Mathbox for Richard Penner |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > ifpim1 | Structured version Visualization version GIF version |
Description: Restate implication as conditional logic operator. (Contributed by RP, 20-Apr-2020.) |
Ref | Expression |
---|---|
ifpim1 | ⊢ ((𝜑 → 𝜓) ↔ if-(¬ 𝜑, ⊤, 𝜓)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | tru 1543 | . . . 4 ⊢ ⊤ | |
2 | 1 | olci 863 | . . 3 ⊢ (¬ ¬ 𝜑 ∨ ⊤) |
3 | 2 | biantrur 531 | . 2 ⊢ ((¬ 𝜑 ∨ 𝜓) ↔ ((¬ ¬ 𝜑 ∨ ⊤) ∧ (¬ 𝜑 ∨ 𝜓))) |
4 | imor 850 | . 2 ⊢ ((𝜑 → 𝜓) ↔ (¬ 𝜑 ∨ 𝜓)) | |
5 | dfifp4 1064 | . 2 ⊢ (if-(¬ 𝜑, ⊤, 𝜓) ↔ ((¬ ¬ 𝜑 ∨ ⊤) ∧ (¬ 𝜑 ∨ 𝜓))) | |
6 | 3, 4, 5 | 3bitr4i 303 | 1 ⊢ ((𝜑 → 𝜓) ↔ if-(¬ 𝜑, ⊤, 𝜓)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 205 ∧ wa 396 ∨ wo 844 if-wif 1060 ⊤wtru 1540 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-ifp 1061 df-tru 1542 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |