| Mathbox for Richard Penner |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > ifpim1 | Structured version Visualization version GIF version | ||
| Description: Restate implication as conditional logic operator. (Contributed by RP, 20-Apr-2020.) |
| Ref | Expression |
|---|---|
| ifpim1 | ⊢ ((𝜑 → 𝜓) ↔ if-(¬ 𝜑, ⊤, 𝜓)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | tru 1544 | . . . 4 ⊢ ⊤ | |
| 2 | 1 | olci 867 | . . 3 ⊢ (¬ ¬ 𝜑 ∨ ⊤) |
| 3 | 2 | biantrur 530 | . 2 ⊢ ((¬ 𝜑 ∨ 𝜓) ↔ ((¬ ¬ 𝜑 ∨ ⊤) ∧ (¬ 𝜑 ∨ 𝜓))) |
| 4 | imor 854 | . 2 ⊢ ((𝜑 → 𝜓) ↔ (¬ 𝜑 ∨ 𝜓)) | |
| 5 | dfifp4 1067 | . 2 ⊢ (if-(¬ 𝜑, ⊤, 𝜓) ↔ ((¬ ¬ 𝜑 ∨ ⊤) ∧ (¬ 𝜑 ∨ 𝜓))) | |
| 6 | 3, 4, 5 | 3bitr4i 303 | 1 ⊢ ((𝜑 → 𝜓) ↔ if-(¬ 𝜑, ⊤, 𝜓)) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ↔ wb 206 ∧ wa 395 ∨ wo 848 if-wif 1063 ⊤wtru 1541 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 849 df-ifp 1064 df-tru 1543 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |