Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > imp4d | Structured version Visualization version GIF version |
Description: An importation inference. (Contributed by NM, 26-Apr-1994.) |
Ref | Expression |
---|---|
imp4.1 | ⊢ (𝜑 → (𝜓 → (𝜒 → (𝜃 → 𝜏)))) |
Ref | Expression |
---|---|
imp4d | ⊢ (𝜑 → ((𝜓 ∧ (𝜒 ∧ 𝜃)) → 𝜏)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | imp4.1 | . . 3 ⊢ (𝜑 → (𝜓 → (𝜒 → (𝜃 → 𝜏)))) | |
2 | 1 | imp4a 423 | . 2 ⊢ (𝜑 → (𝜓 → ((𝜒 ∧ 𝜃) → 𝜏))) |
3 | 2 | impd 411 | 1 ⊢ (𝜑 → ((𝜓 ∧ (𝜒 ∧ 𝜃)) → 𝜏)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 df-an 397 |
This theorem is referenced by: imp45 430 tfrlem9 8216 uzind 12412 facdiv 14001 cvrexchlem 37433 rexlimdv3d 40505 |
Copyright terms: Public domain | W3C validator |