| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > imp4a | Structured version Visualization version GIF version | ||
| Description: An importation inference. (Contributed by NM, 26-Apr-1994.) (Proof shortened by Wolf Lammen, 19-Jul-2021.) |
| Ref | Expression |
|---|---|
| imp4.1 | ⊢ (𝜑 → (𝜓 → (𝜒 → (𝜃 → 𝜏)))) |
| Ref | Expression |
|---|---|
| imp4a | ⊢ (𝜑 → (𝜓 → ((𝜒 ∧ 𝜃) → 𝜏))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | imp4.1 | . . 3 ⊢ (𝜑 → (𝜓 → (𝜒 → (𝜃 → 𝜏)))) | |
| 2 | 1 | imp4b 421 | . 2 ⊢ ((𝜑 ∧ 𝜓) → ((𝜒 ∧ 𝜃) → 𝜏)) |
| 3 | 2 | ex 412 | 1 ⊢ (𝜑 → (𝜓 → ((𝜒 ∧ 𝜃) → 𝜏))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 |
| This theorem is referenced by: imp4d 424 imp55 442 imp511 443 reuss2 4301 wefrc 5648 f1oweALT 7971 tfrlem9 8399 tz7.49 8459 oaordex 8570 dfac2b 10145 zorn2lem4 10513 zorn2lem7 10516 psslinpr 11045 facwordi 14307 ndvdssub 16428 pmtrfrn 19439 elcls 23011 elcls3 23021 neibl 24440 met2ndc 24462 itgcn 25798 branmfn 32086 atcvatlem 32366 atcvat4i 32378 umgr2cycllem 35162 satfv0fun 35393 prtlem15 38893 cvlsupr4 39363 cvlsupr5 39364 cvlsupr6 39365 2llnneN 39428 cvrat4 39462 llnexchb2 39888 cdleme48gfv1 40555 cdlemg6e 40641 dihord6apre 41275 dihord5b 41278 dihord5apre 41281 dihglblem5apreN 41310 dihglbcpreN 41319 |
| Copyright terms: Public domain | W3C validator |