MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  imp4c Structured version   Visualization version   GIF version

Theorem imp4c 424
Description: An importation inference. (Contributed by NM, 26-Apr-1994.)
Hypothesis
Ref Expression
imp4.1 (𝜑 → (𝜓 → (𝜒 → (𝜃𝜏))))
Assertion
Ref Expression
imp4c (𝜑 → (((𝜓𝜒) ∧ 𝜃) → 𝜏))

Proof of Theorem imp4c
StepHypRef Expression
1 imp4.1 . . 3 (𝜑 → (𝜓 → (𝜒 → (𝜃𝜏))))
21impd 411 . 2 (𝜑 → ((𝜓𝜒) → (𝜃𝜏)))
32impd 411 1 (𝜑 → (((𝜓𝜒) ∧ 𝜃) → 𝜏))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 206  df-an 397
This theorem is referenced by:  imp44  429  reuop  6196  omordi  8397  omwordri  8403  omass  8411  oewordri  8423  umgrclwwlkge2  28355  upgr4cycl4dv4e  28549  elspansn5  29936  atcvat3i  30758  mdsymlem5  30769  sumdmdlem  30780  cvrat4  37457  2reuimp  44607  sprsymrelfolem2  44945  reupr  44974
  Copyright terms: Public domain W3C validator