![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > imp4a | Structured version Visualization version GIF version |
Description: An importation inference. (Contributed by NM, 26-Apr-1994.) (Proof shortened by Wolf Lammen, 19-Jul-2021.) |
Ref | Expression |
---|---|
imp4.1 | ⊢ (𝜑 → (𝜓 → (𝜒 → (𝜃 → 𝜏)))) |
Ref | Expression |
---|---|
imp4a | ⊢ (𝜑 → (𝜓 → ((𝜒 ∧ 𝜃) → 𝜏))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | imp4.1 | . . 3 ⊢ (𝜑 → (𝜓 → (𝜒 → (𝜃 → 𝜏)))) | |
2 | 1 | imp4b 421 | . 2 ⊢ ((𝜑 ∧ 𝜓) → ((𝜒 ∧ 𝜃) → 𝜏)) |
3 | 2 | ex 412 | 1 ⊢ (𝜑 → (𝜓 → ((𝜒 ∧ 𝜃) → 𝜏))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 207 df-an 396 |
This theorem is referenced by: imp4d 424 imp55 442 imp511 443 reuss2 4345 wefrc 5694 f1oweALT 8013 tfrlem9 8441 tz7.49 8501 oaordex 8614 dfac2b 10200 zorn2lem4 10568 zorn2lem7 10571 psslinpr 11100 facwordi 14338 ndvdssub 16457 pmtrfrn 19500 elcls 23102 elcls3 23112 neibl 24535 met2ndc 24557 itgcn 25900 branmfn 32137 atcvatlem 32417 atcvat4i 32429 umgr2cycllem 35108 satfv0fun 35339 prtlem15 38831 cvlsupr4 39301 cvlsupr5 39302 cvlsupr6 39303 2llnneN 39366 cvrat4 39400 llnexchb2 39826 cdleme48gfv1 40493 cdlemg6e 40579 dihord6apre 41213 dihord5b 41216 dihord5apre 41219 dihglblem5apreN 41248 dihglbcpreN 41257 |
Copyright terms: Public domain | W3C validator |