| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > imp4a | Structured version Visualization version GIF version | ||
| Description: An importation inference. (Contributed by NM, 26-Apr-1994.) (Proof shortened by Wolf Lammen, 19-Jul-2021.) |
| Ref | Expression |
|---|---|
| imp4.1 | ⊢ (𝜑 → (𝜓 → (𝜒 → (𝜃 → 𝜏)))) |
| Ref | Expression |
|---|---|
| imp4a | ⊢ (𝜑 → (𝜓 → ((𝜒 ∧ 𝜃) → 𝜏))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | imp4.1 | . . 3 ⊢ (𝜑 → (𝜓 → (𝜒 → (𝜃 → 𝜏)))) | |
| 2 | 1 | imp4b 421 | . 2 ⊢ ((𝜑 ∧ 𝜓) → ((𝜒 ∧ 𝜃) → 𝜏)) |
| 3 | 2 | ex 412 | 1 ⊢ (𝜑 → (𝜓 → ((𝜒 ∧ 𝜃) → 𝜏))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 |
| This theorem is referenced by: imp4d 424 imp55 442 imp511 443 reuss2 4275 wefrc 5615 f1oweALT 7913 tfrlem9 8313 tz7.49 8373 oaordex 8482 dfac2b 10033 zorn2lem4 10401 zorn2lem7 10404 psslinpr 10933 facwordi 14203 ndvdssub 16327 pmtrfrn 19378 elcls 23008 elcls3 23018 neibl 24436 met2ndc 24458 itgcn 25793 branmfn 32106 atcvatlem 32386 atcvat4i 32398 umgr2cycllem 35256 satfv0fun 35487 prtlem15 39047 cvlsupr4 39517 cvlsupr5 39518 cvlsupr6 39519 2llnneN 39581 cvrat4 39615 llnexchb2 40041 cdleme48gfv1 40708 cdlemg6e 40794 dihord6apre 41428 dihord5b 41431 dihord5apre 41434 dihglblem5apreN 41463 dihglbcpreN 41472 |
| Copyright terms: Public domain | W3C validator |