![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > imp4a | Structured version Visualization version GIF version |
Description: An importation inference. (Contributed by NM, 26-Apr-1994.) (Proof shortened by Wolf Lammen, 19-Jul-2021.) |
Ref | Expression |
---|---|
imp4.1 | ⊢ (𝜑 → (𝜓 → (𝜒 → (𝜃 → 𝜏)))) |
Ref | Expression |
---|---|
imp4a | ⊢ (𝜑 → (𝜓 → ((𝜒 ∧ 𝜃) → 𝜏))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | imp4.1 | . . 3 ⊢ (𝜑 → (𝜓 → (𝜒 → (𝜃 → 𝜏)))) | |
2 | 1 | imp4b 420 | . 2 ⊢ ((𝜑 ∧ 𝜓) → ((𝜒 ∧ 𝜃) → 𝜏)) |
3 | 2 | ex 411 | 1 ⊢ (𝜑 → (𝜓 → ((𝜒 ∧ 𝜃) → 𝜏))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 394 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 df-an 395 |
This theorem is referenced by: imp4d 423 imp55 441 imp511 442 reuss2 4316 wefrc 5671 f1oweALT 7963 tfrlem9 8389 tz7.49 8449 oaordex 8562 dfac2b 10129 zorn2lem4 10498 zorn2lem7 10501 psslinpr 11030 facwordi 14255 ndvdssub 16358 pmtrfrn 19369 elcls 22799 elcls3 22809 neibl 24232 met2ndc 24254 itgcn 25596 branmfn 31623 atcvatlem 31903 atcvat4i 31915 umgr2cycllem 34427 satfv0fun 34658 prtlem15 38050 cvlsupr4 38520 cvlsupr5 38521 cvlsupr6 38522 2llnneN 38585 cvrat4 38619 llnexchb2 39045 cdleme48gfv1 39712 cdlemg6e 39798 dihord6apre 40432 dihord5b 40435 dihord5apre 40438 dihglblem5apreN 40467 dihglbcpreN 40476 |
Copyright terms: Public domain | W3C validator |