Step | Hyp | Ref
| Expression |
1 | | lnopunilem1.5 |
. . . 4
⊢ 𝐶 ∈ ℂ |
2 | | lnopunilem.3 |
. . . . . 6
⊢ 𝐴 ∈ ℋ |
3 | | lnopunilem.1 |
. . . . . . . 8
⊢ 𝑇 ∈ LinOp |
4 | 3 | lnopfi 30331 |
. . . . . . 7
⊢ 𝑇: ℋ⟶
ℋ |
5 | 4 | ffvelrni 6960 |
. . . . . 6
⊢ (𝐴 ∈ ℋ → (𝑇‘𝐴) ∈ ℋ) |
6 | 2, 5 | ax-mp 5 |
. . . . 5
⊢ (𝑇‘𝐴) ∈ ℋ |
7 | | lnopunilem.4 |
. . . . . 6
⊢ 𝐵 ∈ ℋ |
8 | 4 | ffvelrni 6960 |
. . . . . 6
⊢ (𝐵 ∈ ℋ → (𝑇‘𝐵) ∈ ℋ) |
9 | 7, 8 | ax-mp 5 |
. . . . 5
⊢ (𝑇‘𝐵) ∈ ℋ |
10 | 6, 9 | hicli 29443 |
. . . 4
⊢ ((𝑇‘𝐴) ·ih (𝑇‘𝐵)) ∈ ℂ |
11 | 1, 10 | mulcli 10982 |
. . 3
⊢ (𝐶 · ((𝑇‘𝐴) ·ih (𝑇‘𝐵))) ∈ ℂ |
12 | | reval 14817 |
. . 3
⊢ ((𝐶 · ((𝑇‘𝐴) ·ih (𝑇‘𝐵))) ∈ ℂ →
(ℜ‘(𝐶 ·
((𝑇‘𝐴) ·ih (𝑇‘𝐵)))) = (((𝐶 · ((𝑇‘𝐴) ·ih (𝑇‘𝐵))) + (∗‘(𝐶 · ((𝑇‘𝐴) ·ih (𝑇‘𝐵))))) / 2)) |
13 | 11, 12 | ax-mp 5 |
. 2
⊢
(ℜ‘(𝐶
· ((𝑇‘𝐴)
·ih (𝑇‘𝐵)))) = (((𝐶 · ((𝑇‘𝐴) ·ih (𝑇‘𝐵))) + (∗‘(𝐶 · ((𝑇‘𝐴) ·ih (𝑇‘𝐵))))) / 2) |
14 | 2, 7 | hicli 29443 |
. . . . 5
⊢ (𝐴
·ih 𝐵) ∈ ℂ |
15 | 1, 14 | mulcli 10982 |
. . . 4
⊢ (𝐶 · (𝐴 ·ih 𝐵)) ∈
ℂ |
16 | | reval 14817 |
. . . 4
⊢ ((𝐶 · (𝐴 ·ih 𝐵)) ∈ ℂ →
(ℜ‘(𝐶 ·
(𝐴
·ih 𝐵))) = (((𝐶 · (𝐴 ·ih 𝐵)) + (∗‘(𝐶 · (𝐴 ·ih 𝐵)))) / 2)) |
17 | 15, 16 | ax-mp 5 |
. . 3
⊢
(ℜ‘(𝐶
· (𝐴
·ih 𝐵))) = (((𝐶 · (𝐴 ·ih 𝐵)) + (∗‘(𝐶 · (𝐴 ·ih 𝐵)))) / 2) |
18 | | lnopunilem.2 |
. . . . . . . . . . . . 13
⊢
∀𝑥 ∈
ℋ (normℎ‘(𝑇‘𝑥)) = (normℎ‘𝑥) |
19 | | 2fveq3 6779 |
. . . . . . . . . . . . . . 15
⊢ (𝑥 = 𝑦 → (normℎ‘(𝑇‘𝑥)) = (normℎ‘(𝑇‘𝑦))) |
20 | | fveq2 6774 |
. . . . . . . . . . . . . . 15
⊢ (𝑥 = 𝑦 → (normℎ‘𝑥) =
(normℎ‘𝑦)) |
21 | 19, 20 | eqeq12d 2754 |
. . . . . . . . . . . . . 14
⊢ (𝑥 = 𝑦 →
((normℎ‘(𝑇‘𝑥)) = (normℎ‘𝑥) ↔
(normℎ‘(𝑇‘𝑦)) = (normℎ‘𝑦))) |
22 | 21 | cbvralvw 3383 |
. . . . . . . . . . . . 13
⊢
(∀𝑥 ∈
ℋ (normℎ‘(𝑇‘𝑥)) = (normℎ‘𝑥) ↔ ∀𝑦 ∈ ℋ
(normℎ‘(𝑇‘𝑦)) = (normℎ‘𝑦)) |
23 | 18, 22 | mpbi 229 |
. . . . . . . . . . . 12
⊢
∀𝑦 ∈
ℋ (normℎ‘(𝑇‘𝑦)) = (normℎ‘𝑦) |
24 | | oveq1 7282 |
. . . . . . . . . . . . . 14
⊢
((normℎ‘(𝑇‘𝑦)) = (normℎ‘𝑦) →
((normℎ‘(𝑇‘𝑦))↑2) =
((normℎ‘𝑦)↑2)) |
25 | 4 | ffvelrni 6960 |
. . . . . . . . . . . . . . . 16
⊢ (𝑦 ∈ ℋ → (𝑇‘𝑦) ∈ ℋ) |
26 | | normsq 29496 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑇‘𝑦) ∈ ℋ →
((normℎ‘(𝑇‘𝑦))↑2) = ((𝑇‘𝑦) ·ih (𝑇‘𝑦))) |
27 | 25, 26 | syl 17 |
. . . . . . . . . . . . . . 15
⊢ (𝑦 ∈ ℋ →
((normℎ‘(𝑇‘𝑦))↑2) = ((𝑇‘𝑦) ·ih (𝑇‘𝑦))) |
28 | | normsq 29496 |
. . . . . . . . . . . . . . 15
⊢ (𝑦 ∈ ℋ →
((normℎ‘𝑦)↑2) = (𝑦 ·ih 𝑦)) |
29 | 27, 28 | eqeq12d 2754 |
. . . . . . . . . . . . . 14
⊢ (𝑦 ∈ ℋ →
(((normℎ‘(𝑇‘𝑦))↑2) =
((normℎ‘𝑦)↑2) ↔ ((𝑇‘𝑦) ·ih (𝑇‘𝑦)) = (𝑦 ·ih 𝑦))) |
30 | 24, 29 | syl5ib 243 |
. . . . . . . . . . . . 13
⊢ (𝑦 ∈ ℋ →
((normℎ‘(𝑇‘𝑦)) = (normℎ‘𝑦) → ((𝑇‘𝑦) ·ih (𝑇‘𝑦)) = (𝑦 ·ih 𝑦))) |
31 | 30 | ralimia 3085 |
. . . . . . . . . . . 12
⊢
(∀𝑦 ∈
ℋ (normℎ‘(𝑇‘𝑦)) = (normℎ‘𝑦) → ∀𝑦 ∈ ℋ ((𝑇‘𝑦) ·ih (𝑇‘𝑦)) = (𝑦 ·ih 𝑦)) |
32 | 23, 31 | ax-mp 5 |
. . . . . . . . . . 11
⊢
∀𝑦 ∈
ℋ ((𝑇‘𝑦)
·ih (𝑇‘𝑦)) = (𝑦 ·ih 𝑦) |
33 | | fveq2 6774 |
. . . . . . . . . . . . . 14
⊢ (𝑦 = 𝐴 → (𝑇‘𝑦) = (𝑇‘𝐴)) |
34 | 33, 33 | oveq12d 7293 |
. . . . . . . . . . . . 13
⊢ (𝑦 = 𝐴 → ((𝑇‘𝑦) ·ih (𝑇‘𝑦)) = ((𝑇‘𝐴) ·ih (𝑇‘𝐴))) |
35 | | id 22 |
. . . . . . . . . . . . . 14
⊢ (𝑦 = 𝐴 → 𝑦 = 𝐴) |
36 | 35, 35 | oveq12d 7293 |
. . . . . . . . . . . . 13
⊢ (𝑦 = 𝐴 → (𝑦 ·ih 𝑦) = (𝐴 ·ih 𝐴)) |
37 | 34, 36 | eqeq12d 2754 |
. . . . . . . . . . . 12
⊢ (𝑦 = 𝐴 → (((𝑇‘𝑦) ·ih (𝑇‘𝑦)) = (𝑦 ·ih 𝑦) ↔ ((𝑇‘𝐴) ·ih (𝑇‘𝐴)) = (𝐴 ·ih 𝐴))) |
38 | 37 | rspcv 3557 |
. . . . . . . . . . 11
⊢ (𝐴 ∈ ℋ →
(∀𝑦 ∈ ℋ
((𝑇‘𝑦)
·ih (𝑇‘𝑦)) = (𝑦 ·ih 𝑦) → ((𝑇‘𝐴) ·ih (𝑇‘𝐴)) = (𝐴 ·ih 𝐴))) |
39 | 2, 32, 38 | mp2 9 |
. . . . . . . . . 10
⊢ ((𝑇‘𝐴) ·ih (𝑇‘𝐴)) = (𝐴 ·ih 𝐴) |
40 | 39 | oveq2i 7286 |
. . . . . . . . 9
⊢
((∗‘𝐶)
· ((𝑇‘𝐴)
·ih (𝑇‘𝐴))) = ((∗‘𝐶) · (𝐴 ·ih 𝐴)) |
41 | 40 | oveq2i 7286 |
. . . . . . . 8
⊢ (𝐶 · ((∗‘𝐶) · ((𝑇‘𝐴) ·ih (𝑇‘𝐴)))) = (𝐶 · ((∗‘𝐶) · (𝐴 ·ih 𝐴))) |
42 | | fveq2 6774 |
. . . . . . . . . . . 12
⊢ (𝑦 = 𝐵 → (𝑇‘𝑦) = (𝑇‘𝐵)) |
43 | 42, 42 | oveq12d 7293 |
. . . . . . . . . . 11
⊢ (𝑦 = 𝐵 → ((𝑇‘𝑦) ·ih (𝑇‘𝑦)) = ((𝑇‘𝐵) ·ih (𝑇‘𝐵))) |
44 | | id 22 |
. . . . . . . . . . . 12
⊢ (𝑦 = 𝐵 → 𝑦 = 𝐵) |
45 | 44, 44 | oveq12d 7293 |
. . . . . . . . . . 11
⊢ (𝑦 = 𝐵 → (𝑦 ·ih 𝑦) = (𝐵 ·ih 𝐵)) |
46 | 43, 45 | eqeq12d 2754 |
. . . . . . . . . 10
⊢ (𝑦 = 𝐵 → (((𝑇‘𝑦) ·ih (𝑇‘𝑦)) = (𝑦 ·ih 𝑦) ↔ ((𝑇‘𝐵) ·ih (𝑇‘𝐵)) = (𝐵 ·ih 𝐵))) |
47 | 46 | rspcv 3557 |
. . . . . . . . 9
⊢ (𝐵 ∈ ℋ →
(∀𝑦 ∈ ℋ
((𝑇‘𝑦)
·ih (𝑇‘𝑦)) = (𝑦 ·ih 𝑦) → ((𝑇‘𝐵) ·ih (𝑇‘𝐵)) = (𝐵 ·ih 𝐵))) |
48 | 7, 32, 47 | mp2 9 |
. . . . . . . 8
⊢ ((𝑇‘𝐵) ·ih (𝑇‘𝐵)) = (𝐵 ·ih 𝐵) |
49 | 41, 48 | oveq12i 7287 |
. . . . . . 7
⊢ ((𝐶 · ((∗‘𝐶) · ((𝑇‘𝐴) ·ih (𝑇‘𝐴)))) + ((𝑇‘𝐵) ·ih (𝑇‘𝐵))) = ((𝐶 · ((∗‘𝐶) · (𝐴 ·ih 𝐴))) + (𝐵 ·ih 𝐵)) |
50 | 49 | oveq1i 7285 |
. . . . . 6
⊢ (((𝐶 · ((∗‘𝐶) · ((𝑇‘𝐴) ·ih (𝑇‘𝐴)))) + ((𝑇‘𝐵) ·ih (𝑇‘𝐵))) + ((𝐶 · ((𝑇‘𝐴) ·ih (𝑇‘𝐵))) + (∗‘(𝐶 · ((𝑇‘𝐴) ·ih (𝑇‘𝐵)))))) = (((𝐶 · ((∗‘𝐶) · (𝐴 ·ih 𝐴))) + (𝐵 ·ih 𝐵)) + ((𝐶 · ((𝑇‘𝐴) ·ih (𝑇‘𝐵))) + (∗‘(𝐶 · ((𝑇‘𝐴) ·ih (𝑇‘𝐵)))))) |
51 | 1 | cjcli 14880 |
. . . . . . . . . 10
⊢
(∗‘𝐶)
∈ ℂ |
52 | 6, 6 | hicli 29443 |
. . . . . . . . . 10
⊢ ((𝑇‘𝐴) ·ih (𝑇‘𝐴)) ∈ ℂ |
53 | 51, 52 | mulcli 10982 |
. . . . . . . . 9
⊢
((∗‘𝐶)
· ((𝑇‘𝐴)
·ih (𝑇‘𝐴))) ∈ ℂ |
54 | 1, 53 | mulcli 10982 |
. . . . . . . 8
⊢ (𝐶 · ((∗‘𝐶) · ((𝑇‘𝐴) ·ih (𝑇‘𝐴)))) ∈ ℂ |
55 | 9, 9 | hicli 29443 |
. . . . . . . 8
⊢ ((𝑇‘𝐵) ·ih (𝑇‘𝐵)) ∈ ℂ |
56 | 11 | cjcli 14880 |
. . . . . . . 8
⊢
(∗‘(𝐶
· ((𝑇‘𝐴)
·ih (𝑇‘𝐵)))) ∈ ℂ |
57 | 54, 55, 11, 56 | add42i 11200 |
. . . . . . 7
⊢ (((𝐶 · ((∗‘𝐶) · ((𝑇‘𝐴) ·ih (𝑇‘𝐴)))) + ((𝑇‘𝐵) ·ih (𝑇‘𝐵))) + ((𝐶 · ((𝑇‘𝐴) ·ih (𝑇‘𝐵))) + (∗‘(𝐶 · ((𝑇‘𝐴) ·ih (𝑇‘𝐵)))))) = (((𝐶 · ((∗‘𝐶) · ((𝑇‘𝐴) ·ih (𝑇‘𝐴)))) + (𝐶 · ((𝑇‘𝐴) ·ih (𝑇‘𝐵)))) + ((∗‘(𝐶 · ((𝑇‘𝐴) ·ih (𝑇‘𝐵)))) + ((𝑇‘𝐵) ·ih (𝑇‘𝐵)))) |
58 | 2, 2 | hicli 29443 |
. . . . . . . . . . 11
⊢ (𝐴
·ih 𝐴) ∈ ℂ |
59 | 51, 58 | mulcli 10982 |
. . . . . . . . . 10
⊢
((∗‘𝐶)
· (𝐴
·ih 𝐴)) ∈ ℂ |
60 | 1, 59 | mulcli 10982 |
. . . . . . . . 9
⊢ (𝐶 · ((∗‘𝐶) · (𝐴 ·ih 𝐴))) ∈
ℂ |
61 | 7, 7 | hicli 29443 |
. . . . . . . . 9
⊢ (𝐵
·ih 𝐵) ∈ ℂ |
62 | 15 | cjcli 14880 |
. . . . . . . . 9
⊢
(∗‘(𝐶
· (𝐴
·ih 𝐵))) ∈ ℂ |
63 | 60, 61, 15, 62 | add42i 11200 |
. . . . . . . 8
⊢ (((𝐶 · ((∗‘𝐶) · (𝐴 ·ih 𝐴))) + (𝐵 ·ih 𝐵)) + ((𝐶 · (𝐴 ·ih 𝐵)) + (∗‘(𝐶 · (𝐴 ·ih 𝐵))))) = (((𝐶 · ((∗‘𝐶) · (𝐴 ·ih 𝐴))) + (𝐶 · (𝐴 ·ih 𝐵))) + ((∗‘(𝐶 · (𝐴 ·ih 𝐵))) + (𝐵 ·ih 𝐵))) |
64 | 1, 2 | hvmulcli 29376 |
. . . . . . . . . . . 12
⊢ (𝐶
·ℎ 𝐴) ∈ ℋ |
65 | 64, 7 | hvaddcli 29380 |
. . . . . . . . . . 11
⊢ ((𝐶
·ℎ 𝐴) +ℎ 𝐵) ∈ ℋ |
66 | | fveq2 6774 |
. . . . . . . . . . . . . 14
⊢ (𝑦 = ((𝐶 ·ℎ 𝐴) +ℎ 𝐵) → (𝑇‘𝑦) = (𝑇‘((𝐶 ·ℎ 𝐴) +ℎ 𝐵))) |
67 | 66, 66 | oveq12d 7293 |
. . . . . . . . . . . . 13
⊢ (𝑦 = ((𝐶 ·ℎ 𝐴) +ℎ 𝐵) → ((𝑇‘𝑦) ·ih (𝑇‘𝑦)) = ((𝑇‘((𝐶 ·ℎ 𝐴) +ℎ 𝐵))
·ih (𝑇‘((𝐶 ·ℎ 𝐴) +ℎ 𝐵)))) |
68 | | id 22 |
. . . . . . . . . . . . . 14
⊢ (𝑦 = ((𝐶 ·ℎ 𝐴) +ℎ 𝐵) → 𝑦 = ((𝐶 ·ℎ 𝐴) +ℎ 𝐵)) |
69 | 68, 68 | oveq12d 7293 |
. . . . . . . . . . . . 13
⊢ (𝑦 = ((𝐶 ·ℎ 𝐴) +ℎ 𝐵) → (𝑦 ·ih 𝑦) = (((𝐶 ·ℎ 𝐴) +ℎ 𝐵)
·ih ((𝐶 ·ℎ 𝐴) +ℎ 𝐵))) |
70 | 67, 69 | eqeq12d 2754 |
. . . . . . . . . . . 12
⊢ (𝑦 = ((𝐶 ·ℎ 𝐴) +ℎ 𝐵) → (((𝑇‘𝑦) ·ih (𝑇‘𝑦)) = (𝑦 ·ih 𝑦) ↔ ((𝑇‘((𝐶 ·ℎ 𝐴) +ℎ 𝐵))
·ih (𝑇‘((𝐶 ·ℎ 𝐴) +ℎ 𝐵))) = (((𝐶 ·ℎ 𝐴) +ℎ 𝐵)
·ih ((𝐶 ·ℎ 𝐴) +ℎ 𝐵)))) |
71 | 70 | rspcv 3557 |
. . . . . . . . . . 11
⊢ (((𝐶
·ℎ 𝐴) +ℎ 𝐵) ∈ ℋ → (∀𝑦 ∈ ℋ ((𝑇‘𝑦) ·ih (𝑇‘𝑦)) = (𝑦 ·ih 𝑦) → ((𝑇‘((𝐶 ·ℎ 𝐴) +ℎ 𝐵))
·ih (𝑇‘((𝐶 ·ℎ 𝐴) +ℎ 𝐵))) = (((𝐶 ·ℎ 𝐴) +ℎ 𝐵)
·ih ((𝐶 ·ℎ 𝐴) +ℎ 𝐵)))) |
72 | 65, 32, 71 | mp2 9 |
. . . . . . . . . 10
⊢ ((𝑇‘((𝐶 ·ℎ 𝐴) +ℎ 𝐵))
·ih (𝑇‘((𝐶 ·ℎ 𝐴) +ℎ 𝐵))) = (((𝐶 ·ℎ 𝐴) +ℎ 𝐵)
·ih ((𝐶 ·ℎ 𝐴) +ℎ 𝐵)) |
73 | | ax-his2 29445 |
. . . . . . . . . . 11
⊢ (((𝐶
·ℎ 𝐴) ∈ ℋ ∧ 𝐵 ∈ ℋ ∧ ((𝐶 ·ℎ 𝐴) +ℎ 𝐵) ∈ ℋ) →
(((𝐶
·ℎ 𝐴) +ℎ 𝐵) ·ih
((𝐶
·ℎ 𝐴) +ℎ 𝐵)) = (((𝐶 ·ℎ 𝐴)
·ih ((𝐶 ·ℎ 𝐴) +ℎ 𝐵)) + (𝐵 ·ih ((𝐶
·ℎ 𝐴) +ℎ 𝐵)))) |
74 | 64, 7, 65, 73 | mp3an 1460 |
. . . . . . . . . 10
⊢ (((𝐶
·ℎ 𝐴) +ℎ 𝐵) ·ih
((𝐶
·ℎ 𝐴) +ℎ 𝐵)) = (((𝐶 ·ℎ 𝐴)
·ih ((𝐶 ·ℎ 𝐴) +ℎ 𝐵)) + (𝐵 ·ih ((𝐶
·ℎ 𝐴) +ℎ 𝐵))) |
75 | | ax-his3 29446 |
. . . . . . . . . . . . 13
⊢ ((𝐶 ∈ ℂ ∧ 𝐴 ∈ ℋ ∧ ((𝐶
·ℎ 𝐴) +ℎ 𝐵) ∈ ℋ) → ((𝐶 ·ℎ 𝐴)
·ih ((𝐶 ·ℎ 𝐴) +ℎ 𝐵)) = (𝐶 · (𝐴 ·ih ((𝐶
·ℎ 𝐴) +ℎ 𝐵)))) |
76 | 1, 2, 65, 75 | mp3an 1460 |
. . . . . . . . . . . 12
⊢ ((𝐶
·ℎ 𝐴) ·ih
((𝐶
·ℎ 𝐴) +ℎ 𝐵)) = (𝐶 · (𝐴 ·ih ((𝐶
·ℎ 𝐴) +ℎ 𝐵))) |
77 | | his7 29452 |
. . . . . . . . . . . . . . 15
⊢ ((𝐴 ∈ ℋ ∧ (𝐶
·ℎ 𝐴) ∈ ℋ ∧ 𝐵 ∈ ℋ) → (𝐴 ·ih ((𝐶
·ℎ 𝐴) +ℎ 𝐵)) = ((𝐴 ·ih (𝐶
·ℎ 𝐴)) + (𝐴 ·ih 𝐵))) |
78 | 2, 64, 7, 77 | mp3an 1460 |
. . . . . . . . . . . . . 14
⊢ (𝐴
·ih ((𝐶 ·ℎ 𝐴) +ℎ 𝐵)) = ((𝐴 ·ih (𝐶
·ℎ 𝐴)) + (𝐴 ·ih 𝐵)) |
79 | | his5 29448 |
. . . . . . . . . . . . . . . 16
⊢ ((𝐶 ∈ ℂ ∧ 𝐴 ∈ ℋ ∧ 𝐴 ∈ ℋ) → (𝐴
·ih (𝐶 ·ℎ 𝐴)) = ((∗‘𝐶) · (𝐴 ·ih 𝐴))) |
80 | 1, 2, 2, 79 | mp3an 1460 |
. . . . . . . . . . . . . . 15
⊢ (𝐴
·ih (𝐶 ·ℎ 𝐴)) = ((∗‘𝐶) · (𝐴 ·ih 𝐴)) |
81 | 80 | oveq1i 7285 |
. . . . . . . . . . . . . 14
⊢ ((𝐴
·ih (𝐶 ·ℎ 𝐴)) + (𝐴 ·ih 𝐵)) = (((∗‘𝐶) · (𝐴 ·ih 𝐴)) + (𝐴 ·ih 𝐵)) |
82 | 78, 81 | eqtri 2766 |
. . . . . . . . . . . . 13
⊢ (𝐴
·ih ((𝐶 ·ℎ 𝐴) +ℎ 𝐵)) = (((∗‘𝐶) · (𝐴 ·ih 𝐴)) + (𝐴 ·ih 𝐵)) |
83 | 82 | oveq2i 7286 |
. . . . . . . . . . . 12
⊢ (𝐶 · (𝐴 ·ih ((𝐶
·ℎ 𝐴) +ℎ 𝐵))) = (𝐶 · (((∗‘𝐶) · (𝐴 ·ih 𝐴)) + (𝐴 ·ih 𝐵))) |
84 | 1, 59, 14 | adddii 10987 |
. . . . . . . . . . . 12
⊢ (𝐶 ·
(((∗‘𝐶)
· (𝐴
·ih 𝐴)) + (𝐴 ·ih 𝐵))) = ((𝐶 · ((∗‘𝐶) · (𝐴 ·ih 𝐴))) + (𝐶 · (𝐴 ·ih 𝐵))) |
85 | 76, 83, 84 | 3eqtri 2770 |
. . . . . . . . . . 11
⊢ ((𝐶
·ℎ 𝐴) ·ih
((𝐶
·ℎ 𝐴) +ℎ 𝐵)) = ((𝐶 · ((∗‘𝐶) · (𝐴 ·ih 𝐴))) + (𝐶 · (𝐴 ·ih 𝐵))) |
86 | | his7 29452 |
. . . . . . . . . . . . 13
⊢ ((𝐵 ∈ ℋ ∧ (𝐶
·ℎ 𝐴) ∈ ℋ ∧ 𝐵 ∈ ℋ) → (𝐵 ·ih ((𝐶
·ℎ 𝐴) +ℎ 𝐵)) = ((𝐵 ·ih (𝐶
·ℎ 𝐴)) + (𝐵 ·ih 𝐵))) |
87 | 7, 64, 7, 86 | mp3an 1460 |
. . . . . . . . . . . 12
⊢ (𝐵
·ih ((𝐶 ·ℎ 𝐴) +ℎ 𝐵)) = ((𝐵 ·ih (𝐶
·ℎ 𝐴)) + (𝐵 ·ih 𝐵)) |
88 | | his5 29448 |
. . . . . . . . . . . . . . 15
⊢ ((𝐶 ∈ ℂ ∧ 𝐵 ∈ ℋ ∧ 𝐴 ∈ ℋ) → (𝐵
·ih (𝐶 ·ℎ 𝐴)) = ((∗‘𝐶) · (𝐵 ·ih 𝐴))) |
89 | 1, 7, 2, 88 | mp3an 1460 |
. . . . . . . . . . . . . 14
⊢ (𝐵
·ih (𝐶 ·ℎ 𝐴)) = ((∗‘𝐶) · (𝐵 ·ih 𝐴)) |
90 | 1, 14 | cjmuli 14900 |
. . . . . . . . . . . . . . 15
⊢
(∗‘(𝐶
· (𝐴
·ih 𝐵))) = ((∗‘𝐶) · (∗‘(𝐴
·ih 𝐵))) |
91 | 7, 2 | his1i 29462 |
. . . . . . . . . . . . . . . 16
⊢ (𝐵
·ih 𝐴) = (∗‘(𝐴 ·ih 𝐵)) |
92 | 91 | oveq2i 7286 |
. . . . . . . . . . . . . . 15
⊢
((∗‘𝐶)
· (𝐵
·ih 𝐴)) = ((∗‘𝐶) · (∗‘(𝐴
·ih 𝐵))) |
93 | 90, 92 | eqtr4i 2769 |
. . . . . . . . . . . . . 14
⊢
(∗‘(𝐶
· (𝐴
·ih 𝐵))) = ((∗‘𝐶) · (𝐵 ·ih 𝐴)) |
94 | 89, 93 | eqtr4i 2769 |
. . . . . . . . . . . . 13
⊢ (𝐵
·ih (𝐶 ·ℎ 𝐴)) = (∗‘(𝐶 · (𝐴 ·ih 𝐵))) |
95 | 94 | oveq1i 7285 |
. . . . . . . . . . . 12
⊢ ((𝐵
·ih (𝐶 ·ℎ 𝐴)) + (𝐵 ·ih 𝐵)) = ((∗‘(𝐶 · (𝐴 ·ih 𝐵))) + (𝐵 ·ih 𝐵)) |
96 | 87, 95 | eqtri 2766 |
. . . . . . . . . . 11
⊢ (𝐵
·ih ((𝐶 ·ℎ 𝐴) +ℎ 𝐵)) = ((∗‘(𝐶 · (𝐴 ·ih 𝐵))) + (𝐵 ·ih 𝐵)) |
97 | 85, 96 | oveq12i 7287 |
. . . . . . . . . 10
⊢ (((𝐶
·ℎ 𝐴) ·ih
((𝐶
·ℎ 𝐴) +ℎ 𝐵)) + (𝐵 ·ih ((𝐶
·ℎ 𝐴) +ℎ 𝐵))) = (((𝐶 · ((∗‘𝐶) · (𝐴 ·ih 𝐴))) + (𝐶 · (𝐴 ·ih 𝐵))) + ((∗‘(𝐶 · (𝐴 ·ih 𝐵))) + (𝐵 ·ih 𝐵))) |
98 | 72, 74, 97 | 3eqtrri 2771 |
. . . . . . . . 9
⊢ (((𝐶 · ((∗‘𝐶) · (𝐴 ·ih 𝐴))) + (𝐶 · (𝐴 ·ih 𝐵))) + ((∗‘(𝐶 · (𝐴 ·ih 𝐵))) + (𝐵 ·ih 𝐵))) = ((𝑇‘((𝐶 ·ℎ 𝐴) +ℎ 𝐵))
·ih (𝑇‘((𝐶 ·ℎ 𝐴) +ℎ 𝐵))) |
99 | 3 | lnopli 30330 |
. . . . . . . . . . . 12
⊢ ((𝐶 ∈ ℂ ∧ 𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ) → (𝑇‘((𝐶 ·ℎ 𝐴) +ℎ 𝐵)) = ((𝐶 ·ℎ (𝑇‘𝐴)) +ℎ (𝑇‘𝐵))) |
100 | 1, 2, 7, 99 | mp3an 1460 |
. . . . . . . . . . 11
⊢ (𝑇‘((𝐶 ·ℎ 𝐴) +ℎ 𝐵)) = ((𝐶 ·ℎ (𝑇‘𝐴)) +ℎ (𝑇‘𝐵)) |
101 | 100, 100 | oveq12i 7287 |
. . . . . . . . . 10
⊢ ((𝑇‘((𝐶 ·ℎ 𝐴) +ℎ 𝐵))
·ih (𝑇‘((𝐶 ·ℎ 𝐴) +ℎ 𝐵))) = (((𝐶 ·ℎ (𝑇‘𝐴)) +ℎ (𝑇‘𝐵)) ·ih
((𝐶
·ℎ (𝑇‘𝐴)) +ℎ (𝑇‘𝐵))) |
102 | 1, 6 | hvmulcli 29376 |
. . . . . . . . . . 11
⊢ (𝐶
·ℎ (𝑇‘𝐴)) ∈ ℋ |
103 | 102, 9 | hvaddcli 29380 |
. . . . . . . . . . 11
⊢ ((𝐶
·ℎ (𝑇‘𝐴)) +ℎ (𝑇‘𝐵)) ∈ ℋ |
104 | | ax-his2 29445 |
. . . . . . . . . . 11
⊢ (((𝐶
·ℎ (𝑇‘𝐴)) ∈ ℋ ∧ (𝑇‘𝐵) ∈ ℋ ∧ ((𝐶 ·ℎ (𝑇‘𝐴)) +ℎ (𝑇‘𝐵)) ∈ ℋ) → (((𝐶
·ℎ (𝑇‘𝐴)) +ℎ (𝑇‘𝐵)) ·ih
((𝐶
·ℎ (𝑇‘𝐴)) +ℎ (𝑇‘𝐵))) = (((𝐶 ·ℎ (𝑇‘𝐴)) ·ih
((𝐶
·ℎ (𝑇‘𝐴)) +ℎ (𝑇‘𝐵))) + ((𝑇‘𝐵) ·ih
((𝐶
·ℎ (𝑇‘𝐴)) +ℎ (𝑇‘𝐵))))) |
105 | 102, 9, 103, 104 | mp3an 1460 |
. . . . . . . . . 10
⊢ (((𝐶
·ℎ (𝑇‘𝐴)) +ℎ (𝑇‘𝐵)) ·ih
((𝐶
·ℎ (𝑇‘𝐴)) +ℎ (𝑇‘𝐵))) = (((𝐶 ·ℎ (𝑇‘𝐴)) ·ih
((𝐶
·ℎ (𝑇‘𝐴)) +ℎ (𝑇‘𝐵))) + ((𝑇‘𝐵) ·ih
((𝐶
·ℎ (𝑇‘𝐴)) +ℎ (𝑇‘𝐵)))) |
106 | 101, 105 | eqtri 2766 |
. . . . . . . . 9
⊢ ((𝑇‘((𝐶 ·ℎ 𝐴) +ℎ 𝐵))
·ih (𝑇‘((𝐶 ·ℎ 𝐴) +ℎ 𝐵))) = (((𝐶 ·ℎ (𝑇‘𝐴)) ·ih
((𝐶
·ℎ (𝑇‘𝐴)) +ℎ (𝑇‘𝐵))) + ((𝑇‘𝐵) ·ih
((𝐶
·ℎ (𝑇‘𝐴)) +ℎ (𝑇‘𝐵)))) |
107 | | ax-his3 29446 |
. . . . . . . . . . . 12
⊢ ((𝐶 ∈ ℂ ∧ (𝑇‘𝐴) ∈ ℋ ∧ ((𝐶 ·ℎ (𝑇‘𝐴)) +ℎ (𝑇‘𝐵)) ∈ ℋ) → ((𝐶
·ℎ (𝑇‘𝐴)) ·ih
((𝐶
·ℎ (𝑇‘𝐴)) +ℎ (𝑇‘𝐵))) = (𝐶 · ((𝑇‘𝐴) ·ih
((𝐶
·ℎ (𝑇‘𝐴)) +ℎ (𝑇‘𝐵))))) |
108 | 1, 6, 103, 107 | mp3an 1460 |
. . . . . . . . . . 11
⊢ ((𝐶
·ℎ (𝑇‘𝐴)) ·ih
((𝐶
·ℎ (𝑇‘𝐴)) +ℎ (𝑇‘𝐵))) = (𝐶 · ((𝑇‘𝐴) ·ih
((𝐶
·ℎ (𝑇‘𝐴)) +ℎ (𝑇‘𝐵)))) |
109 | | his7 29452 |
. . . . . . . . . . . . . 14
⊢ (((𝑇‘𝐴) ∈ ℋ ∧ (𝐶 ·ℎ (𝑇‘𝐴)) ∈ ℋ ∧ (𝑇‘𝐵) ∈ ℋ) → ((𝑇‘𝐴) ·ih
((𝐶
·ℎ (𝑇‘𝐴)) +ℎ (𝑇‘𝐵))) = (((𝑇‘𝐴) ·ih (𝐶
·ℎ (𝑇‘𝐴))) + ((𝑇‘𝐴) ·ih (𝑇‘𝐵)))) |
110 | 6, 102, 9, 109 | mp3an 1460 |
. . . . . . . . . . . . 13
⊢ ((𝑇‘𝐴) ·ih
((𝐶
·ℎ (𝑇‘𝐴)) +ℎ (𝑇‘𝐵))) = (((𝑇‘𝐴) ·ih (𝐶
·ℎ (𝑇‘𝐴))) + ((𝑇‘𝐴) ·ih (𝑇‘𝐵))) |
111 | | his5 29448 |
. . . . . . . . . . . . . . 15
⊢ ((𝐶 ∈ ℂ ∧ (𝑇‘𝐴) ∈ ℋ ∧ (𝑇‘𝐴) ∈ ℋ) → ((𝑇‘𝐴) ·ih (𝐶
·ℎ (𝑇‘𝐴))) = ((∗‘𝐶) · ((𝑇‘𝐴) ·ih (𝑇‘𝐴)))) |
112 | 1, 6, 6, 111 | mp3an 1460 |
. . . . . . . . . . . . . 14
⊢ ((𝑇‘𝐴) ·ih (𝐶
·ℎ (𝑇‘𝐴))) = ((∗‘𝐶) · ((𝑇‘𝐴) ·ih (𝑇‘𝐴))) |
113 | 112 | oveq1i 7285 |
. . . . . . . . . . . . 13
⊢ (((𝑇‘𝐴) ·ih (𝐶
·ℎ (𝑇‘𝐴))) + ((𝑇‘𝐴) ·ih (𝑇‘𝐵))) = (((∗‘𝐶) · ((𝑇‘𝐴) ·ih (𝑇‘𝐴))) + ((𝑇‘𝐴) ·ih (𝑇‘𝐵))) |
114 | 110, 113 | eqtri 2766 |
. . . . . . . . . . . 12
⊢ ((𝑇‘𝐴) ·ih
((𝐶
·ℎ (𝑇‘𝐴)) +ℎ (𝑇‘𝐵))) = (((∗‘𝐶) · ((𝑇‘𝐴) ·ih (𝑇‘𝐴))) + ((𝑇‘𝐴) ·ih (𝑇‘𝐵))) |
115 | 114 | oveq2i 7286 |
. . . . . . . . . . 11
⊢ (𝐶 · ((𝑇‘𝐴) ·ih
((𝐶
·ℎ (𝑇‘𝐴)) +ℎ (𝑇‘𝐵)))) = (𝐶 · (((∗‘𝐶) · ((𝑇‘𝐴) ·ih (𝑇‘𝐴))) + ((𝑇‘𝐴) ·ih (𝑇‘𝐵)))) |
116 | 1, 53, 10 | adddii 10987 |
. . . . . . . . . . 11
⊢ (𝐶 ·
(((∗‘𝐶)
· ((𝑇‘𝐴)
·ih (𝑇‘𝐴))) + ((𝑇‘𝐴) ·ih (𝑇‘𝐵)))) = ((𝐶 · ((∗‘𝐶) · ((𝑇‘𝐴) ·ih (𝑇‘𝐴)))) + (𝐶 · ((𝑇‘𝐴) ·ih (𝑇‘𝐵)))) |
117 | 108, 115,
116 | 3eqtri 2770 |
. . . . . . . . . 10
⊢ ((𝐶
·ℎ (𝑇‘𝐴)) ·ih
((𝐶
·ℎ (𝑇‘𝐴)) +ℎ (𝑇‘𝐵))) = ((𝐶 · ((∗‘𝐶) · ((𝑇‘𝐴) ·ih (𝑇‘𝐴)))) + (𝐶 · ((𝑇‘𝐴) ·ih (𝑇‘𝐵)))) |
118 | | his7 29452 |
. . . . . . . . . . . 12
⊢ (((𝑇‘𝐵) ∈ ℋ ∧ (𝐶 ·ℎ (𝑇‘𝐴)) ∈ ℋ ∧ (𝑇‘𝐵) ∈ ℋ) → ((𝑇‘𝐵) ·ih
((𝐶
·ℎ (𝑇‘𝐴)) +ℎ (𝑇‘𝐵))) = (((𝑇‘𝐵) ·ih (𝐶
·ℎ (𝑇‘𝐴))) + ((𝑇‘𝐵) ·ih (𝑇‘𝐵)))) |
119 | 9, 102, 9, 118 | mp3an 1460 |
. . . . . . . . . . 11
⊢ ((𝑇‘𝐵) ·ih
((𝐶
·ℎ (𝑇‘𝐴)) +ℎ (𝑇‘𝐵))) = (((𝑇‘𝐵) ·ih (𝐶
·ℎ (𝑇‘𝐴))) + ((𝑇‘𝐵) ·ih (𝑇‘𝐵))) |
120 | | his5 29448 |
. . . . . . . . . . . . . 14
⊢ ((𝐶 ∈ ℂ ∧ (𝑇‘𝐵) ∈ ℋ ∧ (𝑇‘𝐴) ∈ ℋ) → ((𝑇‘𝐵) ·ih (𝐶
·ℎ (𝑇‘𝐴))) = ((∗‘𝐶) · ((𝑇‘𝐵) ·ih (𝑇‘𝐴)))) |
121 | 1, 9, 6, 120 | mp3an 1460 |
. . . . . . . . . . . . 13
⊢ ((𝑇‘𝐵) ·ih (𝐶
·ℎ (𝑇‘𝐴))) = ((∗‘𝐶) · ((𝑇‘𝐵) ·ih (𝑇‘𝐴))) |
122 | 1, 10 | cjmuli 14900 |
. . . . . . . . . . . . . 14
⊢
(∗‘(𝐶
· ((𝑇‘𝐴)
·ih (𝑇‘𝐵)))) = ((∗‘𝐶) · (∗‘((𝑇‘𝐴) ·ih (𝑇‘𝐵)))) |
123 | 9, 6 | his1i 29462 |
. . . . . . . . . . . . . . 15
⊢ ((𝑇‘𝐵) ·ih (𝑇‘𝐴)) = (∗‘((𝑇‘𝐴) ·ih (𝑇‘𝐵))) |
124 | 123 | oveq2i 7286 |
. . . . . . . . . . . . . 14
⊢
((∗‘𝐶)
· ((𝑇‘𝐵)
·ih (𝑇‘𝐴))) = ((∗‘𝐶) · (∗‘((𝑇‘𝐴) ·ih (𝑇‘𝐵)))) |
125 | 122, 124 | eqtr4i 2769 |
. . . . . . . . . . . . 13
⊢
(∗‘(𝐶
· ((𝑇‘𝐴)
·ih (𝑇‘𝐵)))) = ((∗‘𝐶) · ((𝑇‘𝐵) ·ih (𝑇‘𝐴))) |
126 | 121, 125 | eqtr4i 2769 |
. . . . . . . . . . . 12
⊢ ((𝑇‘𝐵) ·ih (𝐶
·ℎ (𝑇‘𝐴))) = (∗‘(𝐶 · ((𝑇‘𝐴) ·ih (𝑇‘𝐵)))) |
127 | 126 | oveq1i 7285 |
. . . . . . . . . . 11
⊢ (((𝑇‘𝐵) ·ih (𝐶
·ℎ (𝑇‘𝐴))) + ((𝑇‘𝐵) ·ih (𝑇‘𝐵))) = ((∗‘(𝐶 · ((𝑇‘𝐴) ·ih (𝑇‘𝐵)))) + ((𝑇‘𝐵) ·ih (𝑇‘𝐵))) |
128 | 119, 127 | eqtri 2766 |
. . . . . . . . . 10
⊢ ((𝑇‘𝐵) ·ih
((𝐶
·ℎ (𝑇‘𝐴)) +ℎ (𝑇‘𝐵))) = ((∗‘(𝐶 · ((𝑇‘𝐴) ·ih (𝑇‘𝐵)))) + ((𝑇‘𝐵) ·ih (𝑇‘𝐵))) |
129 | 117, 128 | oveq12i 7287 |
. . . . . . . . 9
⊢ (((𝐶
·ℎ (𝑇‘𝐴)) ·ih
((𝐶
·ℎ (𝑇‘𝐴)) +ℎ (𝑇‘𝐵))) + ((𝑇‘𝐵) ·ih
((𝐶
·ℎ (𝑇‘𝐴)) +ℎ (𝑇‘𝐵)))) = (((𝐶 · ((∗‘𝐶) · ((𝑇‘𝐴) ·ih (𝑇‘𝐴)))) + (𝐶 · ((𝑇‘𝐴) ·ih (𝑇‘𝐵)))) + ((∗‘(𝐶 · ((𝑇‘𝐴) ·ih (𝑇‘𝐵)))) + ((𝑇‘𝐵) ·ih (𝑇‘𝐵)))) |
130 | 98, 106, 129 | 3eqtrri 2771 |
. . . . . . . 8
⊢ (((𝐶 · ((∗‘𝐶) · ((𝑇‘𝐴) ·ih (𝑇‘𝐴)))) + (𝐶 · ((𝑇‘𝐴) ·ih (𝑇‘𝐵)))) + ((∗‘(𝐶 · ((𝑇‘𝐴) ·ih (𝑇‘𝐵)))) + ((𝑇‘𝐵) ·ih (𝑇‘𝐵)))) = (((𝐶 · ((∗‘𝐶) · (𝐴 ·ih 𝐴))) + (𝐶 · (𝐴 ·ih 𝐵))) + ((∗‘(𝐶 · (𝐴 ·ih 𝐵))) + (𝐵 ·ih 𝐵))) |
131 | 63, 130 | eqtr4i 2769 |
. . . . . . 7
⊢ (((𝐶 · ((∗‘𝐶) · (𝐴 ·ih 𝐴))) + (𝐵 ·ih 𝐵)) + ((𝐶 · (𝐴 ·ih 𝐵)) + (∗‘(𝐶 · (𝐴 ·ih 𝐵))))) = (((𝐶 · ((∗‘𝐶) · ((𝑇‘𝐴) ·ih (𝑇‘𝐴)))) + (𝐶 · ((𝑇‘𝐴) ·ih (𝑇‘𝐵)))) + ((∗‘(𝐶 · ((𝑇‘𝐴) ·ih (𝑇‘𝐵)))) + ((𝑇‘𝐵) ·ih (𝑇‘𝐵)))) |
132 | 57, 131 | eqtr4i 2769 |
. . . . . 6
⊢ (((𝐶 · ((∗‘𝐶) · ((𝑇‘𝐴) ·ih (𝑇‘𝐴)))) + ((𝑇‘𝐵) ·ih (𝑇‘𝐵))) + ((𝐶 · ((𝑇‘𝐴) ·ih (𝑇‘𝐵))) + (∗‘(𝐶 · ((𝑇‘𝐴) ·ih (𝑇‘𝐵)))))) = (((𝐶 · ((∗‘𝐶) · (𝐴 ·ih 𝐴))) + (𝐵 ·ih 𝐵)) + ((𝐶 · (𝐴 ·ih 𝐵)) + (∗‘(𝐶 · (𝐴 ·ih 𝐵))))) |
133 | 50, 132 | eqtr3i 2768 |
. . . . 5
⊢ (((𝐶 · ((∗‘𝐶) · (𝐴 ·ih 𝐴))) + (𝐵 ·ih 𝐵)) + ((𝐶 · ((𝑇‘𝐴) ·ih (𝑇‘𝐵))) + (∗‘(𝐶 · ((𝑇‘𝐴) ·ih (𝑇‘𝐵)))))) = (((𝐶 · ((∗‘𝐶) · (𝐴 ·ih 𝐴))) + (𝐵 ·ih 𝐵)) + ((𝐶 · (𝐴 ·ih 𝐵)) + (∗‘(𝐶 · (𝐴 ·ih 𝐵))))) |
134 | 60, 61 | addcli 10981 |
. . . . . 6
⊢ ((𝐶 · ((∗‘𝐶) · (𝐴 ·ih 𝐴))) + (𝐵 ·ih 𝐵)) ∈
ℂ |
135 | 11, 56 | addcli 10981 |
. . . . . 6
⊢ ((𝐶 · ((𝑇‘𝐴) ·ih (𝑇‘𝐵))) + (∗‘(𝐶 · ((𝑇‘𝐴) ·ih (𝑇‘𝐵))))) ∈ ℂ |
136 | 15, 62 | addcli 10981 |
. . . . . 6
⊢ ((𝐶 · (𝐴 ·ih 𝐵)) + (∗‘(𝐶 · (𝐴 ·ih 𝐵)))) ∈
ℂ |
137 | 134, 135,
136 | addcani 11168 |
. . . . 5
⊢ ((((𝐶 · ((∗‘𝐶) · (𝐴 ·ih 𝐴))) + (𝐵 ·ih 𝐵)) + ((𝐶 · ((𝑇‘𝐴) ·ih (𝑇‘𝐵))) + (∗‘(𝐶 · ((𝑇‘𝐴) ·ih (𝑇‘𝐵)))))) = (((𝐶 · ((∗‘𝐶) · (𝐴 ·ih 𝐴))) + (𝐵 ·ih 𝐵)) + ((𝐶 · (𝐴 ·ih 𝐵)) + (∗‘(𝐶 · (𝐴 ·ih 𝐵))))) ↔ ((𝐶 · ((𝑇‘𝐴) ·ih (𝑇‘𝐵))) + (∗‘(𝐶 · ((𝑇‘𝐴) ·ih (𝑇‘𝐵))))) = ((𝐶 · (𝐴 ·ih 𝐵)) + (∗‘(𝐶 · (𝐴 ·ih 𝐵))))) |
138 | 133, 137 | mpbi 229 |
. . . 4
⊢ ((𝐶 · ((𝑇‘𝐴) ·ih (𝑇‘𝐵))) + (∗‘(𝐶 · ((𝑇‘𝐴) ·ih (𝑇‘𝐵))))) = ((𝐶 · (𝐴 ·ih 𝐵)) + (∗‘(𝐶 · (𝐴 ·ih 𝐵)))) |
139 | 138 | oveq1i 7285 |
. . 3
⊢ (((𝐶 · ((𝑇‘𝐴) ·ih (𝑇‘𝐵))) + (∗‘(𝐶 · ((𝑇‘𝐴) ·ih (𝑇‘𝐵))))) / 2) = (((𝐶 · (𝐴 ·ih 𝐵)) + (∗‘(𝐶 · (𝐴 ·ih 𝐵)))) / 2) |
140 | 17, 139 | eqtr4i 2769 |
. 2
⊢
(ℜ‘(𝐶
· (𝐴
·ih 𝐵))) = (((𝐶 · ((𝑇‘𝐴) ·ih (𝑇‘𝐵))) + (∗‘(𝐶 · ((𝑇‘𝐴) ·ih (𝑇‘𝐵))))) / 2) |
141 | 13, 140 | eqtr4i 2769 |
1
⊢
(ℜ‘(𝐶
· ((𝑇‘𝐴)
·ih (𝑇‘𝐵)))) = (ℜ‘(𝐶 · (𝐴 ·ih 𝐵))) |