| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > imp4a | Structured version Visualization version GIF version | ||
| Description: An importation inference. (Contributed by NM, 26-Apr-1994.) (Proof shortened by Wolf Lammen, 19-Jul-2021.) |
| Ref | Expression |
|---|---|
| imp4.1 | ⊢ (𝜑 → (𝜓 → (𝜒 → (𝜃 → 𝜏)))) |
| Ref | Expression |
|---|---|
| imp4a | ⊢ (𝜑 → (𝜓 → ((𝜒 ∧ 𝜃) → 𝜏))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | imp4.1 | . . 3 ⊢ (𝜑 → (𝜓 → (𝜒 → (𝜃 → 𝜏)))) | |
| 2 | 1 | imp4b 421 | . 2 ⊢ ((𝜑 ∧ 𝜓) → ((𝜒 ∧ 𝜃) → 𝜏)) |
| 3 | 2 | ex 412 | 1 ⊢ (𝜑 → (𝜓 → ((𝜒 ∧ 𝜃) → 𝜏))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 |
| This theorem is referenced by: imp4d 424 imp55 442 imp511 443 reuss2 4292 wefrc 5635 f1oweALT 7954 tfrlem9 8356 tz7.49 8416 oaordex 8525 dfac2b 10091 zorn2lem4 10459 zorn2lem7 10462 psslinpr 10991 facwordi 14261 ndvdssub 16386 pmtrfrn 19395 elcls 22967 elcls3 22977 neibl 24396 met2ndc 24418 itgcn 25753 branmfn 32041 atcvatlem 32321 atcvat4i 32333 umgr2cycllem 35134 satfv0fun 35365 prtlem15 38875 cvlsupr4 39345 cvlsupr5 39346 cvlsupr6 39347 2llnneN 39410 cvrat4 39444 llnexchb2 39870 cdleme48gfv1 40537 cdlemg6e 40623 dihord6apre 41257 dihord5b 41260 dihord5apre 41263 dihglblem5apreN 41292 dihglbcpreN 41301 |
| Copyright terms: Public domain | W3C validator |