| Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > HSE Home > Th. List > ax-his1 | Structured version Visualization version GIF version | ||
| Description: Conjugate law for inner product. Postulate (S1) of [Beran] p. 95. Note that ∗‘𝑥 is the complex conjugate cjval 15141 of 𝑥. In the literature, the inner product of 𝐴 and 𝐵 is usually written 〈𝐴, 𝐵〉, but our operation notation co 7431 allows to use existing theorems about operations and also avoids a clash with the definition of an ordered pair df-op 4633. Physicists use 〈𝐵 ∣ 𝐴〉, called Dirac bra-ket notation, to represent this operation; see comments in df-bra 31869. (Contributed by NM, 29-Jul-1999.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| ax-his1 | ⊢ ((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ) → (𝐴 ·ih 𝐵) = (∗‘(𝐵 ·ih 𝐴))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cA | . . . 4 class 𝐴 | |
| 2 | chba 30938 | . . . 4 class ℋ | |
| 3 | 1, 2 | wcel 2108 | . . 3 wff 𝐴 ∈ ℋ |
| 4 | cB | . . . 4 class 𝐵 | |
| 5 | 4, 2 | wcel 2108 | . . 3 wff 𝐵 ∈ ℋ |
| 6 | 3, 5 | wa 395 | . 2 wff (𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ) |
| 7 | csp 30941 | . . . 4 class ·ih | |
| 8 | 1, 4, 7 | co 7431 | . . 3 class (𝐴 ·ih 𝐵) |
| 9 | 4, 1, 7 | co 7431 | . . . 4 class (𝐵 ·ih 𝐴) |
| 10 | ccj 15135 | . . . 4 class ∗ | |
| 11 | 9, 10 | cfv 6561 | . . 3 class (∗‘(𝐵 ·ih 𝐴)) |
| 12 | 8, 11 | wceq 1540 | . 2 wff (𝐴 ·ih 𝐵) = (∗‘(𝐵 ·ih 𝐴)) |
| 13 | 6, 12 | wi 4 | 1 wff ((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ) → (𝐴 ·ih 𝐵) = (∗‘(𝐵 ·ih 𝐴))) |
| Colors of variables: wff setvar class |
| This axiom is referenced by: his5 31105 his7 31109 his2sub2 31112 hire 31113 hi02 31116 his1i 31119 abshicom 31120 hial2eq2 31126 orthcom 31127 adjsym 31852 cnvadj 31911 adj2 31953 |
| Copyright terms: Public domain | W3C validator |