MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  tfrlem9 Structured version   Visualization version   GIF version

Theorem tfrlem9 8385
Description: Lemma for transfinite recursion. Here we compute the value of recs (the union of all acceptable functions). (Contributed by NM, 17-Aug-1994.)
Hypothesis
Ref Expression
tfrlem.1 𝐴 = {𝑓 ∣ ∃𝑥 ∈ On (𝑓 Fn 𝑥 ∧ ∀𝑦𝑥 (𝑓𝑦) = (𝐹‘(𝑓𝑦)))}
Assertion
Ref Expression
tfrlem9 (𝐵 ∈ dom recs(𝐹) → (recs(𝐹)‘𝐵) = (𝐹‘(recs(𝐹) ↾ 𝐵)))
Distinct variable groups:   𝑥,𝑓,𝑦,𝐵   𝑓,𝐹,𝑥,𝑦
Allowed substitution hints:   𝐴(𝑥,𝑦,𝑓)

Proof of Theorem tfrlem9
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 eldm2g 5900 . . 3 (𝐵 ∈ dom recs(𝐹) → (𝐵 ∈ dom recs(𝐹) ↔ ∃𝑧𝐵, 𝑧⟩ ∈ recs(𝐹)))
21ibi 267 . 2 (𝐵 ∈ dom recs(𝐹) → ∃𝑧𝐵, 𝑧⟩ ∈ recs(𝐹))
3 dfrecs3 8372 . . . . . 6 recs(𝐹) = {𝑓 ∣ ∃𝑥 ∈ On (𝑓 Fn 𝑥 ∧ ∀𝑦𝑥 (𝑓𝑦) = (𝐹‘(𝑓𝑦)))}
43eleq2i 2826 . . . . 5 (⟨𝐵, 𝑧⟩ ∈ recs(𝐹) ↔ ⟨𝐵, 𝑧⟩ ∈ {𝑓 ∣ ∃𝑥 ∈ On (𝑓 Fn 𝑥 ∧ ∀𝑦𝑥 (𝑓𝑦) = (𝐹‘(𝑓𝑦)))})
5 eluniab 4924 . . . . 5 (⟨𝐵, 𝑧⟩ ∈ {𝑓 ∣ ∃𝑥 ∈ On (𝑓 Fn 𝑥 ∧ ∀𝑦𝑥 (𝑓𝑦) = (𝐹‘(𝑓𝑦)))} ↔ ∃𝑓(⟨𝐵, 𝑧⟩ ∈ 𝑓 ∧ ∃𝑥 ∈ On (𝑓 Fn 𝑥 ∧ ∀𝑦𝑥 (𝑓𝑦) = (𝐹‘(𝑓𝑦)))))
64, 5bitri 275 . . . 4 (⟨𝐵, 𝑧⟩ ∈ recs(𝐹) ↔ ∃𝑓(⟨𝐵, 𝑧⟩ ∈ 𝑓 ∧ ∃𝑥 ∈ On (𝑓 Fn 𝑥 ∧ ∀𝑦𝑥 (𝑓𝑦) = (𝐹‘(𝑓𝑦)))))
7 fnop 6659 . . . . . . . . . . . . . 14 ((𝑓 Fn 𝑥 ∧ ⟨𝐵, 𝑧⟩ ∈ 𝑓) → 𝐵𝑥)
8 rspe 3247 . . . . . . . . . . . . . . . 16 ((𝑥 ∈ On ∧ (𝑓 Fn 𝑥 ∧ ∀𝑦𝑥 (𝑓𝑦) = (𝐹‘(𝑓𝑦)))) → ∃𝑥 ∈ On (𝑓 Fn 𝑥 ∧ ∀𝑦𝑥 (𝑓𝑦) = (𝐹‘(𝑓𝑦))))
9 tfrlem.1 . . . . . . . . . . . . . . . . . 18 𝐴 = {𝑓 ∣ ∃𝑥 ∈ On (𝑓 Fn 𝑥 ∧ ∀𝑦𝑥 (𝑓𝑦) = (𝐹‘(𝑓𝑦)))}
109eqabri 2878 . . . . . . . . . . . . . . . . 17 (𝑓𝐴 ↔ ∃𝑥 ∈ On (𝑓 Fn 𝑥 ∧ ∀𝑦𝑥 (𝑓𝑦) = (𝐹‘(𝑓𝑦))))
11 elssuni 4942 . . . . . . . . . . . . . . . . . 18 (𝑓𝐴𝑓 𝐴)
129recsfval 8381 . . . . . . . . . . . . . . . . . 18 recs(𝐹) = 𝐴
1311, 12sseqtrrdi 4034 . . . . . . . . . . . . . . . . 17 (𝑓𝐴𝑓 ⊆ recs(𝐹))
1410, 13sylbir 234 . . . . . . . . . . . . . . . 16 (∃𝑥 ∈ On (𝑓 Fn 𝑥 ∧ ∀𝑦𝑥 (𝑓𝑦) = (𝐹‘(𝑓𝑦))) → 𝑓 ⊆ recs(𝐹))
158, 14syl 17 . . . . . . . . . . . . . . 15 ((𝑥 ∈ On ∧ (𝑓 Fn 𝑥 ∧ ∀𝑦𝑥 (𝑓𝑦) = (𝐹‘(𝑓𝑦)))) → 𝑓 ⊆ recs(𝐹))
16 fveq2 6892 . . . . . . . . . . . . . . . . . . . 20 (𝑦 = 𝐵 → (𝑓𝑦) = (𝑓𝐵))
17 reseq2 5977 . . . . . . . . . . . . . . . . . . . . 21 (𝑦 = 𝐵 → (𝑓𝑦) = (𝑓𝐵))
1817fveq2d 6896 . . . . . . . . . . . . . . . . . . . 20 (𝑦 = 𝐵 → (𝐹‘(𝑓𝑦)) = (𝐹‘(𝑓𝐵)))
1916, 18eqeq12d 2749 . . . . . . . . . . . . . . . . . . 19 (𝑦 = 𝐵 → ((𝑓𝑦) = (𝐹‘(𝑓𝑦)) ↔ (𝑓𝐵) = (𝐹‘(𝑓𝐵))))
2019rspcv 3609 . . . . . . . . . . . . . . . . . 18 (𝐵𝑥 → (∀𝑦𝑥 (𝑓𝑦) = (𝐹‘(𝑓𝑦)) → (𝑓𝐵) = (𝐹‘(𝑓𝐵))))
21 fndm 6653 . . . . . . . . . . . . . . . . . . . . 21 (𝑓 Fn 𝑥 → dom 𝑓 = 𝑥)
2221eleq2d 2820 . . . . . . . . . . . . . . . . . . . 20 (𝑓 Fn 𝑥 → (𝐵 ∈ dom 𝑓𝐵𝑥))
239tfrlem7 8383 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 Fun recs(𝐹)
24 funssfv 6913 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((Fun recs(𝐹) ∧ 𝑓 ⊆ recs(𝐹) ∧ 𝐵 ∈ dom 𝑓) → (recs(𝐹)‘𝐵) = (𝑓𝐵))
2523, 24mp3an1 1449 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((𝑓 ⊆ recs(𝐹) ∧ 𝐵 ∈ dom 𝑓) → (recs(𝐹)‘𝐵) = (𝑓𝐵))
2625adantrl 715 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝑓 ⊆ recs(𝐹) ∧ ((𝑓 Fn 𝑥𝑥 ∈ On) ∧ 𝐵 ∈ dom 𝑓)) → (recs(𝐹)‘𝐵) = (𝑓𝐵))
2721eleq1d 2819 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (𝑓 Fn 𝑥 → (dom 𝑓 ∈ On ↔ 𝑥 ∈ On))
28 onelss 6407 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (dom 𝑓 ∈ On → (𝐵 ∈ dom 𝑓𝐵 ⊆ dom 𝑓))
2927, 28syl6bir 254 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (𝑓 Fn 𝑥 → (𝑥 ∈ On → (𝐵 ∈ dom 𝑓𝐵 ⊆ dom 𝑓)))
3029imp31 419 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (((𝑓 Fn 𝑥𝑥 ∈ On) ∧ 𝐵 ∈ dom 𝑓) → 𝐵 ⊆ dom 𝑓)
31 fun2ssres 6594 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 ((Fun recs(𝐹) ∧ 𝑓 ⊆ recs(𝐹) ∧ 𝐵 ⊆ dom 𝑓) → (recs(𝐹) ↾ 𝐵) = (𝑓𝐵))
3231fveq2d 6896 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((Fun recs(𝐹) ∧ 𝑓 ⊆ recs(𝐹) ∧ 𝐵 ⊆ dom 𝑓) → (𝐹‘(recs(𝐹) ↾ 𝐵)) = (𝐹‘(𝑓𝐵)))
3323, 32mp3an1 1449 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((𝑓 ⊆ recs(𝐹) ∧ 𝐵 ⊆ dom 𝑓) → (𝐹‘(recs(𝐹) ↾ 𝐵)) = (𝐹‘(𝑓𝐵)))
3430, 33sylan2 594 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝑓 ⊆ recs(𝐹) ∧ ((𝑓 Fn 𝑥𝑥 ∈ On) ∧ 𝐵 ∈ dom 𝑓)) → (𝐹‘(recs(𝐹) ↾ 𝐵)) = (𝐹‘(𝑓𝐵)))
3526, 34eqeq12d 2749 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝑓 ⊆ recs(𝐹) ∧ ((𝑓 Fn 𝑥𝑥 ∈ On) ∧ 𝐵 ∈ dom 𝑓)) → ((recs(𝐹)‘𝐵) = (𝐹‘(recs(𝐹) ↾ 𝐵)) ↔ (𝑓𝐵) = (𝐹‘(𝑓𝐵))))
3635exbiri 810 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑓 ⊆ recs(𝐹) → (((𝑓 Fn 𝑥𝑥 ∈ On) ∧ 𝐵 ∈ dom 𝑓) → ((𝑓𝐵) = (𝐹‘(𝑓𝐵)) → (recs(𝐹)‘𝐵) = (𝐹‘(recs(𝐹) ↾ 𝐵)))))
3736com3l 89 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝑓 Fn 𝑥𝑥 ∈ On) ∧ 𝐵 ∈ dom 𝑓) → ((𝑓𝐵) = (𝐹‘(𝑓𝐵)) → (𝑓 ⊆ recs(𝐹) → (recs(𝐹)‘𝐵) = (𝐹‘(recs(𝐹) ↾ 𝐵)))))
3837exp31 421 . . . . . . . . . . . . . . . . . . . . . 22 (𝑓 Fn 𝑥 → (𝑥 ∈ On → (𝐵 ∈ dom 𝑓 → ((𝑓𝐵) = (𝐹‘(𝑓𝐵)) → (𝑓 ⊆ recs(𝐹) → (recs(𝐹)‘𝐵) = (𝐹‘(recs(𝐹) ↾ 𝐵)))))))
3938com34 91 . . . . . . . . . . . . . . . . . . . . 21 (𝑓 Fn 𝑥 → (𝑥 ∈ On → ((𝑓𝐵) = (𝐹‘(𝑓𝐵)) → (𝐵 ∈ dom 𝑓 → (𝑓 ⊆ recs(𝐹) → (recs(𝐹)‘𝐵) = (𝐹‘(recs(𝐹) ↾ 𝐵)))))))
4039com24 95 . . . . . . . . . . . . . . . . . . . 20 (𝑓 Fn 𝑥 → (𝐵 ∈ dom 𝑓 → ((𝑓𝐵) = (𝐹‘(𝑓𝐵)) → (𝑥 ∈ On → (𝑓 ⊆ recs(𝐹) → (recs(𝐹)‘𝐵) = (𝐹‘(recs(𝐹) ↾ 𝐵)))))))
4122, 40sylbird 260 . . . . . . . . . . . . . . . . . . 19 (𝑓 Fn 𝑥 → (𝐵𝑥 → ((𝑓𝐵) = (𝐹‘(𝑓𝐵)) → (𝑥 ∈ On → (𝑓 ⊆ recs(𝐹) → (recs(𝐹)‘𝐵) = (𝐹‘(recs(𝐹) ↾ 𝐵)))))))
4241com3l 89 . . . . . . . . . . . . . . . . . 18 (𝐵𝑥 → ((𝑓𝐵) = (𝐹‘(𝑓𝐵)) → (𝑓 Fn 𝑥 → (𝑥 ∈ On → (𝑓 ⊆ recs(𝐹) → (recs(𝐹)‘𝐵) = (𝐹‘(recs(𝐹) ↾ 𝐵)))))))
4320, 42syld 47 . . . . . . . . . . . . . . . . 17 (𝐵𝑥 → (∀𝑦𝑥 (𝑓𝑦) = (𝐹‘(𝑓𝑦)) → (𝑓 Fn 𝑥 → (𝑥 ∈ On → (𝑓 ⊆ recs(𝐹) → (recs(𝐹)‘𝐵) = (𝐹‘(recs(𝐹) ↾ 𝐵)))))))
4443com24 95 . . . . . . . . . . . . . . . 16 (𝐵𝑥 → (𝑥 ∈ On → (𝑓 Fn 𝑥 → (∀𝑦𝑥 (𝑓𝑦) = (𝐹‘(𝑓𝑦)) → (𝑓 ⊆ recs(𝐹) → (recs(𝐹)‘𝐵) = (𝐹‘(recs(𝐹) ↾ 𝐵)))))))
4544imp4d 426 . . . . . . . . . . . . . . 15 (𝐵𝑥 → ((𝑥 ∈ On ∧ (𝑓 Fn 𝑥 ∧ ∀𝑦𝑥 (𝑓𝑦) = (𝐹‘(𝑓𝑦)))) → (𝑓 ⊆ recs(𝐹) → (recs(𝐹)‘𝐵) = (𝐹‘(recs(𝐹) ↾ 𝐵)))))
4615, 45mpdi 45 . . . . . . . . . . . . . 14 (𝐵𝑥 → ((𝑥 ∈ On ∧ (𝑓 Fn 𝑥 ∧ ∀𝑦𝑥 (𝑓𝑦) = (𝐹‘(𝑓𝑦)))) → (recs(𝐹)‘𝐵) = (𝐹‘(recs(𝐹) ↾ 𝐵))))
477, 46syl 17 . . . . . . . . . . . . 13 ((𝑓 Fn 𝑥 ∧ ⟨𝐵, 𝑧⟩ ∈ 𝑓) → ((𝑥 ∈ On ∧ (𝑓 Fn 𝑥 ∧ ∀𝑦𝑥 (𝑓𝑦) = (𝐹‘(𝑓𝑦)))) → (recs(𝐹)‘𝐵) = (𝐹‘(recs(𝐹) ↾ 𝐵))))
4847exp4d 435 . . . . . . . . . . . 12 ((𝑓 Fn 𝑥 ∧ ⟨𝐵, 𝑧⟩ ∈ 𝑓) → (𝑥 ∈ On → (𝑓 Fn 𝑥 → (∀𝑦𝑥 (𝑓𝑦) = (𝐹‘(𝑓𝑦)) → (recs(𝐹)‘𝐵) = (𝐹‘(recs(𝐹) ↾ 𝐵))))))
4948ex 414 . . . . . . . . . . 11 (𝑓 Fn 𝑥 → (⟨𝐵, 𝑧⟩ ∈ 𝑓 → (𝑥 ∈ On → (𝑓 Fn 𝑥 → (∀𝑦𝑥 (𝑓𝑦) = (𝐹‘(𝑓𝑦)) → (recs(𝐹)‘𝐵) = (𝐹‘(recs(𝐹) ↾ 𝐵)))))))
5049com4r 94 . . . . . . . . . 10 (𝑓 Fn 𝑥 → (𝑓 Fn 𝑥 → (⟨𝐵, 𝑧⟩ ∈ 𝑓 → (𝑥 ∈ On → (∀𝑦𝑥 (𝑓𝑦) = (𝐹‘(𝑓𝑦)) → (recs(𝐹)‘𝐵) = (𝐹‘(recs(𝐹) ↾ 𝐵)))))))
5150pm2.43i 52 . . . . . . . . 9 (𝑓 Fn 𝑥 → (⟨𝐵, 𝑧⟩ ∈ 𝑓 → (𝑥 ∈ On → (∀𝑦𝑥 (𝑓𝑦) = (𝐹‘(𝑓𝑦)) → (recs(𝐹)‘𝐵) = (𝐹‘(recs(𝐹) ↾ 𝐵))))))
5251com3l 89 . . . . . . . 8 (⟨𝐵, 𝑧⟩ ∈ 𝑓 → (𝑥 ∈ On → (𝑓 Fn 𝑥 → (∀𝑦𝑥 (𝑓𝑦) = (𝐹‘(𝑓𝑦)) → (recs(𝐹)‘𝐵) = (𝐹‘(recs(𝐹) ↾ 𝐵))))))
5352imp4a 424 . . . . . . 7 (⟨𝐵, 𝑧⟩ ∈ 𝑓 → (𝑥 ∈ On → ((𝑓 Fn 𝑥 ∧ ∀𝑦𝑥 (𝑓𝑦) = (𝐹‘(𝑓𝑦))) → (recs(𝐹)‘𝐵) = (𝐹‘(recs(𝐹) ↾ 𝐵)))))
5453rexlimdv 3154 . . . . . 6 (⟨𝐵, 𝑧⟩ ∈ 𝑓 → (∃𝑥 ∈ On (𝑓 Fn 𝑥 ∧ ∀𝑦𝑥 (𝑓𝑦) = (𝐹‘(𝑓𝑦))) → (recs(𝐹)‘𝐵) = (𝐹‘(recs(𝐹) ↾ 𝐵))))
5554imp 408 . . . . 5 ((⟨𝐵, 𝑧⟩ ∈ 𝑓 ∧ ∃𝑥 ∈ On (𝑓 Fn 𝑥 ∧ ∀𝑦𝑥 (𝑓𝑦) = (𝐹‘(𝑓𝑦)))) → (recs(𝐹)‘𝐵) = (𝐹‘(recs(𝐹) ↾ 𝐵)))
5655exlimiv 1934 . . . 4 (∃𝑓(⟨𝐵, 𝑧⟩ ∈ 𝑓 ∧ ∃𝑥 ∈ On (𝑓 Fn 𝑥 ∧ ∀𝑦𝑥 (𝑓𝑦) = (𝐹‘(𝑓𝑦)))) → (recs(𝐹)‘𝐵) = (𝐹‘(recs(𝐹) ↾ 𝐵)))
576, 56sylbi 216 . . 3 (⟨𝐵, 𝑧⟩ ∈ recs(𝐹) → (recs(𝐹)‘𝐵) = (𝐹‘(recs(𝐹) ↾ 𝐵)))
5857exlimiv 1934 . 2 (∃𝑧𝐵, 𝑧⟩ ∈ recs(𝐹) → (recs(𝐹)‘𝐵) = (𝐹‘(recs(𝐹) ↾ 𝐵)))
592, 58syl 17 1 (𝐵 ∈ dom recs(𝐹) → (recs(𝐹)‘𝐵) = (𝐹‘(recs(𝐹) ↾ 𝐵)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 397  w3a 1088   = wceq 1542  wex 1782  wcel 2107  {cab 2710  wral 3062  wrex 3071  wss 3949  cop 4635   cuni 4909  dom cdm 5677  cres 5679  Oncon0 6365  Fun wfun 6538   Fn wfn 6539  cfv 6544  recscrecs 8370
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2155  ax-12 2172  ax-ext 2704  ax-sep 5300  ax-nul 5307  ax-pr 5428  ax-un 7725
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3or 1089  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-nf 1787  df-sb 2069  df-mo 2535  df-eu 2564  df-clab 2711  df-cleq 2725  df-clel 2811  df-nfc 2886  df-ne 2942  df-ral 3063  df-rex 3072  df-rab 3434  df-v 3477  df-sbc 3779  df-csb 3895  df-dif 3952  df-un 3954  df-in 3956  df-ss 3966  df-pss 3968  df-nul 4324  df-if 4530  df-pw 4605  df-sn 4630  df-pr 4632  df-op 4636  df-uni 4910  df-iun 5000  df-br 5150  df-opab 5212  df-mpt 5233  df-tr 5267  df-id 5575  df-eprel 5581  df-po 5589  df-so 5590  df-fr 5632  df-we 5634  df-xp 5683  df-rel 5684  df-cnv 5685  df-co 5686  df-dm 5687  df-rn 5688  df-res 5689  df-ima 5690  df-pred 6301  df-ord 6368  df-on 6369  df-iota 6496  df-fun 6546  df-fn 6547  df-f 6548  df-fo 6550  df-fv 6552  df-ov 7412  df-2nd 7976  df-frecs 8266  df-wrecs 8297  df-recs 8371
This theorem is referenced by:  tfrlem11  8388  tfr2a  8395
  Copyright terms: Public domain W3C validator