MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  imp4c Structured version   Visualization version   GIF version

Theorem imp4c 424
Description: An importation inference. (Contributed by NM, 26-Apr-1994.)
Hypothesis
Ref Expression
imp4.1 (𝜑 → (𝜓 → (𝜒 → (𝜃𝜏))))
Assertion
Ref Expression
imp4c (𝜑 → (((𝜓𝜒) ∧ 𝜃) → 𝜏))

Proof of Theorem imp4c
StepHypRef Expression
1 imp4.1 . . 3 (𝜑 → (𝜓 → (𝜒 → (𝜃𝜏))))
21impd 411 . 2 (𝜑 → ((𝜓𝜒) → (𝜃𝜏)))
32impd 411 1 (𝜑 → (((𝜓𝜒) ∧ 𝜃) → 𝜏))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 206  df-an 397
This theorem is referenced by:  imp44  429  reuop  6225  omordi  8460  omwordri  8466  omass  8474  oewordri  8486  umgrclwwlkge2  28584  upgr4cycl4dv4e  28778  elspansn5  30165  atcvat3i  30987  mdsymlem5  30998  sumdmdlem  31009  cvrat4  37704  2reuimp  44947  sprsymrelfolem2  45285  reupr  45314
  Copyright terms: Public domain W3C validator