MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  imp4c Structured version   Visualization version   GIF version

Theorem imp4c 423
Description: An importation inference. (Contributed by NM, 26-Apr-1994.)
Hypothesis
Ref Expression
imp4.1 (𝜑 → (𝜓 → (𝜒 → (𝜃𝜏))))
Assertion
Ref Expression
imp4c (𝜑 → (((𝜓𝜒) ∧ 𝜃) → 𝜏))

Proof of Theorem imp4c
StepHypRef Expression
1 imp4.1 . . 3 (𝜑 → (𝜓 → (𝜒 → (𝜃𝜏))))
21impd 410 . 2 (𝜑 → ((𝜓𝜒) → (𝜃𝜏)))
32impd 410 1 (𝜑 → (((𝜓𝜒) ∧ 𝜃) → 𝜏))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 207  df-an 396
This theorem is referenced by:  imp44  428  reuop  6287  omordi  8583  omwordri  8589  omass  8597  oewordri  8609  umgrclwwlkge2  29977  upgr4cycl4dv4e  30171  elspansn5  31560  atcvat3i  32382  mdsymlem5  32393  sumdmdlem  32404  cvrat4  39467  2reuimp  47111  sprsymrelfolem2  47474  reupr  47503  grtriprop  47920  isubgr3stgrlem6  47950
  Copyright terms: Public domain W3C validator