![]() |
Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > HSE Home > Th. List > ax-his1 | Structured version Visualization version GIF version |
Description: Conjugate law for inner product. Postulate (S1) of [Beran] p. 95. Note that ∗‘𝑥 is the complex conjugate cjval 15151 of 𝑥. In the literature, the inner product of 𝐴 and 𝐵 is usually written 〈𝐴, 𝐵〉, but our operation notation co 7448 allows to use existing theorems about operations and also avoids a clash with the definition of an ordered pair df-op 4655. Physicists use 〈𝐵 ∣ 𝐴〉, called Dirac bra-ket notation, to represent this operation; see comments in df-bra 31882. (Contributed by NM, 29-Jul-1999.) (New usage is discouraged.) |
Ref | Expression |
---|---|
ax-his1 | ⊢ ((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ) → (𝐴 ·ih 𝐵) = (∗‘(𝐵 ·ih 𝐴))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cA | . . . 4 class 𝐴 | |
2 | chba 30951 | . . . 4 class ℋ | |
3 | 1, 2 | wcel 2108 | . . 3 wff 𝐴 ∈ ℋ |
4 | cB | . . . 4 class 𝐵 | |
5 | 4, 2 | wcel 2108 | . . 3 wff 𝐵 ∈ ℋ |
6 | 3, 5 | wa 395 | . 2 wff (𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ) |
7 | csp 30954 | . . . 4 class ·ih | |
8 | 1, 4, 7 | co 7448 | . . 3 class (𝐴 ·ih 𝐵) |
9 | 4, 1, 7 | co 7448 | . . . 4 class (𝐵 ·ih 𝐴) |
10 | ccj 15145 | . . . 4 class ∗ | |
11 | 9, 10 | cfv 6573 | . . 3 class (∗‘(𝐵 ·ih 𝐴)) |
12 | 8, 11 | wceq 1537 | . 2 wff (𝐴 ·ih 𝐵) = (∗‘(𝐵 ·ih 𝐴)) |
13 | 6, 12 | wi 4 | 1 wff ((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ) → (𝐴 ·ih 𝐵) = (∗‘(𝐵 ·ih 𝐴))) |
Colors of variables: wff setvar class |
This axiom is referenced by: his5 31118 his7 31122 his2sub2 31125 hire 31126 hi02 31129 his1i 31132 abshicom 31133 hial2eq2 31139 orthcom 31140 adjsym 31865 cnvadj 31924 adj2 31966 |
Copyright terms: Public domain | W3C validator |