| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > imp4c | Structured version Visualization version GIF version | ||
| Description: An importation inference. (Contributed by NM, 26-Apr-1994.) |
| Ref | Expression |
|---|---|
| imp4.1 | ⊢ (𝜑 → (𝜓 → (𝜒 → (𝜃 → 𝜏)))) |
| Ref | Expression |
|---|---|
| imp4c | ⊢ (𝜑 → (((𝜓 ∧ 𝜒) ∧ 𝜃) → 𝜏)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | imp4.1 | . . 3 ⊢ (𝜑 → (𝜓 → (𝜒 → (𝜃 → 𝜏)))) | |
| 2 | 1 | impd 410 | . 2 ⊢ (𝜑 → ((𝜓 ∧ 𝜒) → (𝜃 → 𝜏))) |
| 3 | 2 | impd 410 | 1 ⊢ (𝜑 → (((𝜓 ∧ 𝜒) ∧ 𝜃) → 𝜏)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 |
| This theorem is referenced by: imp44 428 reuop 6245 omordi 8487 omwordri 8493 omass 8501 oewordri 8513 umgrclwwlkge2 29973 upgr4cycl4dv4e 30167 elspansn5 31556 atcvat3i 32378 mdsymlem5 32389 sumdmdlem 32400 cvrat4 39563 2reuimp 47240 sprsymrelfolem2 47618 reupr 47647 grtriprop 48066 isubgr3stgrlem6 48096 |
| Copyright terms: Public domain | W3C validator |