Mathbox for Richard Penner |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > ifpnot | Structured version Visualization version GIF version |
Description: Restate negated wff as conditional logic operator. (Contributed by RP, 20-Apr-2020.) |
Ref | Expression |
---|---|
ifpnot | ⊢ (¬ 𝜑 ↔ if-(𝜑, ⊥, ⊤)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | tru 1543 | . . . 4 ⊢ ⊤ | |
2 | 1 | olci 862 | . . 3 ⊢ (𝜑 ∨ ⊤) |
3 | 2 | biantru 529 | . 2 ⊢ ((¬ 𝜑 ∨ ⊥) ↔ ((¬ 𝜑 ∨ ⊥) ∧ (𝜑 ∨ ⊤))) |
4 | fal 1553 | . . 3 ⊢ ¬ ⊥ | |
5 | 4 | biorfi 935 | . 2 ⊢ (¬ 𝜑 ↔ (¬ 𝜑 ∨ ⊥)) |
6 | dfifp4 1063 | . 2 ⊢ (if-(𝜑, ⊥, ⊤) ↔ ((¬ 𝜑 ∨ ⊥) ∧ (𝜑 ∨ ⊤))) | |
7 | 3, 5, 6 | 3bitr4i 302 | 1 ⊢ (¬ 𝜑 ↔ if-(𝜑, ⊥, ⊤)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 ↔ wb 205 ∧ wa 395 ∨ wo 843 if-wif 1059 ⊤wtru 1540 ⊥wfal 1551 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-ifp 1060 df-tru 1542 df-fal 1552 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |