Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > imp4a | Structured version Visualization version GIF version |
Description: An importation inference. (Contributed by NM, 26-Apr-1994.) (Proof shortened by Wolf Lammen, 19-Jul-2021.) |
Ref | Expression |
---|---|
imp4.1 | ⊢ (𝜑 → (𝜓 → (𝜒 → (𝜃 → 𝜏)))) |
Ref | Expression |
---|---|
imp4a | ⊢ (𝜑 → (𝜓 → ((𝜒 ∧ 𝜃) → 𝜏))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | imp4.1 | . . 3 ⊢ (𝜑 → (𝜓 → (𝜒 → (𝜃 → 𝜏)))) | |
2 | 1 | imp4b 426 | . 2 ⊢ ((𝜑 ∧ 𝜓) → ((𝜒 ∧ 𝜃) → 𝜏)) |
3 | 2 | ex 417 | 1 ⊢ (𝜑 → (𝜓 → ((𝜒 ∧ 𝜃) → 𝜏))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 400 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 210 df-an 401 |
This theorem is referenced by: imp4d 429 imp55 447 imp511 448 reuss2 4218 wefrc 5519 f1oweALT 7678 tfrlem9 8032 tz7.49 8092 oaordex 8195 dfac2b 9583 zorn2lem4 9952 zorn2lem7 9955 psslinpr 10484 facwordi 13692 ndvdssub 15803 pmtrfrn 18646 elcls 21766 elcls3 21776 neibl 23196 met2ndc 23218 itgcn 24537 branmfn 29980 atcvatlem 30260 atcvat4i 30272 umgr2cycllem 32611 satfv0fun 32842 prtlem15 36444 cvlsupr4 36914 cvlsupr5 36915 cvlsupr6 36916 2llnneN 36978 cvrat4 37012 llnexchb2 37438 cdleme48gfv1 38105 cdlemg6e 38191 dihord6apre 38825 dihord5b 38828 dihord5apre 38831 dihglblem5apreN 38860 dihglbcpreN 38869 |
Copyright terms: Public domain | W3C validator |