| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > imp4a | Structured version Visualization version GIF version | ||
| Description: An importation inference. (Contributed by NM, 26-Apr-1994.) (Proof shortened by Wolf Lammen, 19-Jul-2021.) |
| Ref | Expression |
|---|---|
| imp4.1 | ⊢ (𝜑 → (𝜓 → (𝜒 → (𝜃 → 𝜏)))) |
| Ref | Expression |
|---|---|
| imp4a | ⊢ (𝜑 → (𝜓 → ((𝜒 ∧ 𝜃) → 𝜏))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | imp4.1 | . . 3 ⊢ (𝜑 → (𝜓 → (𝜒 → (𝜃 → 𝜏)))) | |
| 2 | 1 | imp4b 421 | . 2 ⊢ ((𝜑 ∧ 𝜓) → ((𝜒 ∧ 𝜃) → 𝜏)) |
| 3 | 2 | ex 412 | 1 ⊢ (𝜑 → (𝜓 → ((𝜒 ∧ 𝜃) → 𝜏))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 |
| This theorem is referenced by: imp4d 424 imp55 442 imp511 443 reuss2 4271 wefrc 5605 f1oweALT 7899 tfrlem9 8299 tz7.49 8359 oaordex 8468 dfac2b 10017 zorn2lem4 10385 zorn2lem7 10388 psslinpr 10917 facwordi 14191 ndvdssub 16315 pmtrfrn 19365 elcls 22983 elcls3 22993 neibl 24411 met2ndc 24433 itgcn 25768 branmfn 32077 atcvatlem 32357 atcvat4i 32369 umgr2cycllem 35176 satfv0fun 35407 prtlem15 38914 cvlsupr4 39384 cvlsupr5 39385 cvlsupr6 39386 2llnneN 39448 cvrat4 39482 llnexchb2 39908 cdleme48gfv1 40575 cdlemg6e 40661 dihord6apre 41295 dihord5b 41298 dihord5apre 41301 dihglblem5apreN 41330 dihglbcpreN 41339 |
| Copyright terms: Public domain | W3C validator |