Mathbox for Igor Ieskov |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > rexlimdv3d | Structured version Visualization version GIF version |
Description: An extended version of rexlimdvv 3201 to include three set variables. (Contributed by Igor Ieskov, 21-Jan-2024.) |
Ref | Expression |
---|---|
rexlimdv3d.1 | ⊢ (𝜑 → ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐶) → (𝜓 → 𝜒))) |
Ref | Expression |
---|---|
rexlimdv3d | ⊢ (𝜑 → (∃𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 ∃𝑧 ∈ 𝐶 𝜓 → 𝜒)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | rexlimdv3d.1 | . . . . . 6 ⊢ (𝜑 → ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐶) → (𝜓 → 𝜒))) | |
2 | 1 | 3expd 1353 | . . . . 5 ⊢ (𝜑 → (𝑥 ∈ 𝐴 → (𝑦 ∈ 𝐵 → (𝑧 ∈ 𝐶 → (𝜓 → 𝜒))))) |
3 | 2 | imp4d 426 | . . . 4 ⊢ (𝜑 → ((𝑥 ∈ 𝐴 ∧ (𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐶)) → (𝜓 → 𝜒))) |
4 | 3 | expdimp 454 | . . 3 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → ((𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐶) → (𝜓 → 𝜒))) |
5 | 4 | rexlimdvv 3201 | . 2 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (∃𝑦 ∈ 𝐵 ∃𝑧 ∈ 𝐶 𝜓 → 𝜒)) |
6 | 5 | rexlimdva 3149 | 1 ⊢ (𝜑 → (∃𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 ∃𝑧 ∈ 𝐶 𝜓 → 𝜒)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 397 ∧ w3a 1087 ∈ wcel 2104 ∃wrex 3071 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1911 |
This theorem depends on definitions: df-bi 206 df-an 398 df-3an 1089 df-ex 1780 df-rex 3072 |
This theorem is referenced by: 3cubes 40707 |
Copyright terms: Public domain | W3C validator |