Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > imp4a | Structured version Visualization version GIF version |
Description: An importation inference. (Contributed by NM, 26-Apr-1994.) (Proof shortened by Wolf Lammen, 19-Jul-2021.) |
Ref | Expression |
---|---|
imp4.1 | ⊢ (𝜑 → (𝜓 → (𝜒 → (𝜃 → 𝜏)))) |
Ref | Expression |
---|---|
imp4a | ⊢ (𝜑 → (𝜓 → ((𝜒 ∧ 𝜃) → 𝜏))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | imp4.1 | . . 3 ⊢ (𝜑 → (𝜓 → (𝜒 → (𝜃 → 𝜏)))) | |
2 | 1 | imp4b 422 | . 2 ⊢ ((𝜑 ∧ 𝜓) → ((𝜒 ∧ 𝜃) → 𝜏)) |
3 | 2 | ex 413 | 1 ⊢ (𝜑 → (𝜓 → ((𝜒 ∧ 𝜃) → 𝜏))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 df-an 397 |
This theorem is referenced by: imp4d 425 imp55 443 imp511 444 reuss2 4249 wefrc 5583 f1oweALT 7815 tfrlem9 8216 tz7.49 8276 oaordex 8389 dfac2b 9886 zorn2lem4 10255 zorn2lem7 10258 psslinpr 10787 facwordi 14003 ndvdssub 16118 pmtrfrn 19066 elcls 22224 elcls3 22234 neibl 23657 met2ndc 23679 itgcn 25009 branmfn 30467 atcvatlem 30747 atcvat4i 30759 umgr2cycllem 33102 satfv0fun 33333 prtlem15 36889 cvlsupr4 37359 cvlsupr5 37360 cvlsupr6 37361 2llnneN 37423 cvrat4 37457 llnexchb2 37883 cdleme48gfv1 38550 cdlemg6e 38636 dihord6apre 39270 dihord5b 39273 dihord5apre 39276 dihglblem5apreN 39305 dihglbcpreN 39314 |
Copyright terms: Public domain | W3C validator |