MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  uzind Structured version   Visualization version   GIF version

Theorem uzind 12626
Description: Induction on the upper integers that start at 𝑀. The first four hypotheses give us the substitution instances we need; the last two are the basis and the induction step. (Contributed by NM, 5-Jul-2005.)
Hypotheses
Ref Expression
uzind.1 (𝑗 = 𝑀 → (𝜑𝜓))
uzind.2 (𝑗 = 𝑘 → (𝜑𝜒))
uzind.3 (𝑗 = (𝑘 + 1) → (𝜑𝜃))
uzind.4 (𝑗 = 𝑁 → (𝜑𝜏))
uzind.5 (𝑀 ∈ ℤ → 𝜓)
uzind.6 ((𝑀 ∈ ℤ ∧ 𝑘 ∈ ℤ ∧ 𝑀𝑘) → (𝜒𝜃))
Assertion
Ref Expression
uzind ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑀𝑁) → 𝜏)
Distinct variable groups:   𝑗,𝑁   𝜓,𝑗   𝜒,𝑗   𝜃,𝑗   𝜏,𝑗   𝜑,𝑘   𝑗,𝑘,𝑀
Allowed substitution hints:   𝜑(𝑗)   𝜓(𝑘)   𝜒(𝑘)   𝜃(𝑘)   𝜏(𝑘)   𝑁(𝑘)

Proof of Theorem uzind
Dummy variable 𝑤 is distinct from all other variables.
StepHypRef Expression
1 zre 12533 . . . . . . . . . 10 (𝑀 ∈ ℤ → 𝑀 ∈ ℝ)
21leidd 11744 . . . . . . . . 9 (𝑀 ∈ ℤ → 𝑀𝑀)
3 uzind.5 . . . . . . . . 9 (𝑀 ∈ ℤ → 𝜓)
42, 3jca 511 . . . . . . . 8 (𝑀 ∈ ℤ → (𝑀𝑀𝜓))
54ancli 548 . . . . . . 7 (𝑀 ∈ ℤ → (𝑀 ∈ ℤ ∧ (𝑀𝑀𝜓)))
6 breq2 5111 . . . . . . . . 9 (𝑗 = 𝑀 → (𝑀𝑗𝑀𝑀))
7 uzind.1 . . . . . . . . 9 (𝑗 = 𝑀 → (𝜑𝜓))
86, 7anbi12d 632 . . . . . . . 8 (𝑗 = 𝑀 → ((𝑀𝑗𝜑) ↔ (𝑀𝑀𝜓)))
98elrab 3659 . . . . . . 7 (𝑀 ∈ {𝑗 ∈ ℤ ∣ (𝑀𝑗𝜑)} ↔ (𝑀 ∈ ℤ ∧ (𝑀𝑀𝜓)))
105, 9sylibr 234 . . . . . 6 (𝑀 ∈ ℤ → 𝑀 ∈ {𝑗 ∈ ℤ ∣ (𝑀𝑗𝜑)})
11 peano2z 12574 . . . . . . . . . . 11 (𝑘 ∈ ℤ → (𝑘 + 1) ∈ ℤ)
1211a1i 11 . . . . . . . . . 10 (𝑀 ∈ ℤ → (𝑘 ∈ ℤ → (𝑘 + 1) ∈ ℤ))
1312adantrd 491 . . . . . . . . 9 (𝑀 ∈ ℤ → ((𝑘 ∈ ℤ ∧ (𝑀𝑘𝜒)) → (𝑘 + 1) ∈ ℤ))
14 zre 12533 . . . . . . . . . . . . 13 (𝑘 ∈ ℤ → 𝑘 ∈ ℝ)
15 ltp1 12022 . . . . . . . . . . . . . . . 16 (𝑘 ∈ ℝ → 𝑘 < (𝑘 + 1))
1615adantl 481 . . . . . . . . . . . . . . 15 ((𝑀 ∈ ℝ ∧ 𝑘 ∈ ℝ) → 𝑘 < (𝑘 + 1))
17 peano2re 11347 . . . . . . . . . . . . . . . . 17 (𝑘 ∈ ℝ → (𝑘 + 1) ∈ ℝ)
1817ancli 548 . . . . . . . . . . . . . . . 16 (𝑘 ∈ ℝ → (𝑘 ∈ ℝ ∧ (𝑘 + 1) ∈ ℝ))
19 lelttr 11264 . . . . . . . . . . . . . . . . 17 ((𝑀 ∈ ℝ ∧ 𝑘 ∈ ℝ ∧ (𝑘 + 1) ∈ ℝ) → ((𝑀𝑘𝑘 < (𝑘 + 1)) → 𝑀 < (𝑘 + 1)))
20193expb 1120 . . . . . . . . . . . . . . . 16 ((𝑀 ∈ ℝ ∧ (𝑘 ∈ ℝ ∧ (𝑘 + 1) ∈ ℝ)) → ((𝑀𝑘𝑘 < (𝑘 + 1)) → 𝑀 < (𝑘 + 1)))
2118, 20sylan2 593 . . . . . . . . . . . . . . 15 ((𝑀 ∈ ℝ ∧ 𝑘 ∈ ℝ) → ((𝑀𝑘𝑘 < (𝑘 + 1)) → 𝑀 < (𝑘 + 1)))
2216, 21mpan2d 694 . . . . . . . . . . . . . 14 ((𝑀 ∈ ℝ ∧ 𝑘 ∈ ℝ) → (𝑀𝑘𝑀 < (𝑘 + 1)))
23 ltle 11262 . . . . . . . . . . . . . . 15 ((𝑀 ∈ ℝ ∧ (𝑘 + 1) ∈ ℝ) → (𝑀 < (𝑘 + 1) → 𝑀 ≤ (𝑘 + 1)))
2417, 23sylan2 593 . . . . . . . . . . . . . 14 ((𝑀 ∈ ℝ ∧ 𝑘 ∈ ℝ) → (𝑀 < (𝑘 + 1) → 𝑀 ≤ (𝑘 + 1)))
2522, 24syld 47 . . . . . . . . . . . . 13 ((𝑀 ∈ ℝ ∧ 𝑘 ∈ ℝ) → (𝑀𝑘𝑀 ≤ (𝑘 + 1)))
261, 14, 25syl2an 596 . . . . . . . . . . . 12 ((𝑀 ∈ ℤ ∧ 𝑘 ∈ ℤ) → (𝑀𝑘𝑀 ≤ (𝑘 + 1)))
2726adantrd 491 . . . . . . . . . . 11 ((𝑀 ∈ ℤ ∧ 𝑘 ∈ ℤ) → ((𝑀𝑘𝜒) → 𝑀 ≤ (𝑘 + 1)))
2827expimpd 453 . . . . . . . . . 10 (𝑀 ∈ ℤ → ((𝑘 ∈ ℤ ∧ (𝑀𝑘𝜒)) → 𝑀 ≤ (𝑘 + 1)))
29 uzind.6 . . . . . . . . . . . 12 ((𝑀 ∈ ℤ ∧ 𝑘 ∈ ℤ ∧ 𝑀𝑘) → (𝜒𝜃))
30293exp 1119 . . . . . . . . . . 11 (𝑀 ∈ ℤ → (𝑘 ∈ ℤ → (𝑀𝑘 → (𝜒𝜃))))
3130imp4d 424 . . . . . . . . . 10 (𝑀 ∈ ℤ → ((𝑘 ∈ ℤ ∧ (𝑀𝑘𝜒)) → 𝜃))
3228, 31jcad 512 . . . . . . . . 9 (𝑀 ∈ ℤ → ((𝑘 ∈ ℤ ∧ (𝑀𝑘𝜒)) → (𝑀 ≤ (𝑘 + 1) ∧ 𝜃)))
3313, 32jcad 512 . . . . . . . 8 (𝑀 ∈ ℤ → ((𝑘 ∈ ℤ ∧ (𝑀𝑘𝜒)) → ((𝑘 + 1) ∈ ℤ ∧ (𝑀 ≤ (𝑘 + 1) ∧ 𝜃))))
34 breq2 5111 . . . . . . . . . 10 (𝑗 = 𝑘 → (𝑀𝑗𝑀𝑘))
35 uzind.2 . . . . . . . . . 10 (𝑗 = 𝑘 → (𝜑𝜒))
3634, 35anbi12d 632 . . . . . . . . 9 (𝑗 = 𝑘 → ((𝑀𝑗𝜑) ↔ (𝑀𝑘𝜒)))
3736elrab 3659 . . . . . . . 8 (𝑘 ∈ {𝑗 ∈ ℤ ∣ (𝑀𝑗𝜑)} ↔ (𝑘 ∈ ℤ ∧ (𝑀𝑘𝜒)))
38 breq2 5111 . . . . . . . . . 10 (𝑗 = (𝑘 + 1) → (𝑀𝑗𝑀 ≤ (𝑘 + 1)))
39 uzind.3 . . . . . . . . . 10 (𝑗 = (𝑘 + 1) → (𝜑𝜃))
4038, 39anbi12d 632 . . . . . . . . 9 (𝑗 = (𝑘 + 1) → ((𝑀𝑗𝜑) ↔ (𝑀 ≤ (𝑘 + 1) ∧ 𝜃)))
4140elrab 3659 . . . . . . . 8 ((𝑘 + 1) ∈ {𝑗 ∈ ℤ ∣ (𝑀𝑗𝜑)} ↔ ((𝑘 + 1) ∈ ℤ ∧ (𝑀 ≤ (𝑘 + 1) ∧ 𝜃)))
4233, 37, 413imtr4g 296 . . . . . . 7 (𝑀 ∈ ℤ → (𝑘 ∈ {𝑗 ∈ ℤ ∣ (𝑀𝑗𝜑)} → (𝑘 + 1) ∈ {𝑗 ∈ ℤ ∣ (𝑀𝑗𝜑)}))
4342ralrimiv 3124 . . . . . 6 (𝑀 ∈ ℤ → ∀𝑘 ∈ {𝑗 ∈ ℤ ∣ (𝑀𝑗𝜑)} (𝑘 + 1) ∈ {𝑗 ∈ ℤ ∣ (𝑀𝑗𝜑)})
44 peano5uzti 12624 . . . . . 6 (𝑀 ∈ ℤ → ((𝑀 ∈ {𝑗 ∈ ℤ ∣ (𝑀𝑗𝜑)} ∧ ∀𝑘 ∈ {𝑗 ∈ ℤ ∣ (𝑀𝑗𝜑)} (𝑘 + 1) ∈ {𝑗 ∈ ℤ ∣ (𝑀𝑗𝜑)}) → {𝑤 ∈ ℤ ∣ 𝑀𝑤} ⊆ {𝑗 ∈ ℤ ∣ (𝑀𝑗𝜑)}))
4510, 43, 44mp2and 699 . . . . 5 (𝑀 ∈ ℤ → {𝑤 ∈ ℤ ∣ 𝑀𝑤} ⊆ {𝑗 ∈ ℤ ∣ (𝑀𝑗𝜑)})
4645sseld 3945 . . . 4 (𝑀 ∈ ℤ → (𝑁 ∈ {𝑤 ∈ ℤ ∣ 𝑀𝑤} → 𝑁 ∈ {𝑗 ∈ ℤ ∣ (𝑀𝑗𝜑)}))
47 breq2 5111 . . . . 5 (𝑤 = 𝑁 → (𝑀𝑤𝑀𝑁))
4847elrab 3659 . . . 4 (𝑁 ∈ {𝑤 ∈ ℤ ∣ 𝑀𝑤} ↔ (𝑁 ∈ ℤ ∧ 𝑀𝑁))
49 breq2 5111 . . . . . 6 (𝑗 = 𝑁 → (𝑀𝑗𝑀𝑁))
50 uzind.4 . . . . . 6 (𝑗 = 𝑁 → (𝜑𝜏))
5149, 50anbi12d 632 . . . . 5 (𝑗 = 𝑁 → ((𝑀𝑗𝜑) ↔ (𝑀𝑁𝜏)))
5251elrab 3659 . . . 4 (𝑁 ∈ {𝑗 ∈ ℤ ∣ (𝑀𝑗𝜑)} ↔ (𝑁 ∈ ℤ ∧ (𝑀𝑁𝜏)))
5346, 48, 523imtr3g 295 . . 3 (𝑀 ∈ ℤ → ((𝑁 ∈ ℤ ∧ 𝑀𝑁) → (𝑁 ∈ ℤ ∧ (𝑀𝑁𝜏))))
54533impib 1116 . 2 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑀𝑁) → (𝑁 ∈ ℤ ∧ (𝑀𝑁𝜏)))
5554simprrd 773 1 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑀𝑁) → 𝜏)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1540  wcel 2109  wral 3044  {crab 3405  wss 3914   class class class wbr 5107  (class class class)co 7387  cr 11067  1c1 11069   + caddc 11071   < clt 11208  cle 11209  cz 12529
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387  ax-un 7711  ax-resscn 11125  ax-1cn 11126  ax-icn 11127  ax-addcl 11128  ax-addrcl 11129  ax-mulcl 11130  ax-mulrcl 11131  ax-mulcom 11132  ax-addass 11133  ax-mulass 11134  ax-distr 11135  ax-i2m1 11136  ax-1ne0 11137  ax-1rid 11138  ax-rnegex 11139  ax-rrecex 11140  ax-cnre 11141  ax-pre-lttri 11142  ax-pre-lttrn 11143  ax-pre-ltadd 11144  ax-pre-mulgt0 11145
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-reu 3355  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-pss 3934  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-iun 4957  df-br 5108  df-opab 5170  df-mpt 5189  df-tr 5215  df-id 5533  df-eprel 5538  df-po 5546  df-so 5547  df-fr 5591  df-we 5593  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-pred 6274  df-ord 6335  df-on 6336  df-lim 6337  df-suc 6338  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518  df-fv 6519  df-riota 7344  df-ov 7390  df-oprab 7391  df-mpo 7392  df-om 7843  df-2nd 7969  df-frecs 8260  df-wrecs 8291  df-recs 8340  df-rdg 8378  df-er 8671  df-en 8919  df-dom 8920  df-sdom 8921  df-pnf 11210  df-mnf 11211  df-xr 11212  df-ltxr 11213  df-le 11214  df-sub 11407  df-neg 11408  df-nn 12187  df-n0 12443  df-z 12530
This theorem is referenced by:  uzind2  12627  uzind3  12628  nn0ind  12629  fzind  12632  fi1uzind  14472  algcvga  16549  uzindd  41965  zindbi  42935
  Copyright terms: Public domain W3C validator