![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > raleqbidvvOLD | Structured version Visualization version GIF version |
Description: Obsolete version of raleqbidvv 3321 as of 9-Mar-2025. (Contributed by BJ, 22-Sep-2024.) (New usage is discouraged.) (Proof modification is discouraged.) |
Ref | Expression |
---|---|
raleqbidvv.1 | ⊢ (𝜑 → 𝐴 = 𝐵) |
raleqbidvv.2 | ⊢ (𝜑 → (𝜓 ↔ 𝜒)) |
Ref | Expression |
---|---|
raleqbidvvOLD | ⊢ (𝜑 → (∀𝑥 ∈ 𝐴 𝜓 ↔ ∀𝑥 ∈ 𝐵 𝜒)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | raleqbidvv.2 | . . . . . 6 ⊢ (𝜑 → (𝜓 ↔ 𝜒)) | |
2 | 1 | alrimiv 1922 | . . . . 5 ⊢ (𝜑 → ∀𝑥(𝜓 ↔ 𝜒)) |
3 | raleqbidvv.1 | . . . . . 6 ⊢ (𝜑 → 𝐴 = 𝐵) | |
4 | dfcleq 2717 | . . . . . 6 ⊢ (𝐴 = 𝐵 ↔ ∀𝑥(𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵)) | |
5 | 3, 4 | sylib 217 | . . . . 5 ⊢ (𝜑 → ∀𝑥(𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵)) |
6 | 19.26 1865 | . . . . 5 ⊢ (∀𝑥((𝜓 ↔ 𝜒) ∧ (𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵)) ↔ (∀𝑥(𝜓 ↔ 𝜒) ∧ ∀𝑥(𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵))) | |
7 | 2, 5, 6 | sylanbrc 582 | . . . 4 ⊢ (𝜑 → ∀𝑥((𝜓 ↔ 𝜒) ∧ (𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵))) |
8 | imbi12 346 | . . . . 5 ⊢ ((𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵) → ((𝜓 ↔ 𝜒) → ((𝑥 ∈ 𝐴 → 𝜓) ↔ (𝑥 ∈ 𝐵 → 𝜒)))) | |
9 | 8 | impcom 407 | . . . 4 ⊢ (((𝜓 ↔ 𝜒) ∧ (𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵)) → ((𝑥 ∈ 𝐴 → 𝜓) ↔ (𝑥 ∈ 𝐵 → 𝜒))) |
10 | 7, 9 | sylg 1817 | . . 3 ⊢ (𝜑 → ∀𝑥((𝑥 ∈ 𝐴 → 𝜓) ↔ (𝑥 ∈ 𝐵 → 𝜒))) |
11 | albi 1812 | . . 3 ⊢ (∀𝑥((𝑥 ∈ 𝐴 → 𝜓) ↔ (𝑥 ∈ 𝐵 → 𝜒)) → (∀𝑥(𝑥 ∈ 𝐴 → 𝜓) ↔ ∀𝑥(𝑥 ∈ 𝐵 → 𝜒))) | |
12 | 10, 11 | syl 17 | . 2 ⊢ (𝜑 → (∀𝑥(𝑥 ∈ 𝐴 → 𝜓) ↔ ∀𝑥(𝑥 ∈ 𝐵 → 𝜒))) |
13 | df-ral 3054 | . 2 ⊢ (∀𝑥 ∈ 𝐴 𝜓 ↔ ∀𝑥(𝑥 ∈ 𝐴 → 𝜓)) | |
14 | df-ral 3054 | . 2 ⊢ (∀𝑥 ∈ 𝐵 𝜒 ↔ ∀𝑥(𝑥 ∈ 𝐵 → 𝜒)) | |
15 | 12, 13, 14 | 3bitr4g 314 | 1 ⊢ (𝜑 → (∀𝑥 ∈ 𝐴 𝜓 ↔ ∀𝑥 ∈ 𝐵 𝜒)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 395 ∀wal 1531 = wceq 1533 ∈ wcel 2098 ∀wral 3053 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-9 2108 ax-ext 2695 |
This theorem depends on definitions: df-bi 206 df-an 396 df-ex 1774 df-cleq 2716 df-ral 3054 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |