐴 ·ih 𝐴))) + (𝐵 ·ih 𝐵)) ∈ ℂ
13511, 56addcli 10446 . . . . . 6 ((𝐶 · ((𝑇𝐴) ·ih (𝑇𝐵))) + (∗‘(𝐶 · ((𝑇𝐴) ·ih (𝑇𝐵))))) ∈ ℂ
13615, 62addcli 10446 . . . . . 6 ((𝐶 · (𝐴 ·ih 𝐵)) + (∗‘(𝐶 · (𝐴 ·ih 𝐵)))) ∈ ℂ
137134, 135, 136addcani 10633 . . . . 5 ((((𝐶 · ((∗‘𝐶) · (𝐴 ·ih 𝐴))) + (𝐵 ·ih 𝐵)) + ((𝐶 · ((𝑇𝐴) ·ih (𝑇𝐵))) + (∗‘(𝐶 · ((𝑇𝐴) ·ih (𝑇𝐵)))))) = (((𝐶 · ((∗‘𝐶) · (𝐴 ·ih 𝐴))) + (𝐵 ·ih 𝐵)) + ((𝐶 · (𝐴 ·ih 𝐵)) + (∗‘(𝐶 · (𝐴 ·ih 𝐵))))) ↔ ((𝐶 · ((𝑇𝐴) ·ih (𝑇𝐵))) + (∗‘(𝐶 · ((𝑇𝐴) ·ih (𝑇𝐵))))) = ((𝐶 · (𝐴 ·ih 𝐵)) + (∗‘(𝐶 · (𝐴 ·ih 𝐵)))))
138133, 137mpbi 222 . . . 4 ((𝐶 · ((𝑇𝐴) ·ih (𝑇𝐵))) + (∗‘(𝐶 · ((𝑇𝐴) ·ih (𝑇𝐵))))) = ((𝐶 · (𝐴 ·ih 𝐵)) + (∗‘(𝐶 · (𝐴 ·ih 𝐵))))
139138oveq1i 6986 . . 3 (((𝐶 · ((𝑇𝐴) ·ih (𝑇𝐵))) + (∗‘(𝐶 · ((𝑇𝐴) ·ih (𝑇𝐵))))) / 2) = (((𝐶 · (𝐴 ·ih 𝐵)) + (∗‘(𝐶 · (𝐴 ·ih 𝐵)))) / 2)
14017, 139eqtr4i 2805 . 2 (ℜ‘(𝐶 · (𝐴 ·ih 𝐵))) = (((𝐶 · ((𝑇𝐴) ·ih (𝑇𝐵))) + (∗‘(𝐶 · ((𝑇𝐴) ·ih (𝑇𝐵))))) / 2)
14113, 140eqtr4i 2805 1 (ℜ‘(𝐶 · ((𝑇𝐴) ·ih (𝑇𝐵)))) = (ℜ‘(𝐶 · (𝐴 ·ih 𝐵)))
Colors of variables: wff setvar class
Syntax hints:   = wceq 1507  wcel 2050  wral 3088  cfv 6188  (class class class)co 6976  cc 10333   + caddc 10338   · cmul 10340   / cdiv 11098  2c2 11495  cexp 13244  ccj 14316  cre 14317  chba 28475   + cva 28476   · csm 28477   ·ih csp 28478  normcno 28479  LinOpclo 28503
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1758  ax-4 1772  ax-5 1869  ax-6 1928  ax-7 1965  ax-8 2052  ax-9 2059  ax-10 2079  ax-11 2093  ax-12 2106  ax-13 2301  ax-ext 2750  ax-sep 5060  ax-nul 5067  ax-pow 5119  ax-pr 5186  ax-un 7279  ax-cnex 10391  ax-resscn 10392  ax-1cn 10393  ax-icn 10394  ax-addcl 10395  ax-addrcl 10396  ax-mulcl 10397  ax-mulrcl 10398  ax-mulcom 10399  ax-addass 10400  ax-mulass 10401  ax-distr 10402  ax-i2m1 10403  ax-1ne0 10404  ax-1rid 10405  ax-rnegex 10406  ax-rrecex 10407  ax-cnre 10408  ax-pre-lttri 10409  ax-pre-lttrn 10410  ax-pre-ltadd 10411  ax-pre-mulgt0 10412  ax-pre-sup 10413  ax-hilex 28555  ax-hfvadd 28556  ax-hv0cl 28559  ax-hfvmul 28561  ax-hvmul0 28566  ax-hfi 28635  ax-his1 28638  ax-his2 28639  ax-his3 28640  ax-his4 28641
This theorem depends on definitions:  df-bi 199  df-an 388  df-or 834  df-3or 1069  df-3an 1070  df-tru 1510  df-ex 1743  df-nf 1747  df-sb 2016  df-mo 2547  df-eu 2584  df-clab 2759  df-cleq 2771  df-clel 2846  df-nfc 2918  df-ne 2968  df-nel 3074  df-ral 3093  df-rex 3094  df-reu 3095  df-rmo 3096  df-rab 3097  df-v 3417  df-sbc 3682  df-csb 3787  df-dif 3832  df-un 3834  df-in 3836  df-ss 3843  df-pss 3845  df-nul 4179  df-if 4351  df-pw 4424  df-sn 4442  df-pr 4444  df-tp 4446  df-op 4448  df-uni 4713  df-iun 4794  df-br 4930  df-opab 4992  df-mpt 5009  df-tr 5031  df-id 5312  df-eprel 5317  df-po 5326  df-so 5327  df-fr 5366  df-we 5368  df-xp 5413  df-rel 5414  df-cnv 5415  df-co 5416  df-dm 5417  df-rn 5418  df-res 5419  df-ima 5420  df-pred 5986  df-ord 6032  df-on 6033  df-lim 6034  df-suc 6035  df-iota 6152  df-fun 6190  df-fn 6191  df-f 6192  df-f1 6193  df-fo 6194  df-f1o 6195  df-fv 6196  df-riota 6937  df-ov 6979  df-oprab 6980  df-mpo 6981  df-om 7397  df-2nd 7502  df-wrecs 7750  df-recs 7812  df-rdg 7850  df-er 8089  df-map 8208  df-en 8307  df-dom 8308  df-sdom 8309  df-sup 8701  df-pnf 10476  df-mnf 10477  df-xr 10478  df-ltxr 10479  df-le 10480  df-sub 10672  df-neg 10673  df-div 11099  df-nn 11440  df-2 11503  df-3 11504  df-n0 11708  df-z 11794  df-uz 12059  df-rp 12205  df-seq 13185  df-exp 13245  df-cj 14319  df-re 14320  df-im 14321  df-sqrt 14455  df-hnorm 28524  df-lnop 29399
This theorem is referenced by:  lnopunilem2  29569
  Copyright terms: Public domain W3C validator