MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  uzind Structured version   Visualization version   GIF version

Theorem uzind 12596
Description: Induction on the upper integers that start at 𝑀. The first four hypotheses give us the substitution instances we need; the last two are the basis and the induction step. (Contributed by NM, 5-Jul-2005.)
Hypotheses
Ref Expression
uzind.1 (𝑗 = 𝑀 → (𝜑𝜓))
uzind.2 (𝑗 = 𝑘 → (𝜑𝜒))
uzind.3 (𝑗 = (𝑘 + 1) → (𝜑𝜃))
uzind.4 (𝑗 = 𝑁 → (𝜑𝜏))
uzind.5 (𝑀 ∈ ℤ → 𝜓)
uzind.6 ((𝑀 ∈ ℤ ∧ 𝑘 ∈ ℤ ∧ 𝑀𝑘) → (𝜒𝜃))
Assertion
Ref Expression
uzind ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑀𝑁) → 𝜏)
Distinct variable groups:   𝑗,𝑁   𝜓,𝑗   𝜒,𝑗   𝜃,𝑗   𝜏,𝑗   𝜑,𝑘   𝑗,𝑘,𝑀
Allowed substitution hints:   𝜑(𝑗)   𝜓(𝑘)   𝜒(𝑘)   𝜃(𝑘)   𝜏(𝑘)   𝑁(𝑘)

Proof of Theorem uzind
Dummy variable 𝑤 is distinct from all other variables.
StepHypRef Expression
1 zre 12504 . . . . . . . . . 10 (𝑀 ∈ ℤ → 𝑀 ∈ ℝ)
21leidd 11722 . . . . . . . . 9 (𝑀 ∈ ℤ → 𝑀𝑀)
3 uzind.5 . . . . . . . . 9 (𝑀 ∈ ℤ → 𝜓)
42, 3jca 513 . . . . . . . 8 (𝑀 ∈ ℤ → (𝑀𝑀𝜓))
54ancli 550 . . . . . . 7 (𝑀 ∈ ℤ → (𝑀 ∈ ℤ ∧ (𝑀𝑀𝜓)))
6 breq2 5110 . . . . . . . . 9 (𝑗 = 𝑀 → (𝑀𝑗𝑀𝑀))
7 uzind.1 . . . . . . . . 9 (𝑗 = 𝑀 → (𝜑𝜓))
86, 7anbi12d 632 . . . . . . . 8 (𝑗 = 𝑀 → ((𝑀𝑗𝜑) ↔ (𝑀𝑀𝜓)))
98elrab 3646 . . . . . . 7 (𝑀 ∈ {𝑗 ∈ ℤ ∣ (𝑀𝑗𝜑)} ↔ (𝑀 ∈ ℤ ∧ (𝑀𝑀𝜓)))
105, 9sylibr 233 . . . . . 6 (𝑀 ∈ ℤ → 𝑀 ∈ {𝑗 ∈ ℤ ∣ (𝑀𝑗𝜑)})
11 peano2z 12545 . . . . . . . . . . 11 (𝑘 ∈ ℤ → (𝑘 + 1) ∈ ℤ)
1211a1i 11 . . . . . . . . . 10 (𝑀 ∈ ℤ → (𝑘 ∈ ℤ → (𝑘 + 1) ∈ ℤ))
1312adantrd 493 . . . . . . . . 9 (𝑀 ∈ ℤ → ((𝑘 ∈ ℤ ∧ (𝑀𝑘𝜒)) → (𝑘 + 1) ∈ ℤ))
14 zre 12504 . . . . . . . . . . . . 13 (𝑘 ∈ ℤ → 𝑘 ∈ ℝ)
15 ltp1 11996 . . . . . . . . . . . . . . . 16 (𝑘 ∈ ℝ → 𝑘 < (𝑘 + 1))
1615adantl 483 . . . . . . . . . . . . . . 15 ((𝑀 ∈ ℝ ∧ 𝑘 ∈ ℝ) → 𝑘 < (𝑘 + 1))
17 peano2re 11329 . . . . . . . . . . . . . . . . 17 (𝑘 ∈ ℝ → (𝑘 + 1) ∈ ℝ)
1817ancli 550 . . . . . . . . . . . . . . . 16 (𝑘 ∈ ℝ → (𝑘 ∈ ℝ ∧ (𝑘 + 1) ∈ ℝ))
19 lelttr 11246 . . . . . . . . . . . . . . . . 17 ((𝑀 ∈ ℝ ∧ 𝑘 ∈ ℝ ∧ (𝑘 + 1) ∈ ℝ) → ((𝑀𝑘𝑘 < (𝑘 + 1)) → 𝑀 < (𝑘 + 1)))
20193expb 1121 . . . . . . . . . . . . . . . 16 ((𝑀 ∈ ℝ ∧ (𝑘 ∈ ℝ ∧ (𝑘 + 1) ∈ ℝ)) → ((𝑀𝑘𝑘 < (𝑘 + 1)) → 𝑀 < (𝑘 + 1)))
2118, 20sylan2 594 . . . . . . . . . . . . . . 15 ((𝑀 ∈ ℝ ∧ 𝑘 ∈ ℝ) → ((𝑀𝑘𝑘 < (𝑘 + 1)) → 𝑀 < (𝑘 + 1)))
2216, 21mpan2d 693 . . . . . . . . . . . . . 14 ((𝑀 ∈ ℝ ∧ 𝑘 ∈ ℝ) → (𝑀𝑘𝑀 < (𝑘 + 1)))
23 ltle 11244 . . . . . . . . . . . . . . 15 ((𝑀 ∈ ℝ ∧ (𝑘 + 1) ∈ ℝ) → (𝑀 < (𝑘 + 1) → 𝑀 ≤ (𝑘 + 1)))
2417, 23sylan2 594 . . . . . . . . . . . . . 14 ((𝑀 ∈ ℝ ∧ 𝑘 ∈ ℝ) → (𝑀 < (𝑘 + 1) → 𝑀 ≤ (𝑘 + 1)))
2522, 24syld 47 . . . . . . . . . . . . 13 ((𝑀 ∈ ℝ ∧ 𝑘 ∈ ℝ) → (𝑀𝑘𝑀 ≤ (𝑘 + 1)))
261, 14, 25syl2an 597 . . . . . . . . . . . 12 ((𝑀 ∈ ℤ ∧ 𝑘 ∈ ℤ) → (𝑀𝑘𝑀 ≤ (𝑘 + 1)))
2726adantrd 493 . . . . . . . . . . 11 ((𝑀 ∈ ℤ ∧ 𝑘 ∈ ℤ) → ((𝑀𝑘𝜒) → 𝑀 ≤ (𝑘 + 1)))
2827expimpd 455 . . . . . . . . . 10 (𝑀 ∈ ℤ → ((𝑘 ∈ ℤ ∧ (𝑀𝑘𝜒)) → 𝑀 ≤ (𝑘 + 1)))
29 uzind.6 . . . . . . . . . . . 12 ((𝑀 ∈ ℤ ∧ 𝑘 ∈ ℤ ∧ 𝑀𝑘) → (𝜒𝜃))
30293exp 1120 . . . . . . . . . . 11 (𝑀 ∈ ℤ → (𝑘 ∈ ℤ → (𝑀𝑘 → (𝜒𝜃))))
3130imp4d 426 . . . . . . . . . 10 (𝑀 ∈ ℤ → ((𝑘 ∈ ℤ ∧ (𝑀𝑘𝜒)) → 𝜃))
3228, 31jcad 514 . . . . . . . . 9 (𝑀 ∈ ℤ → ((𝑘 ∈ ℤ ∧ (𝑀𝑘𝜒)) → (𝑀 ≤ (𝑘 + 1) ∧ 𝜃)))
3313, 32jcad 514 . . . . . . . 8 (𝑀 ∈ ℤ → ((𝑘 ∈ ℤ ∧ (𝑀𝑘𝜒)) → ((𝑘 + 1) ∈ ℤ ∧ (𝑀 ≤ (𝑘 + 1) ∧ 𝜃))))
34 breq2 5110 . . . . . . . . . 10 (𝑗 = 𝑘 → (𝑀𝑗𝑀𝑘))
35 uzind.2 . . . . . . . . . 10 (𝑗 = 𝑘 → (𝜑𝜒))
3634, 35anbi12d 632 . . . . . . . . 9 (𝑗 = 𝑘 → ((𝑀𝑗𝜑) ↔ (𝑀𝑘𝜒)))
3736elrab 3646 . . . . . . . 8 (𝑘 ∈ {𝑗 ∈ ℤ ∣ (𝑀𝑗𝜑)} ↔ (𝑘 ∈ ℤ ∧ (𝑀𝑘𝜒)))
38 breq2 5110 . . . . . . . . . 10 (𝑗 = (𝑘 + 1) → (𝑀𝑗𝑀 ≤ (𝑘 + 1)))
39 uzind.3 . . . . . . . . . 10 (𝑗 = (𝑘 + 1) → (𝜑𝜃))
4038, 39anbi12d 632 . . . . . . . . 9 (𝑗 = (𝑘 + 1) → ((𝑀𝑗𝜑) ↔ (𝑀 ≤ (𝑘 + 1) ∧ 𝜃)))
4140elrab 3646 . . . . . . . 8 ((𝑘 + 1) ∈ {𝑗 ∈ ℤ ∣ (𝑀𝑗𝜑)} ↔ ((𝑘 + 1) ∈ ℤ ∧ (𝑀 ≤ (𝑘 + 1) ∧ 𝜃)))
4233, 37, 413imtr4g 296 . . . . . . 7 (𝑀 ∈ ℤ → (𝑘 ∈ {𝑗 ∈ ℤ ∣ (𝑀𝑗𝜑)} → (𝑘 + 1) ∈ {𝑗 ∈ ℤ ∣ (𝑀𝑗𝜑)}))
4342ralrimiv 3143 . . . . . 6 (𝑀 ∈ ℤ → ∀𝑘 ∈ {𝑗 ∈ ℤ ∣ (𝑀𝑗𝜑)} (𝑘 + 1) ∈ {𝑗 ∈ ℤ ∣ (𝑀𝑗𝜑)})
44 peano5uzti 12594 . . . . . 6 (𝑀 ∈ ℤ → ((𝑀 ∈ {𝑗 ∈ ℤ ∣ (𝑀𝑗𝜑)} ∧ ∀𝑘 ∈ {𝑗 ∈ ℤ ∣ (𝑀𝑗𝜑)} (𝑘 + 1) ∈ {𝑗 ∈ ℤ ∣ (𝑀𝑗𝜑)}) → {𝑤 ∈ ℤ ∣ 𝑀𝑤} ⊆ {𝑗 ∈ ℤ ∣ (𝑀𝑗𝜑)}))
4510, 43, 44mp2and 698 . . . . 5 (𝑀 ∈ ℤ → {𝑤 ∈ ℤ ∣ 𝑀𝑤} ⊆ {𝑗 ∈ ℤ ∣ (𝑀𝑗𝜑)})
4645sseld 3944 . . . 4 (𝑀 ∈ ℤ → (𝑁 ∈ {𝑤 ∈ ℤ ∣ 𝑀𝑤} → 𝑁 ∈ {𝑗 ∈ ℤ ∣ (𝑀𝑗𝜑)}))
47 breq2 5110 . . . . 5 (𝑤 = 𝑁 → (𝑀𝑤𝑀𝑁))
4847elrab 3646 . . . 4 (𝑁 ∈ {𝑤 ∈ ℤ ∣ 𝑀𝑤} ↔ (𝑁 ∈ ℤ ∧ 𝑀𝑁))
49 breq2 5110 . . . . . 6 (𝑗 = 𝑁 → (𝑀𝑗𝑀𝑁))
50 uzind.4 . . . . . 6 (𝑗 = 𝑁 → (𝜑𝜏))
5149, 50anbi12d 632 . . . . 5 (𝑗 = 𝑁 → ((𝑀𝑗𝜑) ↔ (𝑀𝑁𝜏)))
5251elrab 3646 . . . 4 (𝑁 ∈ {𝑗 ∈ ℤ ∣ (𝑀𝑗𝜑)} ↔ (𝑁 ∈ ℤ ∧ (𝑀𝑁𝜏)))
5346, 48, 523imtr3g 295 . . 3 (𝑀 ∈ ℤ → ((𝑁 ∈ ℤ ∧ 𝑀𝑁) → (𝑁 ∈ ℤ ∧ (𝑀𝑁𝜏))))
54533impib 1117 . 2 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑀𝑁) → (𝑁 ∈ ℤ ∧ (𝑀𝑁𝜏)))
5554simprrd 773 1 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑀𝑁) → 𝜏)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 397  w3a 1088   = wceq 1542  wcel 2107  wral 3065  {crab 3408  wss 3911   class class class wbr 5106  (class class class)co 7358  cr 11051  1c1 11053   + caddc 11055   < clt 11190  cle 11191  cz 12500
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2155  ax-12 2172  ax-ext 2708  ax-sep 5257  ax-nul 5264  ax-pow 5321  ax-pr 5385  ax-un 7673  ax-resscn 11109  ax-1cn 11110  ax-icn 11111  ax-addcl 11112  ax-addrcl 11113  ax-mulcl 11114  ax-mulrcl 11115  ax-mulcom 11116  ax-addass 11117  ax-mulass 11118  ax-distr 11119  ax-i2m1 11120  ax-1ne0 11121  ax-1rid 11122  ax-rnegex 11123  ax-rrecex 11124  ax-cnre 11125  ax-pre-lttri 11126  ax-pre-lttrn 11127  ax-pre-ltadd 11128  ax-pre-mulgt0 11129
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3or 1089  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-nf 1787  df-sb 2069  df-mo 2539  df-eu 2568  df-clab 2715  df-cleq 2729  df-clel 2815  df-nfc 2890  df-ne 2945  df-nel 3051  df-ral 3066  df-rex 3075  df-reu 3355  df-rab 3409  df-v 3448  df-sbc 3741  df-csb 3857  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-pss 3930  df-nul 4284  df-if 4488  df-pw 4563  df-sn 4588  df-pr 4590  df-op 4594  df-uni 4867  df-iun 4957  df-br 5107  df-opab 5169  df-mpt 5190  df-tr 5224  df-id 5532  df-eprel 5538  df-po 5546  df-so 5547  df-fr 5589  df-we 5591  df-xp 5640  df-rel 5641  df-cnv 5642  df-co 5643  df-dm 5644  df-rn 5645  df-res 5646  df-ima 5647  df-pred 6254  df-ord 6321  df-on 6322  df-lim 6323  df-suc 6324  df-iota 6449  df-fun 6499  df-fn 6500  df-f 6501  df-f1 6502  df-fo 6503  df-f1o 6504  df-fv 6505  df-riota 7314  df-ov 7361  df-oprab 7362  df-mpo 7363  df-om 7804  df-2nd 7923  df-frecs 8213  df-wrecs 8244  df-recs 8318  df-rdg 8357  df-er 8649  df-en 8885  df-dom 8886  df-sdom 8887  df-pnf 11192  df-mnf 11193  df-xr 11194  df-ltxr 11195  df-le 11196  df-sub 11388  df-neg 11389  df-nn 12155  df-n0 12415  df-z 12501
This theorem is referenced by:  uzind2  12597  uzind3  12598  nn0ind  12599  fzind  12602  fi1uzind  14397  algcvga  16456  uzindd  40437  zindbi  41273
  Copyright terms: Public domain W3C validator