HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  ax-his1 Structured version   Visualization version   GIF version

Axiom ax-his1 29444
Description: Conjugate law for inner product. Postulate (S1) of [Beran] p. 95. Note that ∗‘𝑥 is the complex conjugate cjval 14813 of 𝑥. In the literature, the inner product of 𝐴 and 𝐵 is usually written 𝐴, 𝐵, but our operation notation co 7275 allows us to use existing theorems about operations and also avoids a clash with the definition of an ordered pair df-op 4568. Physicists use 𝐵𝐴, called Dirac bra-ket notation, to represent this operation; see comments in df-bra 30212. (Contributed by NM, 29-Jul-1999.) (New usage is discouraged.)
Assertion
Ref Expression
ax-his1 ((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ) → (𝐴 ·ih 𝐵) = (∗‘(𝐵 ·ih 𝐴)))

Detailed syntax breakdown of Axiom ax-his1
StepHypRef Expression
1 cA . . . 4 class 𝐴
2 chba 29281 . . . 4 class
31, 2wcel 2106 . . 3 wff 𝐴 ∈ ℋ
4 cB . . . 4 class 𝐵
54, 2wcel 2106 . . 3 wff 𝐵 ∈ ℋ
63, 5wa 396 . 2 wff (𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ)
7 csp 29284 . . . 4 class ·ih
81, 4, 7co 7275 . . 3 class (𝐴 ·ih 𝐵)
94, 1, 7co 7275 . . . 4 class (𝐵 ·ih 𝐴)
10 ccj 14807 . . . 4 class
119, 10cfv 6433 . . 3 class (∗‘(𝐵 ·ih 𝐴))
128, 11wceq 1539 . 2 wff (𝐴 ·ih 𝐵) = (∗‘(𝐵 ·ih 𝐴))
136, 12wi 4 1 wff ((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ) → (𝐴 ·ih 𝐵) = (∗‘(𝐵 ·ih 𝐴)))
Colors of variables: wff setvar class
This axiom is referenced by:  his5  29448  his7  29452  his2sub2  29455  hire  29456  hi02  29459  his1i  29462  abshicom  29463  hial2eq2  29469  orthcom  29470  adjsym  30195  cnvadj  30254  adj2  30296
  Copyright terms: Public domain W3C validator