MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  uzind Structured version   Visualization version   GIF version

Theorem uzind 12062
Description: Induction on the upper integers that start at 𝑀. The first four hypotheses give us the substitution instances we need; the last two are the basis and the induction step. (Contributed by NM, 5-Jul-2005.)
Hypotheses
Ref Expression
uzind.1 (𝑗 = 𝑀 → (𝜑𝜓))
uzind.2 (𝑗 = 𝑘 → (𝜑𝜒))
uzind.3 (𝑗 = (𝑘 + 1) → (𝜑𝜃))
uzind.4 (𝑗 = 𝑁 → (𝜑𝜏))
uzind.5 (𝑀 ∈ ℤ → 𝜓)
uzind.6 ((𝑀 ∈ ℤ ∧ 𝑘 ∈ ℤ ∧ 𝑀𝑘) → (𝜒𝜃))
Assertion
Ref Expression
uzind ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑀𝑁) → 𝜏)
Distinct variable groups:   𝑗,𝑁   𝜓,𝑗   𝜒,𝑗   𝜃,𝑗   𝜏,𝑗   𝜑,𝑘   𝑗,𝑘,𝑀
Allowed substitution hints:   𝜑(𝑗)   𝜓(𝑘)   𝜒(𝑘)   𝜃(𝑘)   𝜏(𝑘)   𝑁(𝑘)

Proof of Theorem uzind
Dummy variable 𝑤 is distinct from all other variables.
StepHypRef Expression
1 zre 11973 . . . . . . . . . 10 (𝑀 ∈ ℤ → 𝑀 ∈ ℝ)
21leidd 11195 . . . . . . . . 9 (𝑀 ∈ ℤ → 𝑀𝑀)
3 uzind.5 . . . . . . . . 9 (𝑀 ∈ ℤ → 𝜓)
42, 3jca 515 . . . . . . . 8 (𝑀 ∈ ℤ → (𝑀𝑀𝜓))
54ancli 552 . . . . . . 7 (𝑀 ∈ ℤ → (𝑀 ∈ ℤ ∧ (𝑀𝑀𝜓)))
6 breq2 5034 . . . . . . . . 9 (𝑗 = 𝑀 → (𝑀𝑗𝑀𝑀))
7 uzind.1 . . . . . . . . 9 (𝑗 = 𝑀 → (𝜑𝜓))
86, 7anbi12d 633 . . . . . . . 8 (𝑗 = 𝑀 → ((𝑀𝑗𝜑) ↔ (𝑀𝑀𝜓)))
98elrab 3628 . . . . . . 7 (𝑀 ∈ {𝑗 ∈ ℤ ∣ (𝑀𝑗𝜑)} ↔ (𝑀 ∈ ℤ ∧ (𝑀𝑀𝜓)))
105, 9sylibr 237 . . . . . 6 (𝑀 ∈ ℤ → 𝑀 ∈ {𝑗 ∈ ℤ ∣ (𝑀𝑗𝜑)})
11 peano2z 12011 . . . . . . . . . . 11 (𝑘 ∈ ℤ → (𝑘 + 1) ∈ ℤ)
1211a1i 11 . . . . . . . . . 10 (𝑀 ∈ ℤ → (𝑘 ∈ ℤ → (𝑘 + 1) ∈ ℤ))
1312adantrd 495 . . . . . . . . 9 (𝑀 ∈ ℤ → ((𝑘 ∈ ℤ ∧ (𝑀𝑘𝜒)) → (𝑘 + 1) ∈ ℤ))
14 zre 11973 . . . . . . . . . . . . 13 (𝑘 ∈ ℤ → 𝑘 ∈ ℝ)
15 ltp1 11469 . . . . . . . . . . . . . . . 16 (𝑘 ∈ ℝ → 𝑘 < (𝑘 + 1))
1615adantl 485 . . . . . . . . . . . . . . 15 ((𝑀 ∈ ℝ ∧ 𝑘 ∈ ℝ) → 𝑘 < (𝑘 + 1))
17 peano2re 10802 . . . . . . . . . . . . . . . . 17 (𝑘 ∈ ℝ → (𝑘 + 1) ∈ ℝ)
1817ancli 552 . . . . . . . . . . . . . . . 16 (𝑘 ∈ ℝ → (𝑘 ∈ ℝ ∧ (𝑘 + 1) ∈ ℝ))
19 lelttr 10720 . . . . . . . . . . . . . . . . 17 ((𝑀 ∈ ℝ ∧ 𝑘 ∈ ℝ ∧ (𝑘 + 1) ∈ ℝ) → ((𝑀𝑘𝑘 < (𝑘 + 1)) → 𝑀 < (𝑘 + 1)))
20193expb 1117 . . . . . . . . . . . . . . . 16 ((𝑀 ∈ ℝ ∧ (𝑘 ∈ ℝ ∧ (𝑘 + 1) ∈ ℝ)) → ((𝑀𝑘𝑘 < (𝑘 + 1)) → 𝑀 < (𝑘 + 1)))
2118, 20sylan2 595 . . . . . . . . . . . . . . 15 ((𝑀 ∈ ℝ ∧ 𝑘 ∈ ℝ) → ((𝑀𝑘𝑘 < (𝑘 + 1)) → 𝑀 < (𝑘 + 1)))
2216, 21mpan2d 693 . . . . . . . . . . . . . 14 ((𝑀 ∈ ℝ ∧ 𝑘 ∈ ℝ) → (𝑀𝑘𝑀 < (𝑘 + 1)))
23 ltle 10718 . . . . . . . . . . . . . . 15 ((𝑀 ∈ ℝ ∧ (𝑘 + 1) ∈ ℝ) → (𝑀 < (𝑘 + 1) → 𝑀 ≤ (𝑘 + 1)))
2417, 23sylan2 595 . . . . . . . . . . . . . 14 ((𝑀 ∈ ℝ ∧ 𝑘 ∈ ℝ) → (𝑀 < (𝑘 + 1) → 𝑀 ≤ (𝑘 + 1)))
2522, 24syld 47 . . . . . . . . . . . . 13 ((𝑀 ∈ ℝ ∧ 𝑘 ∈ ℝ) → (𝑀𝑘𝑀 ≤ (𝑘 + 1)))
261, 14, 25syl2an 598 . . . . . . . . . . . 12 ((𝑀 ∈ ℤ ∧ 𝑘 ∈ ℤ) → (𝑀𝑘𝑀 ≤ (𝑘 + 1)))
2726adantrd 495 . . . . . . . . . . 11 ((𝑀 ∈ ℤ ∧ 𝑘 ∈ ℤ) → ((𝑀𝑘𝜒) → 𝑀 ≤ (𝑘 + 1)))
2827expimpd 457 . . . . . . . . . 10 (𝑀 ∈ ℤ → ((𝑘 ∈ ℤ ∧ (𝑀𝑘𝜒)) → 𝑀 ≤ (𝑘 + 1)))
29 uzind.6 . . . . . . . . . . . 12 ((𝑀 ∈ ℤ ∧ 𝑘 ∈ ℤ ∧ 𝑀𝑘) → (𝜒𝜃))
30293exp 1116 . . . . . . . . . . 11 (𝑀 ∈ ℤ → (𝑘 ∈ ℤ → (𝑀𝑘 → (𝜒𝜃))))
3130imp4d 428 . . . . . . . . . 10 (𝑀 ∈ ℤ → ((𝑘 ∈ ℤ ∧ (𝑀𝑘𝜒)) → 𝜃))
3228, 31jcad 516 . . . . . . . . 9 (𝑀 ∈ ℤ → ((𝑘 ∈ ℤ ∧ (𝑀𝑘𝜒)) → (𝑀 ≤ (𝑘 + 1) ∧ 𝜃)))
3313, 32jcad 516 . . . . . . . 8 (𝑀 ∈ ℤ → ((𝑘 ∈ ℤ ∧ (𝑀𝑘𝜒)) → ((𝑘 + 1) ∈ ℤ ∧ (𝑀 ≤ (𝑘 + 1) ∧ 𝜃))))
34 breq2 5034 . . . . . . . . . 10 (𝑗 = 𝑘 → (𝑀𝑗𝑀𝑘))
35 uzind.2 . . . . . . . . . 10 (𝑗 = 𝑘 → (𝜑𝜒))
3634, 35anbi12d 633 . . . . . . . . 9 (𝑗 = 𝑘 → ((𝑀𝑗𝜑) ↔ (𝑀𝑘𝜒)))
3736elrab 3628 . . . . . . . 8 (𝑘 ∈ {𝑗 ∈ ℤ ∣ (𝑀𝑗𝜑)} ↔ (𝑘 ∈ ℤ ∧ (𝑀𝑘𝜒)))
38 breq2 5034 . . . . . . . . . 10 (𝑗 = (𝑘 + 1) → (𝑀𝑗𝑀 ≤ (𝑘 + 1)))
39 uzind.3 . . . . . . . . . 10 (𝑗 = (𝑘 + 1) → (𝜑𝜃))
4038, 39anbi12d 633 . . . . . . . . 9 (𝑗 = (𝑘 + 1) → ((𝑀𝑗𝜑) ↔ (𝑀 ≤ (𝑘 + 1) ∧ 𝜃)))
4140elrab 3628 . . . . . . . 8 ((𝑘 + 1) ∈ {𝑗 ∈ ℤ ∣ (𝑀𝑗𝜑)} ↔ ((𝑘 + 1) ∈ ℤ ∧ (𝑀 ≤ (𝑘 + 1) ∧ 𝜃)))
4233, 37, 413imtr4g 299 . . . . . . 7 (𝑀 ∈ ℤ → (𝑘 ∈ {𝑗 ∈ ℤ ∣ (𝑀𝑗𝜑)} → (𝑘 + 1) ∈ {𝑗 ∈ ℤ ∣ (𝑀𝑗𝜑)}))
4342ralrimiv 3148 . . . . . 6 (𝑀 ∈ ℤ → ∀𝑘 ∈ {𝑗 ∈ ℤ ∣ (𝑀𝑗𝜑)} (𝑘 + 1) ∈ {𝑗 ∈ ℤ ∣ (𝑀𝑗𝜑)})
44 peano5uzti 12060 . . . . . 6 (𝑀 ∈ ℤ → ((𝑀 ∈ {𝑗 ∈ ℤ ∣ (𝑀𝑗𝜑)} ∧ ∀𝑘 ∈ {𝑗 ∈ ℤ ∣ (𝑀𝑗𝜑)} (𝑘 + 1) ∈ {𝑗 ∈ ℤ ∣ (𝑀𝑗𝜑)}) → {𝑤 ∈ ℤ ∣ 𝑀𝑤} ⊆ {𝑗 ∈ ℤ ∣ (𝑀𝑗𝜑)}))
4510, 43, 44mp2and 698 . . . . 5 (𝑀 ∈ ℤ → {𝑤 ∈ ℤ ∣ 𝑀𝑤} ⊆ {𝑗 ∈ ℤ ∣ (𝑀𝑗𝜑)})
4645sseld 3914 . . . 4 (𝑀 ∈ ℤ → (𝑁 ∈ {𝑤 ∈ ℤ ∣ 𝑀𝑤} → 𝑁 ∈ {𝑗 ∈ ℤ ∣ (𝑀𝑗𝜑)}))
47 breq2 5034 . . . . 5 (𝑤 = 𝑁 → (𝑀𝑤𝑀𝑁))
4847elrab 3628 . . . 4 (𝑁 ∈ {𝑤 ∈ ℤ ∣ 𝑀𝑤} ↔ (𝑁 ∈ ℤ ∧ 𝑀𝑁))
49 breq2 5034 . . . . . 6 (𝑗 = 𝑁 → (𝑀𝑗𝑀𝑁))
50 uzind.4 . . . . . 6 (𝑗 = 𝑁 → (𝜑𝜏))
5149, 50anbi12d 633 . . . . 5 (𝑗 = 𝑁 → ((𝑀𝑗𝜑) ↔ (𝑀𝑁𝜏)))
5251elrab 3628 . . . 4 (𝑁 ∈ {𝑗 ∈ ℤ ∣ (𝑀𝑗𝜑)} ↔ (𝑁 ∈ ℤ ∧ (𝑀𝑁𝜏)))
5346, 48, 523imtr3g 298 . . 3 (𝑀 ∈ ℤ → ((𝑁 ∈ ℤ ∧ 𝑀𝑁) → (𝑁 ∈ ℤ ∧ (𝑀𝑁𝜏))))
54533impib 1113 . 2 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑀𝑁) → (𝑁 ∈ ℤ ∧ (𝑀𝑁𝜏)))
5554simprrd 773 1 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑀𝑁) → 𝜏)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 209  wa 399  w3a 1084   = wceq 1538  wcel 2111  wral 3106  {crab 3110  wss 3881   class class class wbr 5030  (class class class)co 7135  cr 10525  1c1 10527   + caddc 10529   < clt 10664  cle 10665  cz 11969
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2770  ax-sep 5167  ax-nul 5174  ax-pow 5231  ax-pr 5295  ax-un 7441  ax-resscn 10583  ax-1cn 10584  ax-icn 10585  ax-addcl 10586  ax-addrcl 10587  ax-mulcl 10588  ax-mulrcl 10589  ax-mulcom 10590  ax-addass 10591  ax-mulass 10592  ax-distr 10593  ax-i2m1 10594  ax-1ne0 10595  ax-1rid 10596  ax-rnegex 10597  ax-rrecex 10598  ax-cnre 10599  ax-pre-lttri 10600  ax-pre-lttrn 10601  ax-pre-ltadd 10602  ax-pre-mulgt0 10603
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2598  df-eu 2629  df-clab 2777  df-cleq 2791  df-clel 2870  df-nfc 2938  df-ne 2988  df-nel 3092  df-ral 3111  df-rex 3112  df-reu 3113  df-rab 3115  df-v 3443  df-sbc 3721  df-csb 3829  df-dif 3884  df-un 3886  df-in 3888  df-ss 3898  df-pss 3900  df-nul 4244  df-if 4426  df-pw 4499  df-sn 4526  df-pr 4528  df-tp 4530  df-op 4532  df-uni 4801  df-iun 4883  df-br 5031  df-opab 5093  df-mpt 5111  df-tr 5137  df-id 5425  df-eprel 5430  df-po 5438  df-so 5439  df-fr 5478  df-we 5480  df-xp 5525  df-rel 5526  df-cnv 5527  df-co 5528  df-dm 5529  df-rn 5530  df-res 5531  df-ima 5532  df-pred 6116  df-ord 6162  df-on 6163  df-lim 6164  df-suc 6165  df-iota 6283  df-fun 6326  df-fn 6327  df-f 6328  df-f1 6329  df-fo 6330  df-f1o 6331  df-fv 6332  df-riota 7093  df-ov 7138  df-oprab 7139  df-mpo 7140  df-om 7561  df-wrecs 7930  df-recs 7991  df-rdg 8029  df-er 8272  df-en 8493  df-dom 8494  df-sdom 8495  df-pnf 10666  df-mnf 10667  df-xr 10668  df-ltxr 10669  df-le 10670  df-sub 10861  df-neg 10862  df-nn 11626  df-n0 11886  df-z 11970
This theorem is referenced by:  uzind2  12063  uzind3  12064  nn0ind  12065  fzind  12068  fi1uzind  13851  algcvga  15913  uzindd  39264  zindbi  39887
  Copyright terms: Public domain W3C validator