![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > imp4a | Structured version Visualization version GIF version |
Description: An importation inference. (Contributed by NM, 26-Apr-1994.) (Proof shortened by Wolf Lammen, 19-Jul-2021.) |
Ref | Expression |
---|---|
imp4.1 | ⊢ (𝜑 → (𝜓 → (𝜒 → (𝜃 → 𝜏)))) |
Ref | Expression |
---|---|
imp4a | ⊢ (𝜑 → (𝜓 → ((𝜒 ∧ 𝜃) → 𝜏))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | imp4.1 | . . 3 ⊢ (𝜑 → (𝜓 → (𝜒 → (𝜃 → 𝜏)))) | |
2 | 1 | imp4b 414 | . 2 ⊢ ((𝜑 ∧ 𝜓) → ((𝜒 ∧ 𝜃) → 𝜏)) |
3 | 2 | ex 403 | 1 ⊢ (𝜑 → (𝜓 → ((𝜒 ∧ 𝜃) → 𝜏))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 386 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 199 df-an 387 |
This theorem is referenced by: imp4d 417 imp55 435 imp511 436 reuss2 4135 wefrc 5335 f1oweALT 7411 tfrlem9 7746 tz7.49 7805 oaordex 7904 dfac2b 9265 dfac2OLD 9267 zorn2lem4 9635 zorn2lem7 9638 psslinpr 10167 facwordi 13368 ndvdssub 15505 pmtrfrn 18227 elcls 21247 elcls3 21257 neibl 22675 met2ndc 22697 itgcn 24007 branmfn 29518 atcvatlem 29798 atcvat4i 29810 prtlem15 34949 cvlsupr4 35419 cvlsupr5 35420 cvlsupr6 35421 2llnneN 35483 cvrat4 35517 llnexchb2 35943 cdleme48gfv1 36610 cdlemg6e 36696 dihord6apre 37330 dihord5b 37333 dihord5apre 37336 dihglblem5apreN 37365 dihglbcpreN 37374 |
Copyright terms: Public domain | W3C validator |