| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > imp4a | Structured version Visualization version GIF version | ||
| Description: An importation inference. (Contributed by NM, 26-Apr-1994.) (Proof shortened by Wolf Lammen, 19-Jul-2021.) |
| Ref | Expression |
|---|---|
| imp4.1 | ⊢ (𝜑 → (𝜓 → (𝜒 → (𝜃 → 𝜏)))) |
| Ref | Expression |
|---|---|
| imp4a | ⊢ (𝜑 → (𝜓 → ((𝜒 ∧ 𝜃) → 𝜏))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | imp4.1 | . . 3 ⊢ (𝜑 → (𝜓 → (𝜒 → (𝜃 → 𝜏)))) | |
| 2 | 1 | imp4b 421 | . 2 ⊢ ((𝜑 ∧ 𝜓) → ((𝜒 ∧ 𝜃) → 𝜏)) |
| 3 | 2 | ex 412 | 1 ⊢ (𝜑 → (𝜓 → ((𝜒 ∧ 𝜃) → 𝜏))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 |
| This theorem is referenced by: imp4d 424 imp55 442 imp511 443 reuss2 4289 wefrc 5632 f1oweALT 7951 tfrlem9 8353 tz7.49 8413 oaordex 8522 dfac2b 10084 zorn2lem4 10452 zorn2lem7 10455 psslinpr 10984 facwordi 14254 ndvdssub 16379 pmtrfrn 19388 elcls 22960 elcls3 22970 neibl 24389 met2ndc 24411 itgcn 25746 branmfn 32034 atcvatlem 32314 atcvat4i 32326 umgr2cycllem 35127 satfv0fun 35358 prtlem15 38868 cvlsupr4 39338 cvlsupr5 39339 cvlsupr6 39340 2llnneN 39403 cvrat4 39437 llnexchb2 39863 cdleme48gfv1 40530 cdlemg6e 40616 dihord6apre 41250 dihord5b 41253 dihord5apre 41256 dihglblem5apreN 41285 dihglbcpreN 41294 |
| Copyright terms: Public domain | W3C validator |