MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  facdiv Structured version   Visualization version   GIF version

Theorem facdiv 14326
Description: A positive integer divides the factorial of an equal or larger number. (Contributed by NM, 2-May-2005.)
Assertion
Ref Expression
facdiv ((𝑀 ∈ ℕ0𝑁 ∈ ℕ ∧ 𝑁𝑀) → ((!‘𝑀) / 𝑁) ∈ ℕ)

Proof of Theorem facdiv
Dummy variables 𝑗 𝑘 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 breq2 5147 . . . . 5 (𝑗 = 0 → (𝑁𝑗𝑁 ≤ 0))
2 fveq2 6906 . . . . . . 7 (𝑗 = 0 → (!‘𝑗) = (!‘0))
32oveq1d 7446 . . . . . 6 (𝑗 = 0 → ((!‘𝑗) / 𝑁) = ((!‘0) / 𝑁))
43eleq1d 2826 . . . . 5 (𝑗 = 0 → (((!‘𝑗) / 𝑁) ∈ ℕ ↔ ((!‘0) / 𝑁) ∈ ℕ))
51, 4imbi12d 344 . . . 4 (𝑗 = 0 → ((𝑁𝑗 → ((!‘𝑗) / 𝑁) ∈ ℕ) ↔ (𝑁 ≤ 0 → ((!‘0) / 𝑁) ∈ ℕ)))
65imbi2d 340 . . 3 (𝑗 = 0 → ((𝑁 ∈ ℕ → (𝑁𝑗 → ((!‘𝑗) / 𝑁) ∈ ℕ)) ↔ (𝑁 ∈ ℕ → (𝑁 ≤ 0 → ((!‘0) / 𝑁) ∈ ℕ))))
7 breq2 5147 . . . . 5 (𝑗 = 𝑘 → (𝑁𝑗𝑁𝑘))
8 fveq2 6906 . . . . . . 7 (𝑗 = 𝑘 → (!‘𝑗) = (!‘𝑘))
98oveq1d 7446 . . . . . 6 (𝑗 = 𝑘 → ((!‘𝑗) / 𝑁) = ((!‘𝑘) / 𝑁))
109eleq1d 2826 . . . . 5 (𝑗 = 𝑘 → (((!‘𝑗) / 𝑁) ∈ ℕ ↔ ((!‘𝑘) / 𝑁) ∈ ℕ))
117, 10imbi12d 344 . . . 4 (𝑗 = 𝑘 → ((𝑁𝑗 → ((!‘𝑗) / 𝑁) ∈ ℕ) ↔ (𝑁𝑘 → ((!‘𝑘) / 𝑁) ∈ ℕ)))
1211imbi2d 340 . . 3 (𝑗 = 𝑘 → ((𝑁 ∈ ℕ → (𝑁𝑗 → ((!‘𝑗) / 𝑁) ∈ ℕ)) ↔ (𝑁 ∈ ℕ → (𝑁𝑘 → ((!‘𝑘) / 𝑁) ∈ ℕ))))
13 breq2 5147 . . . . 5 (𝑗 = (𝑘 + 1) → (𝑁𝑗𝑁 ≤ (𝑘 + 1)))
14 fveq2 6906 . . . . . . 7 (𝑗 = (𝑘 + 1) → (!‘𝑗) = (!‘(𝑘 + 1)))
1514oveq1d 7446 . . . . . 6 (𝑗 = (𝑘 + 1) → ((!‘𝑗) / 𝑁) = ((!‘(𝑘 + 1)) / 𝑁))
1615eleq1d 2826 . . . . 5 (𝑗 = (𝑘 + 1) → (((!‘𝑗) / 𝑁) ∈ ℕ ↔ ((!‘(𝑘 + 1)) / 𝑁) ∈ ℕ))
1713, 16imbi12d 344 . . . 4 (𝑗 = (𝑘 + 1) → ((𝑁𝑗 → ((!‘𝑗) / 𝑁) ∈ ℕ) ↔ (𝑁 ≤ (𝑘 + 1) → ((!‘(𝑘 + 1)) / 𝑁) ∈ ℕ)))
1817imbi2d 340 . . 3 (𝑗 = (𝑘 + 1) → ((𝑁 ∈ ℕ → (𝑁𝑗 → ((!‘𝑗) / 𝑁) ∈ ℕ)) ↔ (𝑁 ∈ ℕ → (𝑁 ≤ (𝑘 + 1) → ((!‘(𝑘 + 1)) / 𝑁) ∈ ℕ))))
19 breq2 5147 . . . . 5 (𝑗 = 𝑀 → (𝑁𝑗𝑁𝑀))
20 fveq2 6906 . . . . . . 7 (𝑗 = 𝑀 → (!‘𝑗) = (!‘𝑀))
2120oveq1d 7446 . . . . . 6 (𝑗 = 𝑀 → ((!‘𝑗) / 𝑁) = ((!‘𝑀) / 𝑁))
2221eleq1d 2826 . . . . 5 (𝑗 = 𝑀 → (((!‘𝑗) / 𝑁) ∈ ℕ ↔ ((!‘𝑀) / 𝑁) ∈ ℕ))
2319, 22imbi12d 344 . . . 4 (𝑗 = 𝑀 → ((𝑁𝑗 → ((!‘𝑗) / 𝑁) ∈ ℕ) ↔ (𝑁𝑀 → ((!‘𝑀) / 𝑁) ∈ ℕ)))
2423imbi2d 340 . . 3 (𝑗 = 𝑀 → ((𝑁 ∈ ℕ → (𝑁𝑗 → ((!‘𝑗) / 𝑁) ∈ ℕ)) ↔ (𝑁 ∈ ℕ → (𝑁𝑀 → ((!‘𝑀) / 𝑁) ∈ ℕ))))
25 nnnle0 12299 . . . 4 (𝑁 ∈ ℕ → ¬ 𝑁 ≤ 0)
2625pm2.21d 121 . . 3 (𝑁 ∈ ℕ → (𝑁 ≤ 0 → ((!‘0) / 𝑁) ∈ ℕ))
27 nnre 12273 . . . . . . . . . . . 12 (𝑁 ∈ ℕ → 𝑁 ∈ ℝ)
28 peano2nn0 12566 . . . . . . . . . . . . 13 (𝑘 ∈ ℕ0 → (𝑘 + 1) ∈ ℕ0)
2928nn0red 12588 . . . . . . . . . . . 12 (𝑘 ∈ ℕ0 → (𝑘 + 1) ∈ ℝ)
30 leloe 11347 . . . . . . . . . . . 12 ((𝑁 ∈ ℝ ∧ (𝑘 + 1) ∈ ℝ) → (𝑁 ≤ (𝑘 + 1) ↔ (𝑁 < (𝑘 + 1) ∨ 𝑁 = (𝑘 + 1))))
3127, 29, 30syl2an 596 . . . . . . . . . . 11 ((𝑁 ∈ ℕ ∧ 𝑘 ∈ ℕ0) → (𝑁 ≤ (𝑘 + 1) ↔ (𝑁 < (𝑘 + 1) ∨ 𝑁 = (𝑘 + 1))))
32 nnnn0 12533 . . . . . . . . . . . . . 14 (𝑁 ∈ ℕ → 𝑁 ∈ ℕ0)
33 nn0leltp1 12677 . . . . . . . . . . . . . 14 ((𝑁 ∈ ℕ0𝑘 ∈ ℕ0) → (𝑁𝑘𝑁 < (𝑘 + 1)))
3432, 33sylan 580 . . . . . . . . . . . . 13 ((𝑁 ∈ ℕ ∧ 𝑘 ∈ ℕ0) → (𝑁𝑘𝑁 < (𝑘 + 1)))
35 nn0p1nn 12565 . . . . . . . . . . . . . . . . . . 19 (𝑘 ∈ ℕ0 → (𝑘 + 1) ∈ ℕ)
36 nnmulcl 12290 . . . . . . . . . . . . . . . . . . 19 ((((!‘𝑘) / 𝑁) ∈ ℕ ∧ (𝑘 + 1) ∈ ℕ) → (((!‘𝑘) / 𝑁) · (𝑘 + 1)) ∈ ℕ)
3735, 36sylan2 593 . . . . . . . . . . . . . . . . . 18 ((((!‘𝑘) / 𝑁) ∈ ℕ ∧ 𝑘 ∈ ℕ0) → (((!‘𝑘) / 𝑁) · (𝑘 + 1)) ∈ ℕ)
3837expcom 413 . . . . . . . . . . . . . . . . 17 (𝑘 ∈ ℕ0 → (((!‘𝑘) / 𝑁) ∈ ℕ → (((!‘𝑘) / 𝑁) · (𝑘 + 1)) ∈ ℕ))
3938adantl 481 . . . . . . . . . . . . . . . 16 ((𝑁 ∈ ℕ ∧ 𝑘 ∈ ℕ0) → (((!‘𝑘) / 𝑁) ∈ ℕ → (((!‘𝑘) / 𝑁) · (𝑘 + 1)) ∈ ℕ))
40 faccl 14322 . . . . . . . . . . . . . . . . . . 19 (𝑘 ∈ ℕ0 → (!‘𝑘) ∈ ℕ)
4140nncnd 12282 . . . . . . . . . . . . . . . . . 18 (𝑘 ∈ ℕ0 → (!‘𝑘) ∈ ℂ)
4228nn0cnd 12589 . . . . . . . . . . . . . . . . . 18 (𝑘 ∈ ℕ0 → (𝑘 + 1) ∈ ℂ)
43 nncn 12274 . . . . . . . . . . . . . . . . . . . 20 (𝑁 ∈ ℕ → 𝑁 ∈ ℂ)
44 nnne0 12300 . . . . . . . . . . . . . . . . . . . 20 (𝑁 ∈ ℕ → 𝑁 ≠ 0)
4543, 44jca 511 . . . . . . . . . . . . . . . . . . 19 (𝑁 ∈ ℕ → (𝑁 ∈ ℂ ∧ 𝑁 ≠ 0))
4645adantr 480 . . . . . . . . . . . . . . . . . 18 ((𝑁 ∈ ℕ ∧ 𝑘 ∈ ℕ0) → (𝑁 ∈ ℂ ∧ 𝑁 ≠ 0))
47 div23 11941 . . . . . . . . . . . . . . . . . 18 (((!‘𝑘) ∈ ℂ ∧ (𝑘 + 1) ∈ ℂ ∧ (𝑁 ∈ ℂ ∧ 𝑁 ≠ 0)) → (((!‘𝑘) · (𝑘 + 1)) / 𝑁) = (((!‘𝑘) / 𝑁) · (𝑘 + 1)))
4841, 42, 46, 47syl2an23an 1425 . . . . . . . . . . . . . . . . 17 ((𝑁 ∈ ℕ ∧ 𝑘 ∈ ℕ0) → (((!‘𝑘) · (𝑘 + 1)) / 𝑁) = (((!‘𝑘) / 𝑁) · (𝑘 + 1)))
4948eleq1d 2826 . . . . . . . . . . . . . . . 16 ((𝑁 ∈ ℕ ∧ 𝑘 ∈ ℕ0) → ((((!‘𝑘) · (𝑘 + 1)) / 𝑁) ∈ ℕ ↔ (((!‘𝑘) / 𝑁) · (𝑘 + 1)) ∈ ℕ))
5039, 49sylibrd 259 . . . . . . . . . . . . . . 15 ((𝑁 ∈ ℕ ∧ 𝑘 ∈ ℕ0) → (((!‘𝑘) / 𝑁) ∈ ℕ → (((!‘𝑘) · (𝑘 + 1)) / 𝑁) ∈ ℕ))
5150imim2d 57 . . . . . . . . . . . . . 14 ((𝑁 ∈ ℕ ∧ 𝑘 ∈ ℕ0) → ((𝑁𝑘 → ((!‘𝑘) / 𝑁) ∈ ℕ) → (𝑁𝑘 → (((!‘𝑘) · (𝑘 + 1)) / 𝑁) ∈ ℕ)))
5251com23 86 . . . . . . . . . . . . 13 ((𝑁 ∈ ℕ ∧ 𝑘 ∈ ℕ0) → (𝑁𝑘 → ((𝑁𝑘 → ((!‘𝑘) / 𝑁) ∈ ℕ) → (((!‘𝑘) · (𝑘 + 1)) / 𝑁) ∈ ℕ)))
5334, 52sylbird 260 . . . . . . . . . . . 12 ((𝑁 ∈ ℕ ∧ 𝑘 ∈ ℕ0) → (𝑁 < (𝑘 + 1) → ((𝑁𝑘 → ((!‘𝑘) / 𝑁) ∈ ℕ) → (((!‘𝑘) · (𝑘 + 1)) / 𝑁) ∈ ℕ)))
5441adantl 481 . . . . . . . . . . . . . . . 16 ((𝑁 ∈ ℕ ∧ 𝑘 ∈ ℕ0) → (!‘𝑘) ∈ ℂ)
5543adantr 480 . . . . . . . . . . . . . . . 16 ((𝑁 ∈ ℕ ∧ 𝑘 ∈ ℕ0) → 𝑁 ∈ ℂ)
5644adantr 480 . . . . . . . . . . . . . . . 16 ((𝑁 ∈ ℕ ∧ 𝑘 ∈ ℕ0) → 𝑁 ≠ 0)
5754, 55, 56divcan4d 12049 . . . . . . . . . . . . . . 15 ((𝑁 ∈ ℕ ∧ 𝑘 ∈ ℕ0) → (((!‘𝑘) · 𝑁) / 𝑁) = (!‘𝑘))
5840adantl 481 . . . . . . . . . . . . . . 15 ((𝑁 ∈ ℕ ∧ 𝑘 ∈ ℕ0) → (!‘𝑘) ∈ ℕ)
5957, 58eqeltrd 2841 . . . . . . . . . . . . . 14 ((𝑁 ∈ ℕ ∧ 𝑘 ∈ ℕ0) → (((!‘𝑘) · 𝑁) / 𝑁) ∈ ℕ)
60 oveq2 7439 . . . . . . . . . . . . . . . 16 (𝑁 = (𝑘 + 1) → ((!‘𝑘) · 𝑁) = ((!‘𝑘) · (𝑘 + 1)))
6160oveq1d 7446 . . . . . . . . . . . . . . 15 (𝑁 = (𝑘 + 1) → (((!‘𝑘) · 𝑁) / 𝑁) = (((!‘𝑘) · (𝑘 + 1)) / 𝑁))
6261eleq1d 2826 . . . . . . . . . . . . . 14 (𝑁 = (𝑘 + 1) → ((((!‘𝑘) · 𝑁) / 𝑁) ∈ ℕ ↔ (((!‘𝑘) · (𝑘 + 1)) / 𝑁) ∈ ℕ))
6359, 62syl5ibcom 245 . . . . . . . . . . . . 13 ((𝑁 ∈ ℕ ∧ 𝑘 ∈ ℕ0) → (𝑁 = (𝑘 + 1) → (((!‘𝑘) · (𝑘 + 1)) / 𝑁) ∈ ℕ))
6463a1dd 50 . . . . . . . . . . . 12 ((𝑁 ∈ ℕ ∧ 𝑘 ∈ ℕ0) → (𝑁 = (𝑘 + 1) → ((𝑁𝑘 → ((!‘𝑘) / 𝑁) ∈ ℕ) → (((!‘𝑘) · (𝑘 + 1)) / 𝑁) ∈ ℕ)))
6553, 64jaod 860 . . . . . . . . . . 11 ((𝑁 ∈ ℕ ∧ 𝑘 ∈ ℕ0) → ((𝑁 < (𝑘 + 1) ∨ 𝑁 = (𝑘 + 1)) → ((𝑁𝑘 → ((!‘𝑘) / 𝑁) ∈ ℕ) → (((!‘𝑘) · (𝑘 + 1)) / 𝑁) ∈ ℕ)))
6631, 65sylbid 240 . . . . . . . . . 10 ((𝑁 ∈ ℕ ∧ 𝑘 ∈ ℕ0) → (𝑁 ≤ (𝑘 + 1) → ((𝑁𝑘 → ((!‘𝑘) / 𝑁) ∈ ℕ) → (((!‘𝑘) · (𝑘 + 1)) / 𝑁) ∈ ℕ)))
6766ex 412 . . . . . . . . 9 (𝑁 ∈ ℕ → (𝑘 ∈ ℕ0 → (𝑁 ≤ (𝑘 + 1) → ((𝑁𝑘 → ((!‘𝑘) / 𝑁) ∈ ℕ) → (((!‘𝑘) · (𝑘 + 1)) / 𝑁) ∈ ℕ))))
6867com34 91 . . . . . . . 8 (𝑁 ∈ ℕ → (𝑘 ∈ ℕ0 → ((𝑁𝑘 → ((!‘𝑘) / 𝑁) ∈ ℕ) → (𝑁 ≤ (𝑘 + 1) → (((!‘𝑘) · (𝑘 + 1)) / 𝑁) ∈ ℕ))))
6968com12 32 . . . . . . 7 (𝑘 ∈ ℕ0 → (𝑁 ∈ ℕ → ((𝑁𝑘 → ((!‘𝑘) / 𝑁) ∈ ℕ) → (𝑁 ≤ (𝑘 + 1) → (((!‘𝑘) · (𝑘 + 1)) / 𝑁) ∈ ℕ))))
7069imp4d 424 . . . . . 6 (𝑘 ∈ ℕ0 → ((𝑁 ∈ ℕ ∧ ((𝑁𝑘 → ((!‘𝑘) / 𝑁) ∈ ℕ) ∧ 𝑁 ≤ (𝑘 + 1))) → (((!‘𝑘) · (𝑘 + 1)) / 𝑁) ∈ ℕ))
71 facp1 14317 . . . . . . . 8 (𝑘 ∈ ℕ0 → (!‘(𝑘 + 1)) = ((!‘𝑘) · (𝑘 + 1)))
7271oveq1d 7446 . . . . . . 7 (𝑘 ∈ ℕ0 → ((!‘(𝑘 + 1)) / 𝑁) = (((!‘𝑘) · (𝑘 + 1)) / 𝑁))
7372eleq1d 2826 . . . . . 6 (𝑘 ∈ ℕ0 → (((!‘(𝑘 + 1)) / 𝑁) ∈ ℕ ↔ (((!‘𝑘) · (𝑘 + 1)) / 𝑁) ∈ ℕ))
7470, 73sylibrd 259 . . . . 5 (𝑘 ∈ ℕ0 → ((𝑁 ∈ ℕ ∧ ((𝑁𝑘 → ((!‘𝑘) / 𝑁) ∈ ℕ) ∧ 𝑁 ≤ (𝑘 + 1))) → ((!‘(𝑘 + 1)) / 𝑁) ∈ ℕ))
7574exp4d 433 . . . 4 (𝑘 ∈ ℕ0 → (𝑁 ∈ ℕ → ((𝑁𝑘 → ((!‘𝑘) / 𝑁) ∈ ℕ) → (𝑁 ≤ (𝑘 + 1) → ((!‘(𝑘 + 1)) / 𝑁) ∈ ℕ))))
7675a2d 29 . . 3 (𝑘 ∈ ℕ0 → ((𝑁 ∈ ℕ → (𝑁𝑘 → ((!‘𝑘) / 𝑁) ∈ ℕ)) → (𝑁 ∈ ℕ → (𝑁 ≤ (𝑘 + 1) → ((!‘(𝑘 + 1)) / 𝑁) ∈ ℕ))))
776, 12, 18, 24, 26, 76nn0ind 12713 . 2 (𝑀 ∈ ℕ0 → (𝑁 ∈ ℕ → (𝑁𝑀 → ((!‘𝑀) / 𝑁) ∈ ℕ)))
78773imp 1111 1 ((𝑀 ∈ ℕ0𝑁 ∈ ℕ ∧ 𝑁𝑀) → ((!‘𝑀) / 𝑁) ∈ ℕ)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  wo 848  w3a 1087   = wceq 1540  wcel 2108  wne 2940   class class class wbr 5143  cfv 6561  (class class class)co 7431  cc 11153  cr 11154  0cc0 11155  1c1 11156   + caddc 11158   · cmul 11160   < clt 11295  cle 11296   / cdiv 11920  cn 12266  0cn0 12526  !cfa 14312
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2708  ax-sep 5296  ax-nul 5306  ax-pow 5365  ax-pr 5432  ax-un 7755  ax-cnex 11211  ax-resscn 11212  ax-1cn 11213  ax-icn 11214  ax-addcl 11215  ax-addrcl 11216  ax-mulcl 11217  ax-mulrcl 11218  ax-mulcom 11219  ax-addass 11220  ax-mulass 11221  ax-distr 11222  ax-i2m1 11223  ax-1ne0 11224  ax-1rid 11225  ax-rnegex 11226  ax-rrecex 11227  ax-cnre 11228  ax-pre-lttri 11229  ax-pre-lttrn 11230  ax-pre-ltadd 11231  ax-pre-mulgt0 11232
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3or 1088  df-3an 1089  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2892  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-rmo 3380  df-reu 3381  df-rab 3437  df-v 3482  df-sbc 3789  df-csb 3900  df-dif 3954  df-un 3956  df-in 3958  df-ss 3968  df-pss 3971  df-nul 4334  df-if 4526  df-pw 4602  df-sn 4627  df-pr 4629  df-op 4633  df-uni 4908  df-iun 4993  df-br 5144  df-opab 5206  df-mpt 5226  df-tr 5260  df-id 5578  df-eprel 5584  df-po 5592  df-so 5593  df-fr 5637  df-we 5639  df-xp 5691  df-rel 5692  df-cnv 5693  df-co 5694  df-dm 5695  df-rn 5696  df-res 5697  df-ima 5698  df-pred 6321  df-ord 6387  df-on 6388  df-lim 6389  df-suc 6390  df-iota 6514  df-fun 6563  df-fn 6564  df-f 6565  df-f1 6566  df-fo 6567  df-f1o 6568  df-fv 6569  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-om 7888  df-2nd 8015  df-frecs 8306  df-wrecs 8337  df-recs 8411  df-rdg 8450  df-er 8745  df-en 8986  df-dom 8987  df-sdom 8988  df-pnf 11297  df-mnf 11298  df-xr 11299  df-ltxr 11300  df-le 11301  df-sub 11494  df-neg 11495  df-div 11921  df-nn 12267  df-n0 12527  df-z 12614  df-uz 12879  df-seq 14043  df-fac 14313
This theorem is referenced by:  facndiv  14327  eirrlem  16240
  Copyright terms: Public domain W3C validator