| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > imp4a | Structured version Visualization version GIF version | ||
| Description: An importation inference. (Contributed by NM, 26-Apr-1994.) (Proof shortened by Wolf Lammen, 19-Jul-2021.) |
| Ref | Expression |
|---|---|
| imp4.1 | ⊢ (𝜑 → (𝜓 → (𝜒 → (𝜃 → 𝜏)))) |
| Ref | Expression |
|---|---|
| imp4a | ⊢ (𝜑 → (𝜓 → ((𝜒 ∧ 𝜃) → 𝜏))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | imp4.1 | . . 3 ⊢ (𝜑 → (𝜓 → (𝜒 → (𝜃 → 𝜏)))) | |
| 2 | 1 | imp4b 421 | . 2 ⊢ ((𝜑 ∧ 𝜓) → ((𝜒 ∧ 𝜃) → 𝜏)) |
| 3 | 2 | ex 412 | 1 ⊢ (𝜑 → (𝜓 → ((𝜒 ∧ 𝜃) → 𝜏))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 |
| This theorem is referenced by: imp4d 424 imp55 442 imp511 443 reuss2 4279 wefrc 5617 f1oweALT 7914 tfrlem9 8314 tz7.49 8374 oaordex 8483 dfac2b 10044 zorn2lem4 10412 zorn2lem7 10415 psslinpr 10944 facwordi 14215 ndvdssub 16339 pmtrfrn 19356 elcls 22977 elcls3 22987 neibl 24406 met2ndc 24428 itgcn 25763 branmfn 32068 atcvatlem 32348 atcvat4i 32360 umgr2cycllem 35132 satfv0fun 35363 prtlem15 38873 cvlsupr4 39343 cvlsupr5 39344 cvlsupr6 39345 2llnneN 39408 cvrat4 39442 llnexchb2 39868 cdleme48gfv1 40535 cdlemg6e 40621 dihord6apre 41255 dihord5b 41258 dihord5apre 41261 dihglblem5apreN 41290 dihglbcpreN 41299 |
| Copyright terms: Public domain | W3C validator |