MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  imp4c Structured version   Visualization version   GIF version

Theorem imp4c 423
Description: An importation inference. (Contributed by NM, 26-Apr-1994.)
Hypothesis
Ref Expression
imp4.1 (𝜑 → (𝜓 → (𝜒 → (𝜃𝜏))))
Assertion
Ref Expression
imp4c (𝜑 → (((𝜓𝜒) ∧ 𝜃) → 𝜏))

Proof of Theorem imp4c
StepHypRef Expression
1 imp4.1 . . 3 (𝜑 → (𝜓 → (𝜒 → (𝜃𝜏))))
21impd 410 . 2 (𝜑 → ((𝜓𝜒) → (𝜃𝜏)))
32impd 410 1 (𝜑 → (((𝜓𝜒) ∧ 𝜃) → 𝜏))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 207  df-an 396
This theorem is referenced by:  imp44  428  reuop  6324  omordi  8622  omwordri  8628  omass  8636  oewordri  8648  umgrclwwlkge2  30023  upgr4cycl4dv4e  30217  elspansn5  31606  atcvat3i  32428  mdsymlem5  32439  sumdmdlem  32450  cvrat4  39400  2reuimp  47030  sprsymrelfolem2  47367  reupr  47396  grtriprop  47792
  Copyright terms: Public domain W3C validator