MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  imp4c Structured version   Visualization version   GIF version

Theorem imp4c 423
Description: An importation inference. (Contributed by NM, 26-Apr-1994.)
Hypothesis
Ref Expression
imp4.1 (𝜑 → (𝜓 → (𝜒 → (𝜃𝜏))))
Assertion
Ref Expression
imp4c (𝜑 → (((𝜓𝜒) ∧ 𝜃) → 𝜏))

Proof of Theorem imp4c
StepHypRef Expression
1 imp4.1 . . 3 (𝜑 → (𝜓 → (𝜒 → (𝜃𝜏))))
21impd 410 . 2 (𝜑 → ((𝜓𝜒) → (𝜃𝜏)))
32impd 410 1 (𝜑 → (((𝜓𝜒) ∧ 𝜃) → 𝜏))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 206  df-an 396
This theorem is referenced by:  imp44  428  reuop  6185  omordi  8359  omwordri  8365  omass  8373  oewordri  8385  umgrclwwlkge2  28256  upgr4cycl4dv4e  28450  elspansn5  29837  atcvat3i  30659  mdsymlem5  30670  sumdmdlem  30681  cvrat4  37384  2reuimp  44494  sprsymrelfolem2  44833  reupr  44862
  Copyright terms: Public domain W3C validator