| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > imp4a | Structured version Visualization version GIF version | ||
| Description: An importation inference. (Contributed by NM, 26-Apr-1994.) (Proof shortened by Wolf Lammen, 19-Jul-2021.) |
| Ref | Expression |
|---|---|
| imp4.1 | ⊢ (𝜑 → (𝜓 → (𝜒 → (𝜃 → 𝜏)))) |
| Ref | Expression |
|---|---|
| imp4a | ⊢ (𝜑 → (𝜓 → ((𝜒 ∧ 𝜃) → 𝜏))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | imp4.1 | . . 3 ⊢ (𝜑 → (𝜓 → (𝜒 → (𝜃 → 𝜏)))) | |
| 2 | 1 | imp4b 421 | . 2 ⊢ ((𝜑 ∧ 𝜓) → ((𝜒 ∧ 𝜃) → 𝜏)) |
| 3 | 2 | ex 412 | 1 ⊢ (𝜑 → (𝜓 → ((𝜒 ∧ 𝜃) → 𝜏))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 |
| This theorem is referenced by: imp4d 424 imp55 442 imp511 443 reuss2 4285 wefrc 5625 f1oweALT 7930 tfrlem9 8330 tz7.49 8390 oaordex 8499 dfac2b 10060 zorn2lem4 10428 zorn2lem7 10431 psslinpr 10960 facwordi 14230 ndvdssub 16355 pmtrfrn 19364 elcls 22936 elcls3 22946 neibl 24365 met2ndc 24387 itgcn 25722 branmfn 32007 atcvatlem 32287 atcvat4i 32299 umgr2cycllem 35100 satfv0fun 35331 prtlem15 38841 cvlsupr4 39311 cvlsupr5 39312 cvlsupr6 39313 2llnneN 39376 cvrat4 39410 llnexchb2 39836 cdleme48gfv1 40503 cdlemg6e 40589 dihord6apre 41223 dihord5b 41226 dihord5apre 41229 dihglblem5apreN 41258 dihglbcpreN 41267 |
| Copyright terms: Public domain | W3C validator |