HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  bcsiALT Structured version   Visualization version   GIF version

Theorem bcsiALT 31208
Description: Bunjakovaskij-Cauchy-Schwarz inequality. Remark 3.4 of [Beran] p. 98. (Contributed by NM, 11-Oct-1999.) (New usage is discouraged.) (Proof modification is discouraged.)
Hypotheses
Ref Expression
bcs.1 𝐴 ∈ ℋ
bcs.2 𝐵 ∈ ℋ
Assertion
Ref Expression
bcsiALT (abs‘(𝐴 ·ih 𝐵)) ≤ ((norm𝐴) · (norm𝐵))

Proof of Theorem bcsiALT
StepHypRef Expression
1 fveq2 6907 . . 3 ((𝐴 ·ih 𝐵) = 0 → (abs‘(𝐴 ·ih 𝐵)) = (abs‘0))
2 abs0 15321 . . . 4 (abs‘0) = 0
3 bcs.1 . . . . . 6 𝐴 ∈ ℋ
4 normge0 31155 . . . . . 6 (𝐴 ∈ ℋ → 0 ≤ (norm𝐴))
53, 4ax-mp 5 . . . . 5 0 ≤ (norm𝐴)
6 bcs.2 . . . . . 6 𝐵 ∈ ℋ
7 normge0 31155 . . . . . 6 (𝐵 ∈ ℋ → 0 ≤ (norm𝐵))
86, 7ax-mp 5 . . . . 5 0 ≤ (norm𝐵)
93normcli 31160 . . . . . 6 (norm𝐴) ∈ ℝ
106normcli 31160 . . . . . 6 (norm𝐵) ∈ ℝ
119, 10mulge0i 11808 . . . . 5 ((0 ≤ (norm𝐴) ∧ 0 ≤ (norm𝐵)) → 0 ≤ ((norm𝐴) · (norm𝐵)))
125, 8, 11mp2an 692 . . . 4 0 ≤ ((norm𝐴) · (norm𝐵))
132, 12eqbrtri 5169 . . 3 (abs‘0) ≤ ((norm𝐴) · (norm𝐵))
141, 13eqbrtrdi 5187 . 2 ((𝐴 ·ih 𝐵) = 0 → (abs‘(𝐴 ·ih 𝐵)) ≤ ((norm𝐴) · (norm𝐵)))
15 df-ne 2939 . . . 4 ((𝐴 ·ih 𝐵) ≠ 0 ↔ ¬ (𝐴 ·ih 𝐵) = 0)
166, 3his1i 31129 . . . . . . . 8 (𝐵 ·ih 𝐴) = (∗‘(𝐴 ·ih 𝐵))
1716oveq2i 7442 . . . . . . 7 (((𝐴 ·ih 𝐵) / (abs‘(𝐴 ·ih 𝐵))) · (𝐵 ·ih 𝐴)) = (((𝐴 ·ih 𝐵) / (abs‘(𝐴 ·ih 𝐵))) · (∗‘(𝐴 ·ih 𝐵)))
1817oveq2i 7442 . . . . . 6 (((∗‘((𝐴 ·ih 𝐵) / (abs‘(𝐴 ·ih 𝐵)))) · (𝐴 ·ih 𝐵)) + (((𝐴 ·ih 𝐵) / (abs‘(𝐴 ·ih 𝐵))) · (𝐵 ·ih 𝐴))) = (((∗‘((𝐴 ·ih 𝐵) / (abs‘(𝐴 ·ih 𝐵)))) · (𝐴 ·ih 𝐵)) + (((𝐴 ·ih 𝐵) / (abs‘(𝐴 ·ih 𝐵))) · (∗‘(𝐴 ·ih 𝐵))))
193, 6hicli 31110 . . . . . . 7 (𝐴 ·ih 𝐵) ∈ ℂ
20 abslem2 15375 . . . . . . 7 (((𝐴 ·ih 𝐵) ∈ ℂ ∧ (𝐴 ·ih 𝐵) ≠ 0) → (((∗‘((𝐴 ·ih 𝐵) / (abs‘(𝐴 ·ih 𝐵)))) · (𝐴 ·ih 𝐵)) + (((𝐴 ·ih 𝐵) / (abs‘(𝐴 ·ih 𝐵))) · (∗‘(𝐴 ·ih 𝐵)))) = (2 · (abs‘(𝐴 ·ih 𝐵))))
2119, 20mpan 690 . . . . . 6 ((𝐴 ·ih 𝐵) ≠ 0 → (((∗‘((𝐴 ·ih 𝐵) / (abs‘(𝐴 ·ih 𝐵)))) · (𝐴 ·ih 𝐵)) + (((𝐴 ·ih 𝐵) / (abs‘(𝐴 ·ih 𝐵))) · (∗‘(𝐴 ·ih 𝐵)))) = (2 · (abs‘(𝐴 ·ih 𝐵))))
2218, 21eqtr2id 2788 . . . . 5 ((𝐴 ·ih 𝐵) ≠ 0 → (2 · (abs‘(𝐴 ·ih 𝐵))) = (((∗‘((𝐴 ·ih 𝐵) / (abs‘(𝐴 ·ih 𝐵)))) · (𝐴 ·ih 𝐵)) + (((𝐴 ·ih 𝐵) / (abs‘(𝐴 ·ih 𝐵))) · (𝐵 ·ih 𝐴))))
2319abs00i 15434 . . . . . . . 8 ((abs‘(𝐴 ·ih 𝐵)) = 0 ↔ (𝐴 ·ih 𝐵) = 0)
2423necon3bii 2991 . . . . . . 7 ((abs‘(𝐴 ·ih 𝐵)) ≠ 0 ↔ (𝐴 ·ih 𝐵) ≠ 0)
2519abscli 15431 . . . . . . . . . 10 (abs‘(𝐴 ·ih 𝐵)) ∈ ℝ
2625recni 11273 . . . . . . . . 9 (abs‘(𝐴 ·ih 𝐵)) ∈ ℂ
2719, 26divclzi 12000 . . . . . . . 8 ((abs‘(𝐴 ·ih 𝐵)) ≠ 0 → ((𝐴 ·ih 𝐵) / (abs‘(𝐴 ·ih 𝐵))) ∈ ℂ)
2819, 26divreczi 12003 . . . . . . . . . 10 ((abs‘(𝐴 ·ih 𝐵)) ≠ 0 → ((𝐴 ·ih 𝐵) / (abs‘(𝐴 ·ih 𝐵))) = ((𝐴 ·ih 𝐵) · (1 / (abs‘(𝐴 ·ih 𝐵)))))
2928fveq2d 6911 . . . . . . . . 9 ((abs‘(𝐴 ·ih 𝐵)) ≠ 0 → (abs‘((𝐴 ·ih 𝐵) / (abs‘(𝐴 ·ih 𝐵)))) = (abs‘((𝐴 ·ih 𝐵) · (1 / (abs‘(𝐴 ·ih 𝐵))))))
3026recclzi 11990 . . . . . . . . . . 11 ((abs‘(𝐴 ·ih 𝐵)) ≠ 0 → (1 / (abs‘(𝐴 ·ih 𝐵))) ∈ ℂ)
31 absmul 15330 . . . . . . . . . . 11 (((𝐴 ·ih 𝐵) ∈ ℂ ∧ (1 / (abs‘(𝐴 ·ih 𝐵))) ∈ ℂ) → (abs‘((𝐴 ·ih 𝐵) · (1 / (abs‘(𝐴 ·ih 𝐵))))) = ((abs‘(𝐴 ·ih 𝐵)) · (abs‘(1 / (abs‘(𝐴 ·ih 𝐵))))))
3219, 30, 31sylancr 587 . . . . . . . . . 10 ((abs‘(𝐴 ·ih 𝐵)) ≠ 0 → (abs‘((𝐴 ·ih 𝐵) · (1 / (abs‘(𝐴 ·ih 𝐵))))) = ((abs‘(𝐴 ·ih 𝐵)) · (abs‘(1 / (abs‘(𝐴 ·ih 𝐵))))))
3325rerecclzi 12029 . . . . . . . . . . . 12 ((abs‘(𝐴 ·ih 𝐵)) ≠ 0 → (1 / (abs‘(𝐴 ·ih 𝐵))) ∈ ℝ)
34 0re 11261 . . . . . . . . . . . . . 14 0 ∈ ℝ
3533, 34jctil 519 . . . . . . . . . . . . 13 ((abs‘(𝐴 ·ih 𝐵)) ≠ 0 → (0 ∈ ℝ ∧ (1 / (abs‘(𝐴 ·ih 𝐵))) ∈ ℝ))
3619absgt0i 15435 . . . . . . . . . . . . . . 15 ((𝐴 ·ih 𝐵) ≠ 0 ↔ 0 < (abs‘(𝐴 ·ih 𝐵)))
3724, 36bitri 275 . . . . . . . . . . . . . 14 ((abs‘(𝐴 ·ih 𝐵)) ≠ 0 ↔ 0 < (abs‘(𝐴 ·ih 𝐵)))
3825recgt0i 12171 . . . . . . . . . . . . . 14 (0 < (abs‘(𝐴 ·ih 𝐵)) → 0 < (1 / (abs‘(𝐴 ·ih 𝐵))))
3937, 38sylbi 217 . . . . . . . . . . . . 13 ((abs‘(𝐴 ·ih 𝐵)) ≠ 0 → 0 < (1 / (abs‘(𝐴 ·ih 𝐵))))
40 ltle 11347 . . . . . . . . . . . . 13 ((0 ∈ ℝ ∧ (1 / (abs‘(𝐴 ·ih 𝐵))) ∈ ℝ) → (0 < (1 / (abs‘(𝐴 ·ih 𝐵))) → 0 ≤ (1 / (abs‘(𝐴 ·ih 𝐵)))))
4135, 39, 40sylc 65 . . . . . . . . . . . 12 ((abs‘(𝐴 ·ih 𝐵)) ≠ 0 → 0 ≤ (1 / (abs‘(𝐴 ·ih 𝐵))))
4233, 41absidd 15458 . . . . . . . . . . 11 ((abs‘(𝐴 ·ih 𝐵)) ≠ 0 → (abs‘(1 / (abs‘(𝐴 ·ih 𝐵)))) = (1 / (abs‘(𝐴 ·ih 𝐵))))
4342oveq2d 7447 . . . . . . . . . 10 ((abs‘(𝐴 ·ih 𝐵)) ≠ 0 → ((abs‘(𝐴 ·ih 𝐵)) · (abs‘(1 / (abs‘(𝐴 ·ih 𝐵))))) = ((abs‘(𝐴 ·ih 𝐵)) · (1 / (abs‘(𝐴 ·ih 𝐵)))))
4432, 43eqtrd 2775 . . . . . . . . 9 ((abs‘(𝐴 ·ih 𝐵)) ≠ 0 → (abs‘((𝐴 ·ih 𝐵) · (1 / (abs‘(𝐴 ·ih 𝐵))))) = ((abs‘(𝐴 ·ih 𝐵)) · (1 / (abs‘(𝐴 ·ih 𝐵)))))
4526recidzi 11992 . . . . . . . . 9 ((abs‘(𝐴 ·ih 𝐵)) ≠ 0 → ((abs‘(𝐴 ·ih 𝐵)) · (1 / (abs‘(𝐴 ·ih 𝐵)))) = 1)
4629, 44, 453eqtrd 2779 . . . . . . . 8 ((abs‘(𝐴 ·ih 𝐵)) ≠ 0 → (abs‘((𝐴 ·ih 𝐵) / (abs‘(𝐴 ·ih 𝐵)))) = 1)
4727, 46jca 511 . . . . . . 7 ((abs‘(𝐴 ·ih 𝐵)) ≠ 0 → (((𝐴 ·ih 𝐵) / (abs‘(𝐴 ·ih 𝐵))) ∈ ℂ ∧ (abs‘((𝐴 ·ih 𝐵) / (abs‘(𝐴 ·ih 𝐵)))) = 1))
4824, 47sylbir 235 . . . . . 6 ((𝐴 ·ih 𝐵) ≠ 0 → (((𝐴 ·ih 𝐵) / (abs‘(𝐴 ·ih 𝐵))) ∈ ℂ ∧ (abs‘((𝐴 ·ih 𝐵) / (abs‘(𝐴 ·ih 𝐵)))) = 1))
493, 6normlem7tALT 31148 . . . . . 6 ((((𝐴 ·ih 𝐵) / (abs‘(𝐴 ·ih 𝐵))) ∈ ℂ ∧ (abs‘((𝐴 ·ih 𝐵) / (abs‘(𝐴 ·ih 𝐵)))) = 1) → (((∗‘((𝐴 ·ih 𝐵) / (abs‘(𝐴 ·ih 𝐵)))) · (𝐴 ·ih 𝐵)) + (((𝐴 ·ih 𝐵) / (abs‘(𝐴 ·ih 𝐵))) · (𝐵 ·ih 𝐴))) ≤ (2 · ((√‘(𝐵 ·ih 𝐵)) · (√‘(𝐴 ·ih 𝐴)))))
5048, 49syl 17 . . . . 5 ((𝐴 ·ih 𝐵) ≠ 0 → (((∗‘((𝐴 ·ih 𝐵) / (abs‘(𝐴 ·ih 𝐵)))) · (𝐴 ·ih 𝐵)) + (((𝐴 ·ih 𝐵) / (abs‘(𝐴 ·ih 𝐵))) · (𝐵 ·ih 𝐴))) ≤ (2 · ((√‘(𝐵 ·ih 𝐵)) · (√‘(𝐴 ·ih 𝐴)))))
5122, 50eqbrtrd 5170 . . . 4 ((𝐴 ·ih 𝐵) ≠ 0 → (2 · (abs‘(𝐴 ·ih 𝐵))) ≤ (2 · ((√‘(𝐵 ·ih 𝐵)) · (√‘(𝐴 ·ih 𝐴)))))
5215, 51sylbir 235 . . 3 (¬ (𝐴 ·ih 𝐵) = 0 → (2 · (abs‘(𝐴 ·ih 𝐵))) ≤ (2 · ((√‘(𝐵 ·ih 𝐵)) · (√‘(𝐴 ·ih 𝐴)))))
5310recni 11273 . . . . . 6 (norm𝐵) ∈ ℂ
549recni 11273 . . . . . 6 (norm𝐴) ∈ ℂ
55 normval 31153 . . . . . . . 8 (𝐵 ∈ ℋ → (norm𝐵) = (√‘(𝐵 ·ih 𝐵)))
566, 55ax-mp 5 . . . . . . 7 (norm𝐵) = (√‘(𝐵 ·ih 𝐵))
57 normval 31153 . . . . . . . 8 (𝐴 ∈ ℋ → (norm𝐴) = (√‘(𝐴 ·ih 𝐴)))
583, 57ax-mp 5 . . . . . . 7 (norm𝐴) = (√‘(𝐴 ·ih 𝐴))
5956, 58oveq12i 7443 . . . . . 6 ((norm𝐵) · (norm𝐴)) = ((√‘(𝐵 ·ih 𝐵)) · (√‘(𝐴 ·ih 𝐴)))
6053, 54, 59mulcomli 11268 . . . . 5 ((norm𝐴) · (norm𝐵)) = ((√‘(𝐵 ·ih 𝐵)) · (√‘(𝐴 ·ih 𝐴)))
6160breq2i 5156 . . . 4 ((abs‘(𝐴 ·ih 𝐵)) ≤ ((norm𝐴) · (norm𝐵)) ↔ (abs‘(𝐴 ·ih 𝐵)) ≤ ((√‘(𝐵 ·ih 𝐵)) · (√‘(𝐴 ·ih 𝐴))))
62 2pos 12367 . . . . 5 0 < 2
63 hiidge0 31127 . . . . . . . 8 (𝐵 ∈ ℋ → 0 ≤ (𝐵 ·ih 𝐵))
64 hiidrcl 31124 . . . . . . . . . 10 (𝐵 ∈ ℋ → (𝐵 ·ih 𝐵) ∈ ℝ)
656, 64ax-mp 5 . . . . . . . . 9 (𝐵 ·ih 𝐵) ∈ ℝ
6665sqrtcli 15407 . . . . . . . 8 (0 ≤ (𝐵 ·ih 𝐵) → (√‘(𝐵 ·ih 𝐵)) ∈ ℝ)
676, 63, 66mp2b 10 . . . . . . 7 (√‘(𝐵 ·ih 𝐵)) ∈ ℝ
68 hiidge0 31127 . . . . . . . 8 (𝐴 ∈ ℋ → 0 ≤ (𝐴 ·ih 𝐴))
69 hiidrcl 31124 . . . . . . . . . 10 (𝐴 ∈ ℋ → (𝐴 ·ih 𝐴) ∈ ℝ)
703, 69ax-mp 5 . . . . . . . . 9 (𝐴 ·ih 𝐴) ∈ ℝ
7170sqrtcli 15407 . . . . . . . 8 (0 ≤ (𝐴 ·ih 𝐴) → (√‘(𝐴 ·ih 𝐴)) ∈ ℝ)
723, 68, 71mp2b 10 . . . . . . 7 (√‘(𝐴 ·ih 𝐴)) ∈ ℝ
7367, 72remulcli 11275 . . . . . 6 ((√‘(𝐵 ·ih 𝐵)) · (√‘(𝐴 ·ih 𝐴))) ∈ ℝ
74 2re 12338 . . . . . 6 2 ∈ ℝ
7525, 73, 74lemul2i 12189 . . . . 5 (0 < 2 → ((abs‘(𝐴 ·ih 𝐵)) ≤ ((√‘(𝐵 ·ih 𝐵)) · (√‘(𝐴 ·ih 𝐴))) ↔ (2 · (abs‘(𝐴 ·ih 𝐵))) ≤ (2 · ((√‘(𝐵 ·ih 𝐵)) · (√‘(𝐴 ·ih 𝐴))))))
7662, 75ax-mp 5 . . . 4 ((abs‘(𝐴 ·ih 𝐵)) ≤ ((√‘(𝐵 ·ih 𝐵)) · (√‘(𝐴 ·ih 𝐴))) ↔ (2 · (abs‘(𝐴 ·ih 𝐵))) ≤ (2 · ((√‘(𝐵 ·ih 𝐵)) · (√‘(𝐴 ·ih 𝐴)))))
7761, 76bitri 275 . . 3 ((abs‘(𝐴 ·ih 𝐵)) ≤ ((norm𝐴) · (norm𝐵)) ↔ (2 · (abs‘(𝐴 ·ih 𝐵))) ≤ (2 · ((√‘(𝐵 ·ih 𝐵)) · (√‘(𝐴 ·ih 𝐴)))))
7852, 77sylibr 234 . 2 (¬ (𝐴 ·ih 𝐵) = 0 → (abs‘(𝐴 ·ih 𝐵)) ≤ ((norm𝐴) · (norm𝐵)))
7914, 78pm2.61i 182 1 (abs‘(𝐴 ·ih 𝐵)) ≤ ((norm𝐴) · (norm𝐵))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wb 206  wa 395   = wceq 1537  wcel 2106  wne 2938   class class class wbr 5148  cfv 6563  (class class class)co 7431  cc 11151  cr 11152  0cc0 11153  1c1 11154   + caddc 11156   · cmul 11158   < clt 11293  cle 11294   / cdiv 11918  2c2 12319  ccj 15132  csqrt 15269  abscabs 15270  chba 30948   ·ih csp 30951  normcno 30952
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-10 2139  ax-11 2155  ax-12 2175  ax-ext 2706  ax-sep 5302  ax-nul 5312  ax-pow 5371  ax-pr 5438  ax-un 7754  ax-cnex 11209  ax-resscn 11210  ax-1cn 11211  ax-icn 11212  ax-addcl 11213  ax-addrcl 11214  ax-mulcl 11215  ax-mulrcl 11216  ax-mulcom 11217  ax-addass 11218  ax-mulass 11219  ax-distr 11220  ax-i2m1 11221  ax-1ne0 11222  ax-1rid 11223  ax-rnegex 11224  ax-rrecex 11225  ax-cnre 11226  ax-pre-lttri 11227  ax-pre-lttrn 11228  ax-pre-ltadd 11229  ax-pre-mulgt0 11230  ax-pre-sup 11231  ax-hfvadd 31029  ax-hv0cl 31032  ax-hfvmul 31034  ax-hvmulass 31036  ax-hvmul0 31039  ax-hfi 31108  ax-his1 31111  ax-his2 31112  ax-his3 31113  ax-his4 31114
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-nf 1781  df-sb 2063  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2727  df-clel 2814  df-nfc 2890  df-ne 2939  df-nel 3045  df-ral 3060  df-rex 3069  df-rmo 3378  df-reu 3379  df-rab 3434  df-v 3480  df-sbc 3792  df-csb 3909  df-dif 3966  df-un 3968  df-in 3970  df-ss 3980  df-pss 3983  df-nul 4340  df-if 4532  df-pw 4607  df-sn 4632  df-pr 4634  df-op 4638  df-uni 4913  df-iun 4998  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5583  df-eprel 5589  df-po 5597  df-so 5598  df-fr 5641  df-we 5643  df-xp 5695  df-rel 5696  df-cnv 5697  df-co 5698  df-dm 5699  df-rn 5700  df-res 5701  df-ima 5702  df-pred 6323  df-ord 6389  df-on 6390  df-lim 6391  df-suc 6392  df-iota 6516  df-fun 6565  df-fn 6566  df-f 6567  df-f1 6568  df-fo 6569  df-f1o 6570  df-fv 6571  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-om 7888  df-2nd 8014  df-frecs 8305  df-wrecs 8336  df-recs 8410  df-rdg 8449  df-er 8744  df-en 8985  df-dom 8986  df-sdom 8987  df-sup 9480  df-pnf 11295  df-mnf 11296  df-xr 11297  df-ltxr 11298  df-le 11299  df-sub 11492  df-neg 11493  df-div 11919  df-nn 12265  df-2 12327  df-3 12328  df-4 12329  df-n0 12525  df-z 12612  df-uz 12877  df-rp 13033  df-seq 14040  df-exp 14100  df-cj 15135  df-re 15136  df-im 15137  df-sqrt 15271  df-abs 15272  df-hnorm 30997  df-hvsub 31000
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator