Step | Hyp | Ref
| Expression |
1 | | eldm2g 5768 |
. . 3
⊢ (𝐵 ∈ dom recs(𝐹) → (𝐵 ∈ dom recs(𝐹) ↔ ∃𝑧〈𝐵, 𝑧〉 ∈ recs(𝐹))) |
2 | 1 | ibi 270 |
. 2
⊢ (𝐵 ∈ dom recs(𝐹) → ∃𝑧〈𝐵, 𝑧〉 ∈ recs(𝐹)) |
3 | | dfrecs3 8109 |
. . . . . 6
⊢
recs(𝐹) = ∪ {𝑓
∣ ∃𝑥 ∈ On
(𝑓 Fn 𝑥 ∧ ∀𝑦 ∈ 𝑥 (𝑓‘𝑦) = (𝐹‘(𝑓 ↾ 𝑦)))} |
4 | 3 | eleq2i 2829 |
. . . . 5
⊢
(〈𝐵, 𝑧〉 ∈ recs(𝐹) ↔ 〈𝐵, 𝑧〉 ∈ ∪
{𝑓 ∣ ∃𝑥 ∈ On (𝑓 Fn 𝑥 ∧ ∀𝑦 ∈ 𝑥 (𝑓‘𝑦) = (𝐹‘(𝑓 ↾ 𝑦)))}) |
5 | | eluniab 4834 |
. . . . 5
⊢
(〈𝐵, 𝑧〉 ∈ ∪ {𝑓
∣ ∃𝑥 ∈ On
(𝑓 Fn 𝑥 ∧ ∀𝑦 ∈ 𝑥 (𝑓‘𝑦) = (𝐹‘(𝑓 ↾ 𝑦)))} ↔ ∃𝑓(〈𝐵, 𝑧〉 ∈ 𝑓 ∧ ∃𝑥 ∈ On (𝑓 Fn 𝑥 ∧ ∀𝑦 ∈ 𝑥 (𝑓‘𝑦) = (𝐹‘(𝑓 ↾ 𝑦))))) |
6 | 4, 5 | bitri 278 |
. . . 4
⊢
(〈𝐵, 𝑧〉 ∈ recs(𝐹) ↔ ∃𝑓(〈𝐵, 𝑧〉 ∈ 𝑓 ∧ ∃𝑥 ∈ On (𝑓 Fn 𝑥 ∧ ∀𝑦 ∈ 𝑥 (𝑓‘𝑦) = (𝐹‘(𝑓 ↾ 𝑦))))) |
7 | | fnop 6487 |
. . . . . . . . . . . . . 14
⊢ ((𝑓 Fn 𝑥 ∧ 〈𝐵, 𝑧〉 ∈ 𝑓) → 𝐵 ∈ 𝑥) |
8 | | rspe 3223 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑥 ∈ On ∧ (𝑓 Fn 𝑥 ∧ ∀𝑦 ∈ 𝑥 (𝑓‘𝑦) = (𝐹‘(𝑓 ↾ 𝑦)))) → ∃𝑥 ∈ On (𝑓 Fn 𝑥 ∧ ∀𝑦 ∈ 𝑥 (𝑓‘𝑦) = (𝐹‘(𝑓 ↾ 𝑦)))) |
9 | | tfrlem.1 |
. . . . . . . . . . . . . . . . . 18
⊢ 𝐴 = {𝑓 ∣ ∃𝑥 ∈ On (𝑓 Fn 𝑥 ∧ ∀𝑦 ∈ 𝑥 (𝑓‘𝑦) = (𝐹‘(𝑓 ↾ 𝑦)))} |
10 | 9 | abeq2i 2872 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑓 ∈ 𝐴 ↔ ∃𝑥 ∈ On (𝑓 Fn 𝑥 ∧ ∀𝑦 ∈ 𝑥 (𝑓‘𝑦) = (𝐹‘(𝑓 ↾ 𝑦)))) |
11 | | elssuni 4851 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑓 ∈ 𝐴 → 𝑓 ⊆ ∪ 𝐴) |
12 | 9 | recsfval 8117 |
. . . . . . . . . . . . . . . . . 18
⊢
recs(𝐹) = ∪ 𝐴 |
13 | 11, 12 | sseqtrrdi 3952 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑓 ∈ 𝐴 → 𝑓 ⊆ recs(𝐹)) |
14 | 10, 13 | sylbir 238 |
. . . . . . . . . . . . . . . 16
⊢
(∃𝑥 ∈ On
(𝑓 Fn 𝑥 ∧ ∀𝑦 ∈ 𝑥 (𝑓‘𝑦) = (𝐹‘(𝑓 ↾ 𝑦))) → 𝑓 ⊆ recs(𝐹)) |
15 | 8, 14 | syl 17 |
. . . . . . . . . . . . . . 15
⊢ ((𝑥 ∈ On ∧ (𝑓 Fn 𝑥 ∧ ∀𝑦 ∈ 𝑥 (𝑓‘𝑦) = (𝐹‘(𝑓 ↾ 𝑦)))) → 𝑓 ⊆ recs(𝐹)) |
16 | | fveq2 6717 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑦 = 𝐵 → (𝑓‘𝑦) = (𝑓‘𝐵)) |
17 | | reseq2 5846 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝑦 = 𝐵 → (𝑓 ↾ 𝑦) = (𝑓 ↾ 𝐵)) |
18 | 17 | fveq2d 6721 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑦 = 𝐵 → (𝐹‘(𝑓 ↾ 𝑦)) = (𝐹‘(𝑓 ↾ 𝐵))) |
19 | 16, 18 | eqeq12d 2753 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑦 = 𝐵 → ((𝑓‘𝑦) = (𝐹‘(𝑓 ↾ 𝑦)) ↔ (𝑓‘𝐵) = (𝐹‘(𝑓 ↾ 𝐵)))) |
20 | 19 | rspcv 3532 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝐵 ∈ 𝑥 → (∀𝑦 ∈ 𝑥 (𝑓‘𝑦) = (𝐹‘(𝑓 ↾ 𝑦)) → (𝑓‘𝐵) = (𝐹‘(𝑓 ↾ 𝐵)))) |
21 | | fndm 6481 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝑓 Fn 𝑥 → dom 𝑓 = 𝑥) |
22 | 21 | eleq2d 2823 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑓 Fn 𝑥 → (𝐵 ∈ dom 𝑓 ↔ 𝐵 ∈ 𝑥)) |
23 | 9 | tfrlem7 8119 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢ Fun
recs(𝐹) |
24 | | funssfv 6738 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢ ((Fun
recs(𝐹) ∧ 𝑓 ⊆ recs(𝐹) ∧ 𝐵 ∈ dom 𝑓) → (recs(𝐹)‘𝐵) = (𝑓‘𝐵)) |
25 | 23, 24 | mp3an1 1450 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ ((𝑓 ⊆ recs(𝐹) ∧ 𝐵 ∈ dom 𝑓) → (recs(𝐹)‘𝐵) = (𝑓‘𝐵)) |
26 | 25 | adantrl 716 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ ((𝑓 ⊆ recs(𝐹) ∧ ((𝑓 Fn 𝑥 ∧ 𝑥 ∈ On) ∧ 𝐵 ∈ dom 𝑓)) → (recs(𝐹)‘𝐵) = (𝑓‘𝐵)) |
27 | 21 | eleq1d 2822 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
⊢ (𝑓 Fn 𝑥 → (dom 𝑓 ∈ On ↔ 𝑥 ∈ On)) |
28 | | onelss 6255 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
⊢ (dom
𝑓 ∈ On → (𝐵 ∈ dom 𝑓 → 𝐵 ⊆ dom 𝑓)) |
29 | 27, 28 | syl6bir 257 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢ (𝑓 Fn 𝑥 → (𝑥 ∈ On → (𝐵 ∈ dom 𝑓 → 𝐵 ⊆ dom 𝑓))) |
30 | 29 | imp31 421 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ (((𝑓 Fn 𝑥 ∧ 𝑥 ∈ On) ∧ 𝐵 ∈ dom 𝑓) → 𝐵 ⊆ dom 𝑓) |
31 | | fun2ssres 6425 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
⊢ ((Fun
recs(𝐹) ∧ 𝑓 ⊆ recs(𝐹) ∧ 𝐵 ⊆ dom 𝑓) → (recs(𝐹) ↾ 𝐵) = (𝑓 ↾ 𝐵)) |
32 | 31 | fveq2d 6721 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢ ((Fun
recs(𝐹) ∧ 𝑓 ⊆ recs(𝐹) ∧ 𝐵 ⊆ dom 𝑓) → (𝐹‘(recs(𝐹) ↾ 𝐵)) = (𝐹‘(𝑓 ↾ 𝐵))) |
33 | 23, 32 | mp3an1 1450 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ ((𝑓 ⊆ recs(𝐹) ∧ 𝐵 ⊆ dom 𝑓) → (𝐹‘(recs(𝐹) ↾ 𝐵)) = (𝐹‘(𝑓 ↾ 𝐵))) |
34 | 30, 33 | sylan2 596 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ ((𝑓 ⊆ recs(𝐹) ∧ ((𝑓 Fn 𝑥 ∧ 𝑥 ∈ On) ∧ 𝐵 ∈ dom 𝑓)) → (𝐹‘(recs(𝐹) ↾ 𝐵)) = (𝐹‘(𝑓 ↾ 𝐵))) |
35 | 26, 34 | eqeq12d 2753 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ ((𝑓 ⊆ recs(𝐹) ∧ ((𝑓 Fn 𝑥 ∧ 𝑥 ∈ On) ∧ 𝐵 ∈ dom 𝑓)) → ((recs(𝐹)‘𝐵) = (𝐹‘(recs(𝐹) ↾ 𝐵)) ↔ (𝑓‘𝐵) = (𝐹‘(𝑓 ↾ 𝐵)))) |
36 | 35 | exbiri 811 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (𝑓 ⊆ recs(𝐹) → (((𝑓 Fn 𝑥 ∧ 𝑥 ∈ On) ∧ 𝐵 ∈ dom 𝑓) → ((𝑓‘𝐵) = (𝐹‘(𝑓 ↾ 𝐵)) → (recs(𝐹)‘𝐵) = (𝐹‘(recs(𝐹) ↾ 𝐵))))) |
37 | 36 | com3l 89 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (((𝑓 Fn 𝑥 ∧ 𝑥 ∈ On) ∧ 𝐵 ∈ dom 𝑓) → ((𝑓‘𝐵) = (𝐹‘(𝑓 ↾ 𝐵)) → (𝑓 ⊆ recs(𝐹) → (recs(𝐹)‘𝐵) = (𝐹‘(recs(𝐹) ↾ 𝐵))))) |
38 | 37 | exp31 423 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝑓 Fn 𝑥 → (𝑥 ∈ On → (𝐵 ∈ dom 𝑓 → ((𝑓‘𝐵) = (𝐹‘(𝑓 ↾ 𝐵)) → (𝑓 ⊆ recs(𝐹) → (recs(𝐹)‘𝐵) = (𝐹‘(recs(𝐹) ↾ 𝐵))))))) |
39 | 38 | com34 91 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝑓 Fn 𝑥 → (𝑥 ∈ On → ((𝑓‘𝐵) = (𝐹‘(𝑓 ↾ 𝐵)) → (𝐵 ∈ dom 𝑓 → (𝑓 ⊆ recs(𝐹) → (recs(𝐹)‘𝐵) = (𝐹‘(recs(𝐹) ↾ 𝐵))))))) |
40 | 39 | com24 95 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑓 Fn 𝑥 → (𝐵 ∈ dom 𝑓 → ((𝑓‘𝐵) = (𝐹‘(𝑓 ↾ 𝐵)) → (𝑥 ∈ On → (𝑓 ⊆ recs(𝐹) → (recs(𝐹)‘𝐵) = (𝐹‘(recs(𝐹) ↾ 𝐵))))))) |
41 | 22, 40 | sylbird 263 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑓 Fn 𝑥 → (𝐵 ∈ 𝑥 → ((𝑓‘𝐵) = (𝐹‘(𝑓 ↾ 𝐵)) → (𝑥 ∈ On → (𝑓 ⊆ recs(𝐹) → (recs(𝐹)‘𝐵) = (𝐹‘(recs(𝐹) ↾ 𝐵))))))) |
42 | 41 | com3l 89 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝐵 ∈ 𝑥 → ((𝑓‘𝐵) = (𝐹‘(𝑓 ↾ 𝐵)) → (𝑓 Fn 𝑥 → (𝑥 ∈ On → (𝑓 ⊆ recs(𝐹) → (recs(𝐹)‘𝐵) = (𝐹‘(recs(𝐹) ↾ 𝐵))))))) |
43 | 20, 42 | syld 47 |
. . . . . . . . . . . . . . . . 17
⊢ (𝐵 ∈ 𝑥 → (∀𝑦 ∈ 𝑥 (𝑓‘𝑦) = (𝐹‘(𝑓 ↾ 𝑦)) → (𝑓 Fn 𝑥 → (𝑥 ∈ On → (𝑓 ⊆ recs(𝐹) → (recs(𝐹)‘𝐵) = (𝐹‘(recs(𝐹) ↾ 𝐵))))))) |
44 | 43 | com24 95 |
. . . . . . . . . . . . . . . 16
⊢ (𝐵 ∈ 𝑥 → (𝑥 ∈ On → (𝑓 Fn 𝑥 → (∀𝑦 ∈ 𝑥 (𝑓‘𝑦) = (𝐹‘(𝑓 ↾ 𝑦)) → (𝑓 ⊆ recs(𝐹) → (recs(𝐹)‘𝐵) = (𝐹‘(recs(𝐹) ↾ 𝐵))))))) |
45 | 44 | imp4d 428 |
. . . . . . . . . . . . . . 15
⊢ (𝐵 ∈ 𝑥 → ((𝑥 ∈ On ∧ (𝑓 Fn 𝑥 ∧ ∀𝑦 ∈ 𝑥 (𝑓‘𝑦) = (𝐹‘(𝑓 ↾ 𝑦)))) → (𝑓 ⊆ recs(𝐹) → (recs(𝐹)‘𝐵) = (𝐹‘(recs(𝐹) ↾ 𝐵))))) |
46 | 15, 45 | mpdi 45 |
. . . . . . . . . . . . . 14
⊢ (𝐵 ∈ 𝑥 → ((𝑥 ∈ On ∧ (𝑓 Fn 𝑥 ∧ ∀𝑦 ∈ 𝑥 (𝑓‘𝑦) = (𝐹‘(𝑓 ↾ 𝑦)))) → (recs(𝐹)‘𝐵) = (𝐹‘(recs(𝐹) ↾ 𝐵)))) |
47 | 7, 46 | syl 17 |
. . . . . . . . . . . . 13
⊢ ((𝑓 Fn 𝑥 ∧ 〈𝐵, 𝑧〉 ∈ 𝑓) → ((𝑥 ∈ On ∧ (𝑓 Fn 𝑥 ∧ ∀𝑦 ∈ 𝑥 (𝑓‘𝑦) = (𝐹‘(𝑓 ↾ 𝑦)))) → (recs(𝐹)‘𝐵) = (𝐹‘(recs(𝐹) ↾ 𝐵)))) |
48 | 47 | exp4d 437 |
. . . . . . . . . . . 12
⊢ ((𝑓 Fn 𝑥 ∧ 〈𝐵, 𝑧〉 ∈ 𝑓) → (𝑥 ∈ On → (𝑓 Fn 𝑥 → (∀𝑦 ∈ 𝑥 (𝑓‘𝑦) = (𝐹‘(𝑓 ↾ 𝑦)) → (recs(𝐹)‘𝐵) = (𝐹‘(recs(𝐹) ↾ 𝐵)))))) |
49 | 48 | ex 416 |
. . . . . . . . . . 11
⊢ (𝑓 Fn 𝑥 → (〈𝐵, 𝑧〉 ∈ 𝑓 → (𝑥 ∈ On → (𝑓 Fn 𝑥 → (∀𝑦 ∈ 𝑥 (𝑓‘𝑦) = (𝐹‘(𝑓 ↾ 𝑦)) → (recs(𝐹)‘𝐵) = (𝐹‘(recs(𝐹) ↾ 𝐵))))))) |
50 | 49 | com4r 94 |
. . . . . . . . . 10
⊢ (𝑓 Fn 𝑥 → (𝑓 Fn 𝑥 → (〈𝐵, 𝑧〉 ∈ 𝑓 → (𝑥 ∈ On → (∀𝑦 ∈ 𝑥 (𝑓‘𝑦) = (𝐹‘(𝑓 ↾ 𝑦)) → (recs(𝐹)‘𝐵) = (𝐹‘(recs(𝐹) ↾ 𝐵))))))) |
51 | 50 | pm2.43i 52 |
. . . . . . . . 9
⊢ (𝑓 Fn 𝑥 → (〈𝐵, 𝑧〉 ∈ 𝑓 → (𝑥 ∈ On → (∀𝑦 ∈ 𝑥 (𝑓‘𝑦) = (𝐹‘(𝑓 ↾ 𝑦)) → (recs(𝐹)‘𝐵) = (𝐹‘(recs(𝐹) ↾ 𝐵)))))) |
52 | 51 | com3l 89 |
. . . . . . . 8
⊢
(〈𝐵, 𝑧〉 ∈ 𝑓 → (𝑥 ∈ On → (𝑓 Fn 𝑥 → (∀𝑦 ∈ 𝑥 (𝑓‘𝑦) = (𝐹‘(𝑓 ↾ 𝑦)) → (recs(𝐹)‘𝐵) = (𝐹‘(recs(𝐹) ↾ 𝐵)))))) |
53 | 52 | imp4a 426 |
. . . . . . 7
⊢
(〈𝐵, 𝑧〉 ∈ 𝑓 → (𝑥 ∈ On → ((𝑓 Fn 𝑥 ∧ ∀𝑦 ∈ 𝑥 (𝑓‘𝑦) = (𝐹‘(𝑓 ↾ 𝑦))) → (recs(𝐹)‘𝐵) = (𝐹‘(recs(𝐹) ↾ 𝐵))))) |
54 | 53 | rexlimdv 3202 |
. . . . . 6
⊢
(〈𝐵, 𝑧〉 ∈ 𝑓 → (∃𝑥 ∈ On (𝑓 Fn 𝑥 ∧ ∀𝑦 ∈ 𝑥 (𝑓‘𝑦) = (𝐹‘(𝑓 ↾ 𝑦))) → (recs(𝐹)‘𝐵) = (𝐹‘(recs(𝐹) ↾ 𝐵)))) |
55 | 54 | imp 410 |
. . . . 5
⊢
((〈𝐵, 𝑧〉 ∈ 𝑓 ∧ ∃𝑥 ∈ On (𝑓 Fn 𝑥 ∧ ∀𝑦 ∈ 𝑥 (𝑓‘𝑦) = (𝐹‘(𝑓 ↾ 𝑦)))) → (recs(𝐹)‘𝐵) = (𝐹‘(recs(𝐹) ↾ 𝐵))) |
56 | 55 | exlimiv 1938 |
. . . 4
⊢
(∃𝑓(〈𝐵, 𝑧〉 ∈ 𝑓 ∧ ∃𝑥 ∈ On (𝑓 Fn 𝑥 ∧ ∀𝑦 ∈ 𝑥 (𝑓‘𝑦) = (𝐹‘(𝑓 ↾ 𝑦)))) → (recs(𝐹)‘𝐵) = (𝐹‘(recs(𝐹) ↾ 𝐵))) |
57 | 6, 56 | sylbi 220 |
. . 3
⊢
(〈𝐵, 𝑧〉 ∈ recs(𝐹) → (recs(𝐹)‘𝐵) = (𝐹‘(recs(𝐹) ↾ 𝐵))) |
58 | 57 | exlimiv 1938 |
. 2
⊢
(∃𝑧〈𝐵, 𝑧〉 ∈ recs(𝐹) → (recs(𝐹)‘𝐵) = (𝐹‘(recs(𝐹) ↾ 𝐵))) |
59 | 2, 58 | syl 17 |
1
⊢ (𝐵 ∈ dom recs(𝐹) → (recs(𝐹)‘𝐵) = (𝐹‘(recs(𝐹) ↾ 𝐵))) |