Step | Hyp | Ref
| Expression |
1 | | zre 12037 |
. . . . . . . . . 10
⊢ (𝑀 ∈ ℤ → 𝑀 ∈
ℝ) |
2 | 1 | leidd 11257 |
. . . . . . . . 9
⊢ (𝑀 ∈ ℤ → 𝑀 ≤ 𝑀) |
3 | | uzind.5 |
. . . . . . . . 9
⊢ (𝑀 ∈ ℤ → 𝜓) |
4 | 2, 3 | jca 515 |
. . . . . . . 8
⊢ (𝑀 ∈ ℤ → (𝑀 ≤ 𝑀 ∧ 𝜓)) |
5 | 4 | ancli 552 |
. . . . . . 7
⊢ (𝑀 ∈ ℤ → (𝑀 ∈ ℤ ∧ (𝑀 ≤ 𝑀 ∧ 𝜓))) |
6 | | breq2 5040 |
. . . . . . . . 9
⊢ (𝑗 = 𝑀 → (𝑀 ≤ 𝑗 ↔ 𝑀 ≤ 𝑀)) |
7 | | uzind.1 |
. . . . . . . . 9
⊢ (𝑗 = 𝑀 → (𝜑 ↔ 𝜓)) |
8 | 6, 7 | anbi12d 633 |
. . . . . . . 8
⊢ (𝑗 = 𝑀 → ((𝑀 ≤ 𝑗 ∧ 𝜑) ↔ (𝑀 ≤ 𝑀 ∧ 𝜓))) |
9 | 8 | elrab 3604 |
. . . . . . 7
⊢ (𝑀 ∈ {𝑗 ∈ ℤ ∣ (𝑀 ≤ 𝑗 ∧ 𝜑)} ↔ (𝑀 ∈ ℤ ∧ (𝑀 ≤ 𝑀 ∧ 𝜓))) |
10 | 5, 9 | sylibr 237 |
. . . . . 6
⊢ (𝑀 ∈ ℤ → 𝑀 ∈ {𝑗 ∈ ℤ ∣ (𝑀 ≤ 𝑗 ∧ 𝜑)}) |
11 | | peano2z 12075 |
. . . . . . . . . . 11
⊢ (𝑘 ∈ ℤ → (𝑘 + 1) ∈
ℤ) |
12 | 11 | a1i 11 |
. . . . . . . . . 10
⊢ (𝑀 ∈ ℤ → (𝑘 ∈ ℤ → (𝑘 + 1) ∈
ℤ)) |
13 | 12 | adantrd 495 |
. . . . . . . . 9
⊢ (𝑀 ∈ ℤ → ((𝑘 ∈ ℤ ∧ (𝑀 ≤ 𝑘 ∧ 𝜒)) → (𝑘 + 1) ∈ ℤ)) |
14 | | zre 12037 |
. . . . . . . . . . . . 13
⊢ (𝑘 ∈ ℤ → 𝑘 ∈
ℝ) |
15 | | ltp1 11531 |
. . . . . . . . . . . . . . . 16
⊢ (𝑘 ∈ ℝ → 𝑘 < (𝑘 + 1)) |
16 | 15 | adantl 485 |
. . . . . . . . . . . . . . 15
⊢ ((𝑀 ∈ ℝ ∧ 𝑘 ∈ ℝ) → 𝑘 < (𝑘 + 1)) |
17 | | peano2re 10864 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑘 ∈ ℝ → (𝑘 + 1) ∈
ℝ) |
18 | 17 | ancli 552 |
. . . . . . . . . . . . . . . 16
⊢ (𝑘 ∈ ℝ → (𝑘 ∈ ℝ ∧ (𝑘 + 1) ∈
ℝ)) |
19 | | lelttr 10782 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝑀 ∈ ℝ ∧ 𝑘 ∈ ℝ ∧ (𝑘 + 1) ∈ ℝ) →
((𝑀 ≤ 𝑘 ∧ 𝑘 < (𝑘 + 1)) → 𝑀 < (𝑘 + 1))) |
20 | 19 | 3expb 1117 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑀 ∈ ℝ ∧ (𝑘 ∈ ℝ ∧ (𝑘 + 1) ∈ ℝ)) →
((𝑀 ≤ 𝑘 ∧ 𝑘 < (𝑘 + 1)) → 𝑀 < (𝑘 + 1))) |
21 | 18, 20 | sylan2 595 |
. . . . . . . . . . . . . . 15
⊢ ((𝑀 ∈ ℝ ∧ 𝑘 ∈ ℝ) → ((𝑀 ≤ 𝑘 ∧ 𝑘 < (𝑘 + 1)) → 𝑀 < (𝑘 + 1))) |
22 | 16, 21 | mpan2d 693 |
. . . . . . . . . . . . . 14
⊢ ((𝑀 ∈ ℝ ∧ 𝑘 ∈ ℝ) → (𝑀 ≤ 𝑘 → 𝑀 < (𝑘 + 1))) |
23 | | ltle 10780 |
. . . . . . . . . . . . . . 15
⊢ ((𝑀 ∈ ℝ ∧ (𝑘 + 1) ∈ ℝ) →
(𝑀 < (𝑘 + 1) → 𝑀 ≤ (𝑘 + 1))) |
24 | 17, 23 | sylan2 595 |
. . . . . . . . . . . . . 14
⊢ ((𝑀 ∈ ℝ ∧ 𝑘 ∈ ℝ) → (𝑀 < (𝑘 + 1) → 𝑀 ≤ (𝑘 + 1))) |
25 | 22, 24 | syld 47 |
. . . . . . . . . . . . 13
⊢ ((𝑀 ∈ ℝ ∧ 𝑘 ∈ ℝ) → (𝑀 ≤ 𝑘 → 𝑀 ≤ (𝑘 + 1))) |
26 | 1, 14, 25 | syl2an 598 |
. . . . . . . . . . . 12
⊢ ((𝑀 ∈ ℤ ∧ 𝑘 ∈ ℤ) → (𝑀 ≤ 𝑘 → 𝑀 ≤ (𝑘 + 1))) |
27 | 26 | adantrd 495 |
. . . . . . . . . . 11
⊢ ((𝑀 ∈ ℤ ∧ 𝑘 ∈ ℤ) → ((𝑀 ≤ 𝑘 ∧ 𝜒) → 𝑀 ≤ (𝑘 + 1))) |
28 | 27 | expimpd 457 |
. . . . . . . . . 10
⊢ (𝑀 ∈ ℤ → ((𝑘 ∈ ℤ ∧ (𝑀 ≤ 𝑘 ∧ 𝜒)) → 𝑀 ≤ (𝑘 + 1))) |
29 | | uzind.6 |
. . . . . . . . . . . 12
⊢ ((𝑀 ∈ ℤ ∧ 𝑘 ∈ ℤ ∧ 𝑀 ≤ 𝑘) → (𝜒 → 𝜃)) |
30 | 29 | 3exp 1116 |
. . . . . . . . . . 11
⊢ (𝑀 ∈ ℤ → (𝑘 ∈ ℤ → (𝑀 ≤ 𝑘 → (𝜒 → 𝜃)))) |
31 | 30 | imp4d 428 |
. . . . . . . . . 10
⊢ (𝑀 ∈ ℤ → ((𝑘 ∈ ℤ ∧ (𝑀 ≤ 𝑘 ∧ 𝜒)) → 𝜃)) |
32 | 28, 31 | jcad 516 |
. . . . . . . . 9
⊢ (𝑀 ∈ ℤ → ((𝑘 ∈ ℤ ∧ (𝑀 ≤ 𝑘 ∧ 𝜒)) → (𝑀 ≤ (𝑘 + 1) ∧ 𝜃))) |
33 | 13, 32 | jcad 516 |
. . . . . . . 8
⊢ (𝑀 ∈ ℤ → ((𝑘 ∈ ℤ ∧ (𝑀 ≤ 𝑘 ∧ 𝜒)) → ((𝑘 + 1) ∈ ℤ ∧ (𝑀 ≤ (𝑘 + 1) ∧ 𝜃)))) |
34 | | breq2 5040 |
. . . . . . . . . 10
⊢ (𝑗 = 𝑘 → (𝑀 ≤ 𝑗 ↔ 𝑀 ≤ 𝑘)) |
35 | | uzind.2 |
. . . . . . . . . 10
⊢ (𝑗 = 𝑘 → (𝜑 ↔ 𝜒)) |
36 | 34, 35 | anbi12d 633 |
. . . . . . . . 9
⊢ (𝑗 = 𝑘 → ((𝑀 ≤ 𝑗 ∧ 𝜑) ↔ (𝑀 ≤ 𝑘 ∧ 𝜒))) |
37 | 36 | elrab 3604 |
. . . . . . . 8
⊢ (𝑘 ∈ {𝑗 ∈ ℤ ∣ (𝑀 ≤ 𝑗 ∧ 𝜑)} ↔ (𝑘 ∈ ℤ ∧ (𝑀 ≤ 𝑘 ∧ 𝜒))) |
38 | | breq2 5040 |
. . . . . . . . . 10
⊢ (𝑗 = (𝑘 + 1) → (𝑀 ≤ 𝑗 ↔ 𝑀 ≤ (𝑘 + 1))) |
39 | | uzind.3 |
. . . . . . . . . 10
⊢ (𝑗 = (𝑘 + 1) → (𝜑 ↔ 𝜃)) |
40 | 38, 39 | anbi12d 633 |
. . . . . . . . 9
⊢ (𝑗 = (𝑘 + 1) → ((𝑀 ≤ 𝑗 ∧ 𝜑) ↔ (𝑀 ≤ (𝑘 + 1) ∧ 𝜃))) |
41 | 40 | elrab 3604 |
. . . . . . . 8
⊢ ((𝑘 + 1) ∈ {𝑗 ∈ ℤ ∣ (𝑀 ≤ 𝑗 ∧ 𝜑)} ↔ ((𝑘 + 1) ∈ ℤ ∧ (𝑀 ≤ (𝑘 + 1) ∧ 𝜃))) |
42 | 33, 37, 41 | 3imtr4g 299 |
. . . . . . 7
⊢ (𝑀 ∈ ℤ → (𝑘 ∈ {𝑗 ∈ ℤ ∣ (𝑀 ≤ 𝑗 ∧ 𝜑)} → (𝑘 + 1) ∈ {𝑗 ∈ ℤ ∣ (𝑀 ≤ 𝑗 ∧ 𝜑)})) |
43 | 42 | ralrimiv 3112 |
. . . . . 6
⊢ (𝑀 ∈ ℤ →
∀𝑘 ∈ {𝑗 ∈ ℤ ∣ (𝑀 ≤ 𝑗 ∧ 𝜑)} (𝑘 + 1) ∈ {𝑗 ∈ ℤ ∣ (𝑀 ≤ 𝑗 ∧ 𝜑)}) |
44 | | peano5uzti 12124 |
. . . . . 6
⊢ (𝑀 ∈ ℤ → ((𝑀 ∈ {𝑗 ∈ ℤ ∣ (𝑀 ≤ 𝑗 ∧ 𝜑)} ∧ ∀𝑘 ∈ {𝑗 ∈ ℤ ∣ (𝑀 ≤ 𝑗 ∧ 𝜑)} (𝑘 + 1) ∈ {𝑗 ∈ ℤ ∣ (𝑀 ≤ 𝑗 ∧ 𝜑)}) → {𝑤 ∈ ℤ ∣ 𝑀 ≤ 𝑤} ⊆ {𝑗 ∈ ℤ ∣ (𝑀 ≤ 𝑗 ∧ 𝜑)})) |
45 | 10, 43, 44 | mp2and 698 |
. . . . 5
⊢ (𝑀 ∈ ℤ → {𝑤 ∈ ℤ ∣ 𝑀 ≤ 𝑤} ⊆ {𝑗 ∈ ℤ ∣ (𝑀 ≤ 𝑗 ∧ 𝜑)}) |
46 | 45 | sseld 3893 |
. . . 4
⊢ (𝑀 ∈ ℤ → (𝑁 ∈ {𝑤 ∈ ℤ ∣ 𝑀 ≤ 𝑤} → 𝑁 ∈ {𝑗 ∈ ℤ ∣ (𝑀 ≤ 𝑗 ∧ 𝜑)})) |
47 | | breq2 5040 |
. . . . 5
⊢ (𝑤 = 𝑁 → (𝑀 ≤ 𝑤 ↔ 𝑀 ≤ 𝑁)) |
48 | 47 | elrab 3604 |
. . . 4
⊢ (𝑁 ∈ {𝑤 ∈ ℤ ∣ 𝑀 ≤ 𝑤} ↔ (𝑁 ∈ ℤ ∧ 𝑀 ≤ 𝑁)) |
49 | | breq2 5040 |
. . . . . 6
⊢ (𝑗 = 𝑁 → (𝑀 ≤ 𝑗 ↔ 𝑀 ≤ 𝑁)) |
50 | | uzind.4 |
. . . . . 6
⊢ (𝑗 = 𝑁 → (𝜑 ↔ 𝜏)) |
51 | 49, 50 | anbi12d 633 |
. . . . 5
⊢ (𝑗 = 𝑁 → ((𝑀 ≤ 𝑗 ∧ 𝜑) ↔ (𝑀 ≤ 𝑁 ∧ 𝜏))) |
52 | 51 | elrab 3604 |
. . . 4
⊢ (𝑁 ∈ {𝑗 ∈ ℤ ∣ (𝑀 ≤ 𝑗 ∧ 𝜑)} ↔ (𝑁 ∈ ℤ ∧ (𝑀 ≤ 𝑁 ∧ 𝜏))) |
53 | 46, 48, 52 | 3imtr3g 298 |
. . 3
⊢ (𝑀 ∈ ℤ → ((𝑁 ∈ ℤ ∧ 𝑀 ≤ 𝑁) → (𝑁 ∈ ℤ ∧ (𝑀 ≤ 𝑁 ∧ 𝜏)))) |
54 | 53 | 3impib 1113 |
. 2
⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑀 ≤ 𝑁) → (𝑁 ∈ ℤ ∧ (𝑀 ≤ 𝑁 ∧ 𝜏))) |
55 | 54 | simprrd 773 |
1
⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑀 ≤ 𝑁) → 𝜏) |