![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > imp4a | Structured version Visualization version GIF version |
Description: An importation inference. (Contributed by NM, 26-Apr-1994.) (Proof shortened by Wolf Lammen, 19-Jul-2021.) |
Ref | Expression |
---|---|
imp4.1 | ⊢ (𝜑 → (𝜓 → (𝜒 → (𝜃 → 𝜏)))) |
Ref | Expression |
---|---|
imp4a | ⊢ (𝜑 → (𝜓 → ((𝜒 ∧ 𝜃) → 𝜏))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | imp4.1 | . . 3 ⊢ (𝜑 → (𝜓 → (𝜒 → (𝜃 → 𝜏)))) | |
2 | 1 | imp4b 421 | . 2 ⊢ ((𝜑 ∧ 𝜓) → ((𝜒 ∧ 𝜃) → 𝜏)) |
3 | 2 | ex 412 | 1 ⊢ (𝜑 → (𝜓 → ((𝜒 ∧ 𝜃) → 𝜏))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 207 df-an 396 |
This theorem is referenced by: imp4d 424 imp55 442 imp511 443 reuss2 4332 wefrc 5683 f1oweALT 7996 tfrlem9 8424 tz7.49 8484 oaordex 8595 dfac2b 10169 zorn2lem4 10537 zorn2lem7 10540 psslinpr 11069 facwordi 14325 ndvdssub 16443 pmtrfrn 19491 elcls 23097 elcls3 23107 neibl 24530 met2ndc 24552 itgcn 25895 branmfn 32134 atcvatlem 32414 atcvat4i 32426 umgr2cycllem 35125 satfv0fun 35356 prtlem15 38857 cvlsupr4 39327 cvlsupr5 39328 cvlsupr6 39329 2llnneN 39392 cvrat4 39426 llnexchb2 39852 cdleme48gfv1 40519 cdlemg6e 40605 dihord6apre 41239 dihord5b 41242 dihord5apre 41245 dihglblem5apreN 41274 dihglbcpreN 41283 |
Copyright terms: Public domain | W3C validator |