|   | Mathbox for Richard Penner | < Previous  
      Next > Nearby theorems | |
| Mirrors > Home > MPE Home > Th. List > Mathboxes > ifpnot | Structured version Visualization version GIF version | ||
| Description: Restate negated wff as conditional logic operator. (Contributed by RP, 20-Apr-2020.) | 
| Ref | Expression | 
|---|---|
| ifpnot | ⊢ (¬ 𝜑 ↔ if-(𝜑, ⊥, ⊤)) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | tru 1544 | . . . 4 ⊢ ⊤ | |
| 2 | 1 | olci 867 | . . 3 ⊢ (𝜑 ∨ ⊤) | 
| 3 | 2 | biantru 529 | . 2 ⊢ ((¬ 𝜑 ∨ ⊥) ↔ ((¬ 𝜑 ∨ ⊥) ∧ (𝜑 ∨ ⊤))) | 
| 4 | fal 1554 | . . 3 ⊢ ¬ ⊥ | |
| 5 | 4 | biorfri 940 | . 2 ⊢ (¬ 𝜑 ↔ (¬ 𝜑 ∨ ⊥)) | 
| 6 | dfifp4 1067 | . 2 ⊢ (if-(𝜑, ⊥, ⊤) ↔ ((¬ 𝜑 ∨ ⊥) ∧ (𝜑 ∨ ⊤))) | |
| 7 | 3, 5, 6 | 3bitr4i 303 | 1 ⊢ (¬ 𝜑 ↔ if-(𝜑, ⊥, ⊤)) | 
| Colors of variables: wff setvar class | 
| Syntax hints: ¬ wn 3 ↔ wb 206 ∧ wa 395 ∨ wo 848 if-wif 1063 ⊤wtru 1541 ⊥wfal 1552 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 | 
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 849 df-ifp 1064 df-tru 1543 df-fal 1553 | 
| This theorem is referenced by: (None) | 
| Copyright terms: Public domain | W3C validator |