| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > imp4c | Structured version Visualization version GIF version | ||
| Description: An importation inference. (Contributed by NM, 26-Apr-1994.) |
| Ref | Expression |
|---|---|
| imp4.1 | ⊢ (𝜑 → (𝜓 → (𝜒 → (𝜃 → 𝜏)))) |
| Ref | Expression |
|---|---|
| imp4c | ⊢ (𝜑 → (((𝜓 ∧ 𝜒) ∧ 𝜃) → 𝜏)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | imp4.1 | . . 3 ⊢ (𝜑 → (𝜓 → (𝜒 → (𝜃 → 𝜏)))) | |
| 2 | 1 | impd 410 | . 2 ⊢ (𝜑 → ((𝜓 ∧ 𝜒) → (𝜃 → 𝜏))) |
| 3 | 2 | impd 410 | 1 ⊢ (𝜑 → (((𝜓 ∧ 𝜒) ∧ 𝜃) → 𝜏)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 |
| This theorem is referenced by: imp44 428 reuop 6266 omordi 8530 omwordri 8536 omass 8544 oewordri 8556 umgrclwwlkge2 29920 upgr4cycl4dv4e 30114 elspansn5 31503 atcvat3i 32325 mdsymlem5 32336 sumdmdlem 32347 cvrat4 39437 2reuimp 47113 sprsymrelfolem2 47491 reupr 47520 grtriprop 47937 isubgr3stgrlem6 47967 |
| Copyright terms: Public domain | W3C validator |