Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > imp4a | Structured version Visualization version GIF version |
Description: An importation inference. (Contributed by NM, 26-Apr-1994.) (Proof shortened by Wolf Lammen, 19-Jul-2021.) |
Ref | Expression |
---|---|
imp4.1 | ⊢ (𝜑 → (𝜓 → (𝜒 → (𝜃 → 𝜏)))) |
Ref | Expression |
---|---|
imp4a | ⊢ (𝜑 → (𝜓 → ((𝜒 ∧ 𝜃) → 𝜏))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | imp4.1 | . . 3 ⊢ (𝜑 → (𝜓 → (𝜒 → (𝜃 → 𝜏)))) | |
2 | 1 | imp4b 421 | . 2 ⊢ ((𝜑 ∧ 𝜓) → ((𝜒 ∧ 𝜃) → 𝜏)) |
3 | 2 | ex 412 | 1 ⊢ (𝜑 → (𝜓 → ((𝜒 ∧ 𝜃) → 𝜏))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 df-an 396 |
This theorem is referenced by: imp4d 424 imp55 442 imp511 443 reuss2 4246 wefrc 5574 f1oweALT 7788 tfrlem9 8187 tz7.49 8246 oaordex 8351 dfac2b 9817 zorn2lem4 10186 zorn2lem7 10189 psslinpr 10718 facwordi 13931 ndvdssub 16046 pmtrfrn 18981 elcls 22132 elcls3 22142 neibl 23563 met2ndc 23585 itgcn 24914 branmfn 30368 atcvatlem 30648 atcvat4i 30660 umgr2cycllem 33002 satfv0fun 33233 prtlem15 36816 cvlsupr4 37286 cvlsupr5 37287 cvlsupr6 37288 2llnneN 37350 cvrat4 37384 llnexchb2 37810 cdleme48gfv1 38477 cdlemg6e 38563 dihord6apre 39197 dihord5b 39200 dihord5apre 39203 dihglblem5apreN 39232 dihglbcpreN 39241 |
Copyright terms: Public domain | W3C validator |