MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  uzind Structured version   Visualization version   GIF version

Theorem uzind 12602
Description: Induction on the upper integers that start at 𝑀. The first four hypotheses give us the substitution instances we need; the last two are the basis and the induction step. (Contributed by NM, 5-Jul-2005.)
Hypotheses
Ref Expression
uzind.1 (𝑗 = 𝑀 → (𝜑𝜓))
uzind.2 (𝑗 = 𝑘 → (𝜑𝜒))
uzind.3 (𝑗 = (𝑘 + 1) → (𝜑𝜃))
uzind.4 (𝑗 = 𝑁 → (𝜑𝜏))
uzind.5 (𝑀 ∈ ℤ → 𝜓)
uzind.6 ((𝑀 ∈ ℤ ∧ 𝑘 ∈ ℤ ∧ 𝑀𝑘) → (𝜒𝜃))
Assertion
Ref Expression
uzind ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑀𝑁) → 𝜏)
Distinct variable groups:   𝑗,𝑁   𝜓,𝑗   𝜒,𝑗   𝜃,𝑗   𝜏,𝑗   𝜑,𝑘   𝑗,𝑘,𝑀
Allowed substitution hints:   𝜑(𝑗)   𝜓(𝑘)   𝜒(𝑘)   𝜃(𝑘)   𝜏(𝑘)   𝑁(𝑘)

Proof of Theorem uzind
Dummy variable 𝑤 is distinct from all other variables.
StepHypRef Expression
1 zre 12509 . . . . . . . . . 10 (𝑀 ∈ ℤ → 𝑀 ∈ ℝ)
21leidd 11720 . . . . . . . . 9 (𝑀 ∈ ℤ → 𝑀𝑀)
3 uzind.5 . . . . . . . . 9 (𝑀 ∈ ℤ → 𝜓)
42, 3jca 511 . . . . . . . 8 (𝑀 ∈ ℤ → (𝑀𝑀𝜓))
54ancli 548 . . . . . . 7 (𝑀 ∈ ℤ → (𝑀 ∈ ℤ ∧ (𝑀𝑀𝜓)))
6 breq2 5106 . . . . . . . . 9 (𝑗 = 𝑀 → (𝑀𝑗𝑀𝑀))
7 uzind.1 . . . . . . . . 9 (𝑗 = 𝑀 → (𝜑𝜓))
86, 7anbi12d 632 . . . . . . . 8 (𝑗 = 𝑀 → ((𝑀𝑗𝜑) ↔ (𝑀𝑀𝜓)))
98elrab 3656 . . . . . . 7 (𝑀 ∈ {𝑗 ∈ ℤ ∣ (𝑀𝑗𝜑)} ↔ (𝑀 ∈ ℤ ∧ (𝑀𝑀𝜓)))
105, 9sylibr 234 . . . . . 6 (𝑀 ∈ ℤ → 𝑀 ∈ {𝑗 ∈ ℤ ∣ (𝑀𝑗𝜑)})
11 peano2z 12550 . . . . . . . . . . 11 (𝑘 ∈ ℤ → (𝑘 + 1) ∈ ℤ)
1211a1i 11 . . . . . . . . . 10 (𝑀 ∈ ℤ → (𝑘 ∈ ℤ → (𝑘 + 1) ∈ ℤ))
1312adantrd 491 . . . . . . . . 9 (𝑀 ∈ ℤ → ((𝑘 ∈ ℤ ∧ (𝑀𝑘𝜒)) → (𝑘 + 1) ∈ ℤ))
14 zre 12509 . . . . . . . . . . . . 13 (𝑘 ∈ ℤ → 𝑘 ∈ ℝ)
15 ltp1 11998 . . . . . . . . . . . . . . . 16 (𝑘 ∈ ℝ → 𝑘 < (𝑘 + 1))
1615adantl 481 . . . . . . . . . . . . . . 15 ((𝑀 ∈ ℝ ∧ 𝑘 ∈ ℝ) → 𝑘 < (𝑘 + 1))
17 peano2re 11323 . . . . . . . . . . . . . . . . 17 (𝑘 ∈ ℝ → (𝑘 + 1) ∈ ℝ)
1817ancli 548 . . . . . . . . . . . . . . . 16 (𝑘 ∈ ℝ → (𝑘 ∈ ℝ ∧ (𝑘 + 1) ∈ ℝ))
19 lelttr 11240 . . . . . . . . . . . . . . . . 17 ((𝑀 ∈ ℝ ∧ 𝑘 ∈ ℝ ∧ (𝑘 + 1) ∈ ℝ) → ((𝑀𝑘𝑘 < (𝑘 + 1)) → 𝑀 < (𝑘 + 1)))
20193expb 1120 . . . . . . . . . . . . . . . 16 ((𝑀 ∈ ℝ ∧ (𝑘 ∈ ℝ ∧ (𝑘 + 1) ∈ ℝ)) → ((𝑀𝑘𝑘 < (𝑘 + 1)) → 𝑀 < (𝑘 + 1)))
2118, 20sylan2 593 . . . . . . . . . . . . . . 15 ((𝑀 ∈ ℝ ∧ 𝑘 ∈ ℝ) → ((𝑀𝑘𝑘 < (𝑘 + 1)) → 𝑀 < (𝑘 + 1)))
2216, 21mpan2d 694 . . . . . . . . . . . . . 14 ((𝑀 ∈ ℝ ∧ 𝑘 ∈ ℝ) → (𝑀𝑘𝑀 < (𝑘 + 1)))
23 ltle 11238 . . . . . . . . . . . . . . 15 ((𝑀 ∈ ℝ ∧ (𝑘 + 1) ∈ ℝ) → (𝑀 < (𝑘 + 1) → 𝑀 ≤ (𝑘 + 1)))
2417, 23sylan2 593 . . . . . . . . . . . . . 14 ((𝑀 ∈ ℝ ∧ 𝑘 ∈ ℝ) → (𝑀 < (𝑘 + 1) → 𝑀 ≤ (𝑘 + 1)))
2522, 24syld 47 . . . . . . . . . . . . 13 ((𝑀 ∈ ℝ ∧ 𝑘 ∈ ℝ) → (𝑀𝑘𝑀 ≤ (𝑘 + 1)))
261, 14, 25syl2an 596 . . . . . . . . . . . 12 ((𝑀 ∈ ℤ ∧ 𝑘 ∈ ℤ) → (𝑀𝑘𝑀 ≤ (𝑘 + 1)))
2726adantrd 491 . . . . . . . . . . 11 ((𝑀 ∈ ℤ ∧ 𝑘 ∈ ℤ) → ((𝑀𝑘𝜒) → 𝑀 ≤ (𝑘 + 1)))
2827expimpd 453 . . . . . . . . . 10 (𝑀 ∈ ℤ → ((𝑘 ∈ ℤ ∧ (𝑀𝑘𝜒)) → 𝑀 ≤ (𝑘 + 1)))
29 uzind.6 . . . . . . . . . . . 12 ((𝑀 ∈ ℤ ∧ 𝑘 ∈ ℤ ∧ 𝑀𝑘) → (𝜒𝜃))
30293exp 1119 . . . . . . . . . . 11 (𝑀 ∈ ℤ → (𝑘 ∈ ℤ → (𝑀𝑘 → (𝜒𝜃))))
3130imp4d 424 . . . . . . . . . 10 (𝑀 ∈ ℤ → ((𝑘 ∈ ℤ ∧ (𝑀𝑘𝜒)) → 𝜃))
3228, 31jcad 512 . . . . . . . . 9 (𝑀 ∈ ℤ → ((𝑘 ∈ ℤ ∧ (𝑀𝑘𝜒)) → (𝑀 ≤ (𝑘 + 1) ∧ 𝜃)))
3313, 32jcad 512 . . . . . . . 8 (𝑀 ∈ ℤ → ((𝑘 ∈ ℤ ∧ (𝑀𝑘𝜒)) → ((𝑘 + 1) ∈ ℤ ∧ (𝑀 ≤ (𝑘 + 1) ∧ 𝜃))))
34 breq2 5106 . . . . . . . . . 10 (𝑗 = 𝑘 → (𝑀𝑗𝑀𝑘))
35 uzind.2 . . . . . . . . . 10 (𝑗 = 𝑘 → (𝜑𝜒))
3634, 35anbi12d 632 . . . . . . . . 9 (𝑗 = 𝑘 → ((𝑀𝑗𝜑) ↔ (𝑀𝑘𝜒)))
3736elrab 3656 . . . . . . . 8 (𝑘 ∈ {𝑗 ∈ ℤ ∣ (𝑀𝑗𝜑)} ↔ (𝑘 ∈ ℤ ∧ (𝑀𝑘𝜒)))
38 breq2 5106 . . . . . . . . . 10 (𝑗 = (𝑘 + 1) → (𝑀𝑗𝑀 ≤ (𝑘 + 1)))
39 uzind.3 . . . . . . . . . 10 (𝑗 = (𝑘 + 1) → (𝜑𝜃))
4038, 39anbi12d 632 . . . . . . . . 9 (𝑗 = (𝑘 + 1) → ((𝑀𝑗𝜑) ↔ (𝑀 ≤ (𝑘 + 1) ∧ 𝜃)))
4140elrab 3656 . . . . . . . 8 ((𝑘 + 1) ∈ {𝑗 ∈ ℤ ∣ (𝑀𝑗𝜑)} ↔ ((𝑘 + 1) ∈ ℤ ∧ (𝑀 ≤ (𝑘 + 1) ∧ 𝜃)))
4233, 37, 413imtr4g 296 . . . . . . 7 (𝑀 ∈ ℤ → (𝑘 ∈ {𝑗 ∈ ℤ ∣ (𝑀𝑗𝜑)} → (𝑘 + 1) ∈ {𝑗 ∈ ℤ ∣ (𝑀𝑗𝜑)}))
4342ralrimiv 3124 . . . . . 6 (𝑀 ∈ ℤ → ∀𝑘 ∈ {𝑗 ∈ ℤ ∣ (𝑀𝑗𝜑)} (𝑘 + 1) ∈ {𝑗 ∈ ℤ ∣ (𝑀𝑗𝜑)})
44 peano5uzti 12600 . . . . . 6 (𝑀 ∈ ℤ → ((𝑀 ∈ {𝑗 ∈ ℤ ∣ (𝑀𝑗𝜑)} ∧ ∀𝑘 ∈ {𝑗 ∈ ℤ ∣ (𝑀𝑗𝜑)} (𝑘 + 1) ∈ {𝑗 ∈ ℤ ∣ (𝑀𝑗𝜑)}) → {𝑤 ∈ ℤ ∣ 𝑀𝑤} ⊆ {𝑗 ∈ ℤ ∣ (𝑀𝑗𝜑)}))
4510, 43, 44mp2and 699 . . . . 5 (𝑀 ∈ ℤ → {𝑤 ∈ ℤ ∣ 𝑀𝑤} ⊆ {𝑗 ∈ ℤ ∣ (𝑀𝑗𝜑)})
4645sseld 3942 . . . 4 (𝑀 ∈ ℤ → (𝑁 ∈ {𝑤 ∈ ℤ ∣ 𝑀𝑤} → 𝑁 ∈ {𝑗 ∈ ℤ ∣ (𝑀𝑗𝜑)}))
47 breq2 5106 . . . . 5 (𝑤 = 𝑁 → (𝑀𝑤𝑀𝑁))
4847elrab 3656 . . . 4 (𝑁 ∈ {𝑤 ∈ ℤ ∣ 𝑀𝑤} ↔ (𝑁 ∈ ℤ ∧ 𝑀𝑁))
49 breq2 5106 . . . . . 6 (𝑗 = 𝑁 → (𝑀𝑗𝑀𝑁))
50 uzind.4 . . . . . 6 (𝑗 = 𝑁 → (𝜑𝜏))
5149, 50anbi12d 632 . . . . 5 (𝑗 = 𝑁 → ((𝑀𝑗𝜑) ↔ (𝑀𝑁𝜏)))
5251elrab 3656 . . . 4 (𝑁 ∈ {𝑗 ∈ ℤ ∣ (𝑀𝑗𝜑)} ↔ (𝑁 ∈ ℤ ∧ (𝑀𝑁𝜏)))
5346, 48, 523imtr3g 295 . . 3 (𝑀 ∈ ℤ → ((𝑁 ∈ ℤ ∧ 𝑀𝑁) → (𝑁 ∈ ℤ ∧ (𝑀𝑁𝜏))))
54533impib 1116 . 2 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑀𝑁) → (𝑁 ∈ ℤ ∧ (𝑀𝑁𝜏)))
5554simprrd 773 1 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑀𝑁) → 𝜏)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1540  wcel 2109  wral 3044  {crab 3402  wss 3911   class class class wbr 5102  (class class class)co 7369  cr 11043  1c1 11045   + caddc 11047   < clt 11184  cle 11185  cz 12505
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5246  ax-nul 5256  ax-pow 5315  ax-pr 5382  ax-un 7691  ax-resscn 11101  ax-1cn 11102  ax-icn 11103  ax-addcl 11104  ax-addrcl 11105  ax-mulcl 11106  ax-mulrcl 11107  ax-mulcom 11108  ax-addass 11109  ax-mulass 11110  ax-distr 11111  ax-i2m1 11112  ax-1ne0 11113  ax-1rid 11114  ax-rnegex 11115  ax-rrecex 11116  ax-cnre 11117  ax-pre-lttri 11118  ax-pre-lttrn 11119  ax-pre-ltadd 11120  ax-pre-mulgt0 11121
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-reu 3352  df-rab 3403  df-v 3446  df-sbc 3751  df-csb 3860  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-pss 3931  df-nul 4293  df-if 4485  df-pw 4561  df-sn 4586  df-pr 4588  df-op 4592  df-uni 4868  df-iun 4953  df-br 5103  df-opab 5165  df-mpt 5184  df-tr 5210  df-id 5526  df-eprel 5531  df-po 5539  df-so 5540  df-fr 5584  df-we 5586  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-rn 5642  df-res 5643  df-ima 5644  df-pred 6262  df-ord 6323  df-on 6324  df-lim 6325  df-suc 6326  df-iota 6452  df-fun 6501  df-fn 6502  df-f 6503  df-f1 6504  df-fo 6505  df-f1o 6506  df-fv 6507  df-riota 7326  df-ov 7372  df-oprab 7373  df-mpo 7374  df-om 7823  df-2nd 7948  df-frecs 8237  df-wrecs 8268  df-recs 8317  df-rdg 8355  df-er 8648  df-en 8896  df-dom 8897  df-sdom 8898  df-pnf 11186  df-mnf 11187  df-xr 11188  df-ltxr 11189  df-le 11190  df-sub 11383  df-neg 11384  df-nn 12163  df-n0 12419  df-z 12506
This theorem is referenced by:  uzind2  12603  uzind3  12604  nn0ind  12605  fzind  12608  fi1uzind  14448  algcvga  16525  uzindd  41958  zindbi  42928
  Copyright terms: Public domain W3C validator