MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  facdiv Structured version   Visualization version   GIF version

Theorem facdiv 14194
Description: A positive integer divides the factorial of an equal or larger number. (Contributed by NM, 2-May-2005.)
Assertion
Ref Expression
facdiv ((𝑀 ∈ ℕ0𝑁 ∈ ℕ ∧ 𝑁𝑀) → ((!‘𝑀) / 𝑁) ∈ ℕ)

Proof of Theorem facdiv
Dummy variables 𝑗 𝑘 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 breq2 5093 . . . . 5 (𝑗 = 0 → (𝑁𝑗𝑁 ≤ 0))
2 fveq2 6822 . . . . . . 7 (𝑗 = 0 → (!‘𝑗) = (!‘0))
32oveq1d 7361 . . . . . 6 (𝑗 = 0 → ((!‘𝑗) / 𝑁) = ((!‘0) / 𝑁))
43eleq1d 2816 . . . . 5 (𝑗 = 0 → (((!‘𝑗) / 𝑁) ∈ ℕ ↔ ((!‘0) / 𝑁) ∈ ℕ))
51, 4imbi12d 344 . . . 4 (𝑗 = 0 → ((𝑁𝑗 → ((!‘𝑗) / 𝑁) ∈ ℕ) ↔ (𝑁 ≤ 0 → ((!‘0) / 𝑁) ∈ ℕ)))
65imbi2d 340 . . 3 (𝑗 = 0 → ((𝑁 ∈ ℕ → (𝑁𝑗 → ((!‘𝑗) / 𝑁) ∈ ℕ)) ↔ (𝑁 ∈ ℕ → (𝑁 ≤ 0 → ((!‘0) / 𝑁) ∈ ℕ))))
7 breq2 5093 . . . . 5 (𝑗 = 𝑘 → (𝑁𝑗𝑁𝑘))
8 fveq2 6822 . . . . . . 7 (𝑗 = 𝑘 → (!‘𝑗) = (!‘𝑘))
98oveq1d 7361 . . . . . 6 (𝑗 = 𝑘 → ((!‘𝑗) / 𝑁) = ((!‘𝑘) / 𝑁))
109eleq1d 2816 . . . . 5 (𝑗 = 𝑘 → (((!‘𝑗) / 𝑁) ∈ ℕ ↔ ((!‘𝑘) / 𝑁) ∈ ℕ))
117, 10imbi12d 344 . . . 4 (𝑗 = 𝑘 → ((𝑁𝑗 → ((!‘𝑗) / 𝑁) ∈ ℕ) ↔ (𝑁𝑘 → ((!‘𝑘) / 𝑁) ∈ ℕ)))
1211imbi2d 340 . . 3 (𝑗 = 𝑘 → ((𝑁 ∈ ℕ → (𝑁𝑗 → ((!‘𝑗) / 𝑁) ∈ ℕ)) ↔ (𝑁 ∈ ℕ → (𝑁𝑘 → ((!‘𝑘) / 𝑁) ∈ ℕ))))
13 breq2 5093 . . . . 5 (𝑗 = (𝑘 + 1) → (𝑁𝑗𝑁 ≤ (𝑘 + 1)))
14 fveq2 6822 . . . . . . 7 (𝑗 = (𝑘 + 1) → (!‘𝑗) = (!‘(𝑘 + 1)))
1514oveq1d 7361 . . . . . 6 (𝑗 = (𝑘 + 1) → ((!‘𝑗) / 𝑁) = ((!‘(𝑘 + 1)) / 𝑁))
1615eleq1d 2816 . . . . 5 (𝑗 = (𝑘 + 1) → (((!‘𝑗) / 𝑁) ∈ ℕ ↔ ((!‘(𝑘 + 1)) / 𝑁) ∈ ℕ))
1713, 16imbi12d 344 . . . 4 (𝑗 = (𝑘 + 1) → ((𝑁𝑗 → ((!‘𝑗) / 𝑁) ∈ ℕ) ↔ (𝑁 ≤ (𝑘 + 1) → ((!‘(𝑘 + 1)) / 𝑁) ∈ ℕ)))
1817imbi2d 340 . . 3 (𝑗 = (𝑘 + 1) → ((𝑁 ∈ ℕ → (𝑁𝑗 → ((!‘𝑗) / 𝑁) ∈ ℕ)) ↔ (𝑁 ∈ ℕ → (𝑁 ≤ (𝑘 + 1) → ((!‘(𝑘 + 1)) / 𝑁) ∈ ℕ))))
19 breq2 5093 . . . . 5 (𝑗 = 𝑀 → (𝑁𝑗𝑁𝑀))
20 fveq2 6822 . . . . . . 7 (𝑗 = 𝑀 → (!‘𝑗) = (!‘𝑀))
2120oveq1d 7361 . . . . . 6 (𝑗 = 𝑀 → ((!‘𝑗) / 𝑁) = ((!‘𝑀) / 𝑁))
2221eleq1d 2816 . . . . 5 (𝑗 = 𝑀 → (((!‘𝑗) / 𝑁) ∈ ℕ ↔ ((!‘𝑀) / 𝑁) ∈ ℕ))
2319, 22imbi12d 344 . . . 4 (𝑗 = 𝑀 → ((𝑁𝑗 → ((!‘𝑗) / 𝑁) ∈ ℕ) ↔ (𝑁𝑀 → ((!‘𝑀) / 𝑁) ∈ ℕ)))
2423imbi2d 340 . . 3 (𝑗 = 𝑀 → ((𝑁 ∈ ℕ → (𝑁𝑗 → ((!‘𝑗) / 𝑁) ∈ ℕ)) ↔ (𝑁 ∈ ℕ → (𝑁𝑀 → ((!‘𝑀) / 𝑁) ∈ ℕ))))
25 nnnle0 12158 . . . 4 (𝑁 ∈ ℕ → ¬ 𝑁 ≤ 0)
2625pm2.21d 121 . . 3 (𝑁 ∈ ℕ → (𝑁 ≤ 0 → ((!‘0) / 𝑁) ∈ ℕ))
27 nnre 12132 . . . . . . . . . . . 12 (𝑁 ∈ ℕ → 𝑁 ∈ ℝ)
28 peano2nn0 12421 . . . . . . . . . . . . 13 (𝑘 ∈ ℕ0 → (𝑘 + 1) ∈ ℕ0)
2928nn0red 12443 . . . . . . . . . . . 12 (𝑘 ∈ ℕ0 → (𝑘 + 1) ∈ ℝ)
30 leloe 11199 . . . . . . . . . . . 12 ((𝑁 ∈ ℝ ∧ (𝑘 + 1) ∈ ℝ) → (𝑁 ≤ (𝑘 + 1) ↔ (𝑁 < (𝑘 + 1) ∨ 𝑁 = (𝑘 + 1))))
3127, 29, 30syl2an 596 . . . . . . . . . . 11 ((𝑁 ∈ ℕ ∧ 𝑘 ∈ ℕ0) → (𝑁 ≤ (𝑘 + 1) ↔ (𝑁 < (𝑘 + 1) ∨ 𝑁 = (𝑘 + 1))))
32 nnnn0 12388 . . . . . . . . . . . . . 14 (𝑁 ∈ ℕ → 𝑁 ∈ ℕ0)
33 nn0leltp1 12532 . . . . . . . . . . . . . 14 ((𝑁 ∈ ℕ0𝑘 ∈ ℕ0) → (𝑁𝑘𝑁 < (𝑘 + 1)))
3432, 33sylan 580 . . . . . . . . . . . . 13 ((𝑁 ∈ ℕ ∧ 𝑘 ∈ ℕ0) → (𝑁𝑘𝑁 < (𝑘 + 1)))
35 nn0p1nn 12420 . . . . . . . . . . . . . . . . . . 19 (𝑘 ∈ ℕ0 → (𝑘 + 1) ∈ ℕ)
36 nnmulcl 12149 . . . . . . . . . . . . . . . . . . 19 ((((!‘𝑘) / 𝑁) ∈ ℕ ∧ (𝑘 + 1) ∈ ℕ) → (((!‘𝑘) / 𝑁) · (𝑘 + 1)) ∈ ℕ)
3735, 36sylan2 593 . . . . . . . . . . . . . . . . . 18 ((((!‘𝑘) / 𝑁) ∈ ℕ ∧ 𝑘 ∈ ℕ0) → (((!‘𝑘) / 𝑁) · (𝑘 + 1)) ∈ ℕ)
3837expcom 413 . . . . . . . . . . . . . . . . 17 (𝑘 ∈ ℕ0 → (((!‘𝑘) / 𝑁) ∈ ℕ → (((!‘𝑘) / 𝑁) · (𝑘 + 1)) ∈ ℕ))
3938adantl 481 . . . . . . . . . . . . . . . 16 ((𝑁 ∈ ℕ ∧ 𝑘 ∈ ℕ0) → (((!‘𝑘) / 𝑁) ∈ ℕ → (((!‘𝑘) / 𝑁) · (𝑘 + 1)) ∈ ℕ))
40 faccl 14190 . . . . . . . . . . . . . . . . . . 19 (𝑘 ∈ ℕ0 → (!‘𝑘) ∈ ℕ)
4140nncnd 12141 . . . . . . . . . . . . . . . . . 18 (𝑘 ∈ ℕ0 → (!‘𝑘) ∈ ℂ)
4228nn0cnd 12444 . . . . . . . . . . . . . . . . . 18 (𝑘 ∈ ℕ0 → (𝑘 + 1) ∈ ℂ)
43 nncn 12133 . . . . . . . . . . . . . . . . . . . 20 (𝑁 ∈ ℕ → 𝑁 ∈ ℂ)
44 nnne0 12159 . . . . . . . . . . . . . . . . . . . 20 (𝑁 ∈ ℕ → 𝑁 ≠ 0)
4543, 44jca 511 . . . . . . . . . . . . . . . . . . 19 (𝑁 ∈ ℕ → (𝑁 ∈ ℂ ∧ 𝑁 ≠ 0))
4645adantr 480 . . . . . . . . . . . . . . . . . 18 ((𝑁 ∈ ℕ ∧ 𝑘 ∈ ℕ0) → (𝑁 ∈ ℂ ∧ 𝑁 ≠ 0))
47 div23 11795 . . . . . . . . . . . . . . . . . 18 (((!‘𝑘) ∈ ℂ ∧ (𝑘 + 1) ∈ ℂ ∧ (𝑁 ∈ ℂ ∧ 𝑁 ≠ 0)) → (((!‘𝑘) · (𝑘 + 1)) / 𝑁) = (((!‘𝑘) / 𝑁) · (𝑘 + 1)))
4841, 42, 46, 47syl2an23an 1425 . . . . . . . . . . . . . . . . 17 ((𝑁 ∈ ℕ ∧ 𝑘 ∈ ℕ0) → (((!‘𝑘) · (𝑘 + 1)) / 𝑁) = (((!‘𝑘) / 𝑁) · (𝑘 + 1)))
4948eleq1d 2816 . . . . . . . . . . . . . . . 16 ((𝑁 ∈ ℕ ∧ 𝑘 ∈ ℕ0) → ((((!‘𝑘) · (𝑘 + 1)) / 𝑁) ∈ ℕ ↔ (((!‘𝑘) / 𝑁) · (𝑘 + 1)) ∈ ℕ))
5039, 49sylibrd 259 . . . . . . . . . . . . . . 15 ((𝑁 ∈ ℕ ∧ 𝑘 ∈ ℕ0) → (((!‘𝑘) / 𝑁) ∈ ℕ → (((!‘𝑘) · (𝑘 + 1)) / 𝑁) ∈ ℕ))
5150imim2d 57 . . . . . . . . . . . . . 14 ((𝑁 ∈ ℕ ∧ 𝑘 ∈ ℕ0) → ((𝑁𝑘 → ((!‘𝑘) / 𝑁) ∈ ℕ) → (𝑁𝑘 → (((!‘𝑘) · (𝑘 + 1)) / 𝑁) ∈ ℕ)))
5251com23 86 . . . . . . . . . . . . 13 ((𝑁 ∈ ℕ ∧ 𝑘 ∈ ℕ0) → (𝑁𝑘 → ((𝑁𝑘 → ((!‘𝑘) / 𝑁) ∈ ℕ) → (((!‘𝑘) · (𝑘 + 1)) / 𝑁) ∈ ℕ)))
5334, 52sylbird 260 . . . . . . . . . . . 12 ((𝑁 ∈ ℕ ∧ 𝑘 ∈ ℕ0) → (𝑁 < (𝑘 + 1) → ((𝑁𝑘 → ((!‘𝑘) / 𝑁) ∈ ℕ) → (((!‘𝑘) · (𝑘 + 1)) / 𝑁) ∈ ℕ)))
5441adantl 481 . . . . . . . . . . . . . . . 16 ((𝑁 ∈ ℕ ∧ 𝑘 ∈ ℕ0) → (!‘𝑘) ∈ ℂ)
5543adantr 480 . . . . . . . . . . . . . . . 16 ((𝑁 ∈ ℕ ∧ 𝑘 ∈ ℕ0) → 𝑁 ∈ ℂ)
5644adantr 480 . . . . . . . . . . . . . . . 16 ((𝑁 ∈ ℕ ∧ 𝑘 ∈ ℕ0) → 𝑁 ≠ 0)
5754, 55, 56divcan4d 11903 . . . . . . . . . . . . . . 15 ((𝑁 ∈ ℕ ∧ 𝑘 ∈ ℕ0) → (((!‘𝑘) · 𝑁) / 𝑁) = (!‘𝑘))
5840adantl 481 . . . . . . . . . . . . . . 15 ((𝑁 ∈ ℕ ∧ 𝑘 ∈ ℕ0) → (!‘𝑘) ∈ ℕ)
5957, 58eqeltrd 2831 . . . . . . . . . . . . . 14 ((𝑁 ∈ ℕ ∧ 𝑘 ∈ ℕ0) → (((!‘𝑘) · 𝑁) / 𝑁) ∈ ℕ)
60 oveq2 7354 . . . . . . . . . . . . . . . 16 (𝑁 = (𝑘 + 1) → ((!‘𝑘) · 𝑁) = ((!‘𝑘) · (𝑘 + 1)))
6160oveq1d 7361 . . . . . . . . . . . . . . 15 (𝑁 = (𝑘 + 1) → (((!‘𝑘) · 𝑁) / 𝑁) = (((!‘𝑘) · (𝑘 + 1)) / 𝑁))
6261eleq1d 2816 . . . . . . . . . . . . . 14 (𝑁 = (𝑘 + 1) → ((((!‘𝑘) · 𝑁) / 𝑁) ∈ ℕ ↔ (((!‘𝑘) · (𝑘 + 1)) / 𝑁) ∈ ℕ))
6359, 62syl5ibcom 245 . . . . . . . . . . . . 13 ((𝑁 ∈ ℕ ∧ 𝑘 ∈ ℕ0) → (𝑁 = (𝑘 + 1) → (((!‘𝑘) · (𝑘 + 1)) / 𝑁) ∈ ℕ))
6463a1dd 50 . . . . . . . . . . . 12 ((𝑁 ∈ ℕ ∧ 𝑘 ∈ ℕ0) → (𝑁 = (𝑘 + 1) → ((𝑁𝑘 → ((!‘𝑘) / 𝑁) ∈ ℕ) → (((!‘𝑘) · (𝑘 + 1)) / 𝑁) ∈ ℕ)))
6553, 64jaod 859 . . . . . . . . . . 11 ((𝑁 ∈ ℕ ∧ 𝑘 ∈ ℕ0) → ((𝑁 < (𝑘 + 1) ∨ 𝑁 = (𝑘 + 1)) → ((𝑁𝑘 → ((!‘𝑘) / 𝑁) ∈ ℕ) → (((!‘𝑘) · (𝑘 + 1)) / 𝑁) ∈ ℕ)))
6631, 65sylbid 240 . . . . . . . . . 10 ((𝑁 ∈ ℕ ∧ 𝑘 ∈ ℕ0) → (𝑁 ≤ (𝑘 + 1) → ((𝑁𝑘 → ((!‘𝑘) / 𝑁) ∈ ℕ) → (((!‘𝑘) · (𝑘 + 1)) / 𝑁) ∈ ℕ)))
6766ex 412 . . . . . . . . 9 (𝑁 ∈ ℕ → (𝑘 ∈ ℕ0 → (𝑁 ≤ (𝑘 + 1) → ((𝑁𝑘 → ((!‘𝑘) / 𝑁) ∈ ℕ) → (((!‘𝑘) · (𝑘 + 1)) / 𝑁) ∈ ℕ))))
6867com34 91 . . . . . . . 8 (𝑁 ∈ ℕ → (𝑘 ∈ ℕ0 → ((𝑁𝑘 → ((!‘𝑘) / 𝑁) ∈ ℕ) → (𝑁 ≤ (𝑘 + 1) → (((!‘𝑘) · (𝑘 + 1)) / 𝑁) ∈ ℕ))))
6968com12 32 . . . . . . 7 (𝑘 ∈ ℕ0 → (𝑁 ∈ ℕ → ((𝑁𝑘 → ((!‘𝑘) / 𝑁) ∈ ℕ) → (𝑁 ≤ (𝑘 + 1) → (((!‘𝑘) · (𝑘 + 1)) / 𝑁) ∈ ℕ))))
7069imp4d 424 . . . . . 6 (𝑘 ∈ ℕ0 → ((𝑁 ∈ ℕ ∧ ((𝑁𝑘 → ((!‘𝑘) / 𝑁) ∈ ℕ) ∧ 𝑁 ≤ (𝑘 + 1))) → (((!‘𝑘) · (𝑘 + 1)) / 𝑁) ∈ ℕ))
71 facp1 14185 . . . . . . . 8 (𝑘 ∈ ℕ0 → (!‘(𝑘 + 1)) = ((!‘𝑘) · (𝑘 + 1)))
7271oveq1d 7361 . . . . . . 7 (𝑘 ∈ ℕ0 → ((!‘(𝑘 + 1)) / 𝑁) = (((!‘𝑘) · (𝑘 + 1)) / 𝑁))
7372eleq1d 2816 . . . . . 6 (𝑘 ∈ ℕ0 → (((!‘(𝑘 + 1)) / 𝑁) ∈ ℕ ↔ (((!‘𝑘) · (𝑘 + 1)) / 𝑁) ∈ ℕ))
7470, 73sylibrd 259 . . . . 5 (𝑘 ∈ ℕ0 → ((𝑁 ∈ ℕ ∧ ((𝑁𝑘 → ((!‘𝑘) / 𝑁) ∈ ℕ) ∧ 𝑁 ≤ (𝑘 + 1))) → ((!‘(𝑘 + 1)) / 𝑁) ∈ ℕ))
7574exp4d 433 . . . 4 (𝑘 ∈ ℕ0 → (𝑁 ∈ ℕ → ((𝑁𝑘 → ((!‘𝑘) / 𝑁) ∈ ℕ) → (𝑁 ≤ (𝑘 + 1) → ((!‘(𝑘 + 1)) / 𝑁) ∈ ℕ))))
7675a2d 29 . . 3 (𝑘 ∈ ℕ0 → ((𝑁 ∈ ℕ → (𝑁𝑘 → ((!‘𝑘) / 𝑁) ∈ ℕ)) → (𝑁 ∈ ℕ → (𝑁 ≤ (𝑘 + 1) → ((!‘(𝑘 + 1)) / 𝑁) ∈ ℕ))))
776, 12, 18, 24, 26, 76nn0ind 12568 . 2 (𝑀 ∈ ℕ0 → (𝑁 ∈ ℕ → (𝑁𝑀 → ((!‘𝑀) / 𝑁) ∈ ℕ)))
78773imp 1110 1 ((𝑀 ∈ ℕ0𝑁 ∈ ℕ ∧ 𝑁𝑀) → ((!‘𝑀) / 𝑁) ∈ ℕ)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  wo 847  w3a 1086   = wceq 1541  wcel 2111  wne 2928   class class class wbr 5089  cfv 6481  (class class class)co 7346  cc 11004  cr 11005  0cc0 11006  1c1 11007   + caddc 11009   · cmul 11011   < clt 11146  cle 11147   / cdiv 11774  cn 12125  0cn0 12381  !cfa 14180
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-sep 5232  ax-nul 5242  ax-pow 5301  ax-pr 5368  ax-un 7668  ax-cnex 11062  ax-resscn 11063  ax-1cn 11064  ax-icn 11065  ax-addcl 11066  ax-addrcl 11067  ax-mulcl 11068  ax-mulrcl 11069  ax-mulcom 11070  ax-addass 11071  ax-mulass 11072  ax-distr 11073  ax-i2m1 11074  ax-1ne0 11075  ax-1rid 11076  ax-rnegex 11077  ax-rrecex 11078  ax-cnre 11079  ax-pre-lttri 11080  ax-pre-lttrn 11081  ax-pre-ltadd 11082  ax-pre-mulgt0 11083
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-nel 3033  df-ral 3048  df-rex 3057  df-rmo 3346  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3737  df-csb 3846  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-pss 3917  df-nul 4281  df-if 4473  df-pw 4549  df-sn 4574  df-pr 4576  df-op 4580  df-uni 4857  df-iun 4941  df-br 5090  df-opab 5152  df-mpt 5171  df-tr 5197  df-id 5509  df-eprel 5514  df-po 5522  df-so 5523  df-fr 5567  df-we 5569  df-xp 5620  df-rel 5621  df-cnv 5622  df-co 5623  df-dm 5624  df-rn 5625  df-res 5626  df-ima 5627  df-pred 6248  df-ord 6309  df-on 6310  df-lim 6311  df-suc 6312  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-riota 7303  df-ov 7349  df-oprab 7350  df-mpo 7351  df-om 7797  df-2nd 7922  df-frecs 8211  df-wrecs 8242  df-recs 8291  df-rdg 8329  df-er 8622  df-en 8870  df-dom 8871  df-sdom 8872  df-pnf 11148  df-mnf 11149  df-xr 11150  df-ltxr 11151  df-le 11152  df-sub 11346  df-neg 11347  df-div 11775  df-nn 12126  df-n0 12382  df-z 12469  df-uz 12733  df-seq 13909  df-fac 14181
This theorem is referenced by:  facndiv  14195  eirrlem  16113
  Copyright terms: Public domain W3C validator