HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  bcsiALT Structured version   Visualization version   GIF version

Theorem bcsiALT 31157
Description: Bunjakovaskij-Cauchy-Schwarz inequality. Remark 3.4 of [Beran] p. 98. (Contributed by NM, 11-Oct-1999.) (New usage is discouraged.) (Proof modification is discouraged.)
Hypotheses
Ref Expression
bcs.1 𝐴 ∈ ℋ
bcs.2 𝐵 ∈ ℋ
Assertion
Ref Expression
bcsiALT (abs‘(𝐴 ·ih 𝐵)) ≤ ((norm𝐴) · (norm𝐵))

Proof of Theorem bcsiALT
StepHypRef Expression
1 fveq2 6822 . . 3 ((𝐴 ·ih 𝐵) = 0 → (abs‘(𝐴 ·ih 𝐵)) = (abs‘0))
2 abs0 15192 . . . 4 (abs‘0) = 0
3 bcs.1 . . . . . 6 𝐴 ∈ ℋ
4 normge0 31104 . . . . . 6 (𝐴 ∈ ℋ → 0 ≤ (norm𝐴))
53, 4ax-mp 5 . . . . 5 0 ≤ (norm𝐴)
6 bcs.2 . . . . . 6 𝐵 ∈ ℋ
7 normge0 31104 . . . . . 6 (𝐵 ∈ ℋ → 0 ≤ (norm𝐵))
86, 7ax-mp 5 . . . . 5 0 ≤ (norm𝐵)
93normcli 31109 . . . . . 6 (norm𝐴) ∈ ℝ
106normcli 31109 . . . . . 6 (norm𝐵) ∈ ℝ
119, 10mulge0i 11664 . . . . 5 ((0 ≤ (norm𝐴) ∧ 0 ≤ (norm𝐵)) → 0 ≤ ((norm𝐴) · (norm𝐵)))
125, 8, 11mp2an 692 . . . 4 0 ≤ ((norm𝐴) · (norm𝐵))
132, 12eqbrtri 5112 . . 3 (abs‘0) ≤ ((norm𝐴) · (norm𝐵))
141, 13eqbrtrdi 5130 . 2 ((𝐴 ·ih 𝐵) = 0 → (abs‘(𝐴 ·ih 𝐵)) ≤ ((norm𝐴) · (norm𝐵)))
15 df-ne 2929 . . . 4 ((𝐴 ·ih 𝐵) ≠ 0 ↔ ¬ (𝐴 ·ih 𝐵) = 0)
166, 3his1i 31078 . . . . . . . 8 (𝐵 ·ih 𝐴) = (∗‘(𝐴 ·ih 𝐵))
1716oveq2i 7357 . . . . . . 7 (((𝐴 ·ih 𝐵) / (abs‘(𝐴 ·ih 𝐵))) · (𝐵 ·ih 𝐴)) = (((𝐴 ·ih 𝐵) / (abs‘(𝐴 ·ih 𝐵))) · (∗‘(𝐴 ·ih 𝐵)))
1817oveq2i 7357 . . . . . 6 (((∗‘((𝐴 ·ih 𝐵) / (abs‘(𝐴 ·ih 𝐵)))) · (𝐴 ·ih 𝐵)) + (((𝐴 ·ih 𝐵) / (abs‘(𝐴 ·ih 𝐵))) · (𝐵 ·ih 𝐴))) = (((∗‘((𝐴 ·ih 𝐵) / (abs‘(𝐴 ·ih 𝐵)))) · (𝐴 ·ih 𝐵)) + (((𝐴 ·ih 𝐵) / (abs‘(𝐴 ·ih 𝐵))) · (∗‘(𝐴 ·ih 𝐵))))
193, 6hicli 31059 . . . . . . 7 (𝐴 ·ih 𝐵) ∈ ℂ
20 abslem2 15247 . . . . . . 7 (((𝐴 ·ih 𝐵) ∈ ℂ ∧ (𝐴 ·ih 𝐵) ≠ 0) → (((∗‘((𝐴 ·ih 𝐵) / (abs‘(𝐴 ·ih 𝐵)))) · (𝐴 ·ih 𝐵)) + (((𝐴 ·ih 𝐵) / (abs‘(𝐴 ·ih 𝐵))) · (∗‘(𝐴 ·ih 𝐵)))) = (2 · (abs‘(𝐴 ·ih 𝐵))))
2119, 20mpan 690 . . . . . 6 ((𝐴 ·ih 𝐵) ≠ 0 → (((∗‘((𝐴 ·ih 𝐵) / (abs‘(𝐴 ·ih 𝐵)))) · (𝐴 ·ih 𝐵)) + (((𝐴 ·ih 𝐵) / (abs‘(𝐴 ·ih 𝐵))) · (∗‘(𝐴 ·ih 𝐵)))) = (2 · (abs‘(𝐴 ·ih 𝐵))))
2218, 21eqtr2id 2779 . . . . 5 ((𝐴 ·ih 𝐵) ≠ 0 → (2 · (abs‘(𝐴 ·ih 𝐵))) = (((∗‘((𝐴 ·ih 𝐵) / (abs‘(𝐴 ·ih 𝐵)))) · (𝐴 ·ih 𝐵)) + (((𝐴 ·ih 𝐵) / (abs‘(𝐴 ·ih 𝐵))) · (𝐵 ·ih 𝐴))))
2319abs00i 15306 . . . . . . . 8 ((abs‘(𝐴 ·ih 𝐵)) = 0 ↔ (𝐴 ·ih 𝐵) = 0)
2423necon3bii 2980 . . . . . . 7 ((abs‘(𝐴 ·ih 𝐵)) ≠ 0 ↔ (𝐴 ·ih 𝐵) ≠ 0)
2519abscli 15303 . . . . . . . . . 10 (abs‘(𝐴 ·ih 𝐵)) ∈ ℝ
2625recni 11126 . . . . . . . . 9 (abs‘(𝐴 ·ih 𝐵)) ∈ ℂ
2719, 26divclzi 11856 . . . . . . . 8 ((abs‘(𝐴 ·ih 𝐵)) ≠ 0 → ((𝐴 ·ih 𝐵) / (abs‘(𝐴 ·ih 𝐵))) ∈ ℂ)
2819, 26divreczi 11859 . . . . . . . . . 10 ((abs‘(𝐴 ·ih 𝐵)) ≠ 0 → ((𝐴 ·ih 𝐵) / (abs‘(𝐴 ·ih 𝐵))) = ((𝐴 ·ih 𝐵) · (1 / (abs‘(𝐴 ·ih 𝐵)))))
2928fveq2d 6826 . . . . . . . . 9 ((abs‘(𝐴 ·ih 𝐵)) ≠ 0 → (abs‘((𝐴 ·ih 𝐵) / (abs‘(𝐴 ·ih 𝐵)))) = (abs‘((𝐴 ·ih 𝐵) · (1 / (abs‘(𝐴 ·ih 𝐵))))))
3026recclzi 11846 . . . . . . . . . . 11 ((abs‘(𝐴 ·ih 𝐵)) ≠ 0 → (1 / (abs‘(𝐴 ·ih 𝐵))) ∈ ℂ)
31 absmul 15201 . . . . . . . . . . 11 (((𝐴 ·ih 𝐵) ∈ ℂ ∧ (1 / (abs‘(𝐴 ·ih 𝐵))) ∈ ℂ) → (abs‘((𝐴 ·ih 𝐵) · (1 / (abs‘(𝐴 ·ih 𝐵))))) = ((abs‘(𝐴 ·ih 𝐵)) · (abs‘(1 / (abs‘(𝐴 ·ih 𝐵))))))
3219, 30, 31sylancr 587 . . . . . . . . . 10 ((abs‘(𝐴 ·ih 𝐵)) ≠ 0 → (abs‘((𝐴 ·ih 𝐵) · (1 / (abs‘(𝐴 ·ih 𝐵))))) = ((abs‘(𝐴 ·ih 𝐵)) · (abs‘(1 / (abs‘(𝐴 ·ih 𝐵))))))
3325rerecclzi 11885 . . . . . . . . . . . 12 ((abs‘(𝐴 ·ih 𝐵)) ≠ 0 → (1 / (abs‘(𝐴 ·ih 𝐵))) ∈ ℝ)
34 0re 11114 . . . . . . . . . . . . . 14 0 ∈ ℝ
3533, 34jctil 519 . . . . . . . . . . . . 13 ((abs‘(𝐴 ·ih 𝐵)) ≠ 0 → (0 ∈ ℝ ∧ (1 / (abs‘(𝐴 ·ih 𝐵))) ∈ ℝ))
3619absgt0i 15307 . . . . . . . . . . . . . . 15 ((𝐴 ·ih 𝐵) ≠ 0 ↔ 0 < (abs‘(𝐴 ·ih 𝐵)))
3724, 36bitri 275 . . . . . . . . . . . . . 14 ((abs‘(𝐴 ·ih 𝐵)) ≠ 0 ↔ 0 < (abs‘(𝐴 ·ih 𝐵)))
3825recgt0i 12027 . . . . . . . . . . . . . 14 (0 < (abs‘(𝐴 ·ih 𝐵)) → 0 < (1 / (abs‘(𝐴 ·ih 𝐵))))
3937, 38sylbi 217 . . . . . . . . . . . . 13 ((abs‘(𝐴 ·ih 𝐵)) ≠ 0 → 0 < (1 / (abs‘(𝐴 ·ih 𝐵))))
40 ltle 11201 . . . . . . . . . . . . 13 ((0 ∈ ℝ ∧ (1 / (abs‘(𝐴 ·ih 𝐵))) ∈ ℝ) → (0 < (1 / (abs‘(𝐴 ·ih 𝐵))) → 0 ≤ (1 / (abs‘(𝐴 ·ih 𝐵)))))
4135, 39, 40sylc 65 . . . . . . . . . . . 12 ((abs‘(𝐴 ·ih 𝐵)) ≠ 0 → 0 ≤ (1 / (abs‘(𝐴 ·ih 𝐵))))
4233, 41absidd 15330 . . . . . . . . . . 11 ((abs‘(𝐴 ·ih 𝐵)) ≠ 0 → (abs‘(1 / (abs‘(𝐴 ·ih 𝐵)))) = (1 / (abs‘(𝐴 ·ih 𝐵))))
4342oveq2d 7362 . . . . . . . . . 10 ((abs‘(𝐴 ·ih 𝐵)) ≠ 0 → ((abs‘(𝐴 ·ih 𝐵)) · (abs‘(1 / (abs‘(𝐴 ·ih 𝐵))))) = ((abs‘(𝐴 ·ih 𝐵)) · (1 / (abs‘(𝐴 ·ih 𝐵)))))
4432, 43eqtrd 2766 . . . . . . . . 9 ((abs‘(𝐴 ·ih 𝐵)) ≠ 0 → (abs‘((𝐴 ·ih 𝐵) · (1 / (abs‘(𝐴 ·ih 𝐵))))) = ((abs‘(𝐴 ·ih 𝐵)) · (1 / (abs‘(𝐴 ·ih 𝐵)))))
4526recidzi 11848 . . . . . . . . 9 ((abs‘(𝐴 ·ih 𝐵)) ≠ 0 → ((abs‘(𝐴 ·ih 𝐵)) · (1 / (abs‘(𝐴 ·ih 𝐵)))) = 1)
4629, 44, 453eqtrd 2770 . . . . . . . 8 ((abs‘(𝐴 ·ih 𝐵)) ≠ 0 → (abs‘((𝐴 ·ih 𝐵) / (abs‘(𝐴 ·ih 𝐵)))) = 1)
4727, 46jca 511 . . . . . . 7 ((abs‘(𝐴 ·ih 𝐵)) ≠ 0 → (((𝐴 ·ih 𝐵) / (abs‘(𝐴 ·ih 𝐵))) ∈ ℂ ∧ (abs‘((𝐴 ·ih 𝐵) / (abs‘(𝐴 ·ih 𝐵)))) = 1))
4824, 47sylbir 235 . . . . . 6 ((𝐴 ·ih 𝐵) ≠ 0 → (((𝐴 ·ih 𝐵) / (abs‘(𝐴 ·ih 𝐵))) ∈ ℂ ∧ (abs‘((𝐴 ·ih 𝐵) / (abs‘(𝐴 ·ih 𝐵)))) = 1))
493, 6normlem7tALT 31097 . . . . . 6 ((((𝐴 ·ih 𝐵) / (abs‘(𝐴 ·ih 𝐵))) ∈ ℂ ∧ (abs‘((𝐴 ·ih 𝐵) / (abs‘(𝐴 ·ih 𝐵)))) = 1) → (((∗‘((𝐴 ·ih 𝐵) / (abs‘(𝐴 ·ih 𝐵)))) · (𝐴 ·ih 𝐵)) + (((𝐴 ·ih 𝐵) / (abs‘(𝐴 ·ih 𝐵))) · (𝐵 ·ih 𝐴))) ≤ (2 · ((√‘(𝐵 ·ih 𝐵)) · (√‘(𝐴 ·ih 𝐴)))))
5048, 49syl 17 . . . . 5 ((𝐴 ·ih 𝐵) ≠ 0 → (((∗‘((𝐴 ·ih 𝐵) / (abs‘(𝐴 ·ih 𝐵)))) · (𝐴 ·ih 𝐵)) + (((𝐴 ·ih 𝐵) / (abs‘(𝐴 ·ih 𝐵))) · (𝐵 ·ih 𝐴))) ≤ (2 · ((√‘(𝐵 ·ih 𝐵)) · (√‘(𝐴 ·ih 𝐴)))))
5122, 50eqbrtrd 5113 . . . 4 ((𝐴 ·ih 𝐵) ≠ 0 → (2 · (abs‘(𝐴 ·ih 𝐵))) ≤ (2 · ((√‘(𝐵 ·ih 𝐵)) · (√‘(𝐴 ·ih 𝐴)))))
5215, 51sylbir 235 . . 3 (¬ (𝐴 ·ih 𝐵) = 0 → (2 · (abs‘(𝐴 ·ih 𝐵))) ≤ (2 · ((√‘(𝐵 ·ih 𝐵)) · (√‘(𝐴 ·ih 𝐴)))))
5310recni 11126 . . . . . 6 (norm𝐵) ∈ ℂ
549recni 11126 . . . . . 6 (norm𝐴) ∈ ℂ
55 normval 31102 . . . . . . . 8 (𝐵 ∈ ℋ → (norm𝐵) = (√‘(𝐵 ·ih 𝐵)))
566, 55ax-mp 5 . . . . . . 7 (norm𝐵) = (√‘(𝐵 ·ih 𝐵))
57 normval 31102 . . . . . . . 8 (𝐴 ∈ ℋ → (norm𝐴) = (√‘(𝐴 ·ih 𝐴)))
583, 57ax-mp 5 . . . . . . 7 (norm𝐴) = (√‘(𝐴 ·ih 𝐴))
5956, 58oveq12i 7358 . . . . . 6 ((norm𝐵) · (norm𝐴)) = ((√‘(𝐵 ·ih 𝐵)) · (√‘(𝐴 ·ih 𝐴)))
6053, 54, 59mulcomli 11121 . . . . 5 ((norm𝐴) · (norm𝐵)) = ((√‘(𝐵 ·ih 𝐵)) · (√‘(𝐴 ·ih 𝐴)))
6160breq2i 5099 . . . 4 ((abs‘(𝐴 ·ih 𝐵)) ≤ ((norm𝐴) · (norm𝐵)) ↔ (abs‘(𝐴 ·ih 𝐵)) ≤ ((√‘(𝐵 ·ih 𝐵)) · (√‘(𝐴 ·ih 𝐴))))
62 2pos 12228 . . . . 5 0 < 2
63 hiidge0 31076 . . . . . . . 8 (𝐵 ∈ ℋ → 0 ≤ (𝐵 ·ih 𝐵))
64 hiidrcl 31073 . . . . . . . . . 10 (𝐵 ∈ ℋ → (𝐵 ·ih 𝐵) ∈ ℝ)
656, 64ax-mp 5 . . . . . . . . 9 (𝐵 ·ih 𝐵) ∈ ℝ
6665sqrtcli 15279 . . . . . . . 8 (0 ≤ (𝐵 ·ih 𝐵) → (√‘(𝐵 ·ih 𝐵)) ∈ ℝ)
676, 63, 66mp2b 10 . . . . . . 7 (√‘(𝐵 ·ih 𝐵)) ∈ ℝ
68 hiidge0 31076 . . . . . . . 8 (𝐴 ∈ ℋ → 0 ≤ (𝐴 ·ih 𝐴))
69 hiidrcl 31073 . . . . . . . . . 10 (𝐴 ∈ ℋ → (𝐴 ·ih 𝐴) ∈ ℝ)
703, 69ax-mp 5 . . . . . . . . 9 (𝐴 ·ih 𝐴) ∈ ℝ
7170sqrtcli 15279 . . . . . . . 8 (0 ≤ (𝐴 ·ih 𝐴) → (√‘(𝐴 ·ih 𝐴)) ∈ ℝ)
723, 68, 71mp2b 10 . . . . . . 7 (√‘(𝐴 ·ih 𝐴)) ∈ ℝ
7367, 72remulcli 11128 . . . . . 6 ((√‘(𝐵 ·ih 𝐵)) · (√‘(𝐴 ·ih 𝐴))) ∈ ℝ
74 2re 12199 . . . . . 6 2 ∈ ℝ
7525, 73, 74lemul2i 12045 . . . . 5 (0 < 2 → ((abs‘(𝐴 ·ih 𝐵)) ≤ ((√‘(𝐵 ·ih 𝐵)) · (√‘(𝐴 ·ih 𝐴))) ↔ (2 · (abs‘(𝐴 ·ih 𝐵))) ≤ (2 · ((√‘(𝐵 ·ih 𝐵)) · (√‘(𝐴 ·ih 𝐴))))))
7662, 75ax-mp 5 . . . 4 ((abs‘(𝐴 ·ih 𝐵)) ≤ ((√‘(𝐵 ·ih 𝐵)) · (√‘(𝐴 ·ih 𝐴))) ↔ (2 · (abs‘(𝐴 ·ih 𝐵))) ≤ (2 · ((√‘(𝐵 ·ih 𝐵)) · (√‘(𝐴 ·ih 𝐴)))))
7761, 76bitri 275 . . 3 ((abs‘(𝐴 ·ih 𝐵)) ≤ ((norm𝐴) · (norm𝐵)) ↔ (2 · (abs‘(𝐴 ·ih 𝐵))) ≤ (2 · ((√‘(𝐵 ·ih 𝐵)) · (√‘(𝐴 ·ih 𝐴)))))
7852, 77sylibr 234 . 2 (¬ (𝐴 ·ih 𝐵) = 0 → (abs‘(𝐴 ·ih 𝐵)) ≤ ((norm𝐴) · (norm𝐵)))
7914, 78pm2.61i 182 1 (abs‘(𝐴 ·ih 𝐵)) ≤ ((norm𝐴) · (norm𝐵))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wb 206  wa 395   = wceq 1541  wcel 2111  wne 2928   class class class wbr 5091  cfv 6481  (class class class)co 7346  cc 11004  cr 11005  0cc0 11006  1c1 11007   + caddc 11009   · cmul 11011   < clt 11146  cle 11147   / cdiv 11774  2c2 12180  ccj 15003  csqrt 15140  abscabs 15141  chba 30897   ·ih csp 30900  normcno 30901
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-sep 5234  ax-nul 5244  ax-pow 5303  ax-pr 5370  ax-un 7668  ax-cnex 11062  ax-resscn 11063  ax-1cn 11064  ax-icn 11065  ax-addcl 11066  ax-addrcl 11067  ax-mulcl 11068  ax-mulrcl 11069  ax-mulcom 11070  ax-addass 11071  ax-mulass 11072  ax-distr 11073  ax-i2m1 11074  ax-1ne0 11075  ax-1rid 11076  ax-rnegex 11077  ax-rrecex 11078  ax-cnre 11079  ax-pre-lttri 11080  ax-pre-lttrn 11081  ax-pre-ltadd 11082  ax-pre-mulgt0 11083  ax-pre-sup 11084  ax-hfvadd 30978  ax-hv0cl 30981  ax-hfvmul 30983  ax-hvmulass 30985  ax-hvmul0 30988  ax-hfi 31057  ax-his1 31060  ax-his2 31061  ax-his3 31062  ax-his4 31063
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-nel 3033  df-ral 3048  df-rex 3057  df-rmo 3346  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3742  df-csb 3851  df-dif 3905  df-un 3907  df-in 3909  df-ss 3919  df-pss 3922  df-nul 4284  df-if 4476  df-pw 4552  df-sn 4577  df-pr 4579  df-op 4583  df-uni 4860  df-iun 4943  df-br 5092  df-opab 5154  df-mpt 5173  df-tr 5199  df-id 5511  df-eprel 5516  df-po 5524  df-so 5525  df-fr 5569  df-we 5571  df-xp 5622  df-rel 5623  df-cnv 5624  df-co 5625  df-dm 5626  df-rn 5627  df-res 5628  df-ima 5629  df-pred 6248  df-ord 6309  df-on 6310  df-lim 6311  df-suc 6312  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-riota 7303  df-ov 7349  df-oprab 7350  df-mpo 7351  df-om 7797  df-2nd 7922  df-frecs 8211  df-wrecs 8242  df-recs 8291  df-rdg 8329  df-er 8622  df-en 8870  df-dom 8871  df-sdom 8872  df-sup 9326  df-pnf 11148  df-mnf 11149  df-xr 11150  df-ltxr 11151  df-le 11152  df-sub 11346  df-neg 11347  df-div 11775  df-nn 12126  df-2 12188  df-3 12189  df-4 12190  df-n0 12382  df-z 12469  df-uz 12733  df-rp 12891  df-seq 13909  df-exp 13969  df-cj 15006  df-re 15007  df-im 15008  df-sqrt 15142  df-abs 15143  df-hnorm 30946  df-hvsub 30949
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator