MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  imp4c Structured version   Visualization version   GIF version

Theorem imp4c 423
Description: An importation inference. (Contributed by NM, 26-Apr-1994.)
Hypothesis
Ref Expression
imp4.1 (𝜑 → (𝜓 → (𝜒 → (𝜃𝜏))))
Assertion
Ref Expression
imp4c (𝜑 → (((𝜓𝜒) ∧ 𝜃) → 𝜏))

Proof of Theorem imp4c
StepHypRef Expression
1 imp4.1 . . 3 (𝜑 → (𝜓 → (𝜒 → (𝜃𝜏))))
21impd 410 . 2 (𝜑 → ((𝜓𝜒) → (𝜃𝜏)))
32impd 410 1 (𝜑 → (((𝜓𝜒) ∧ 𝜃) → 𝜏))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 207  df-an 396
This theorem is referenced by:  imp44  428  reuop  6266  omordi  8530  omwordri  8536  omass  8544  oewordri  8556  umgrclwwlkge2  29920  upgr4cycl4dv4e  30114  elspansn5  31503  atcvat3i  32325  mdsymlem5  32336  sumdmdlem  32347  cvrat4  39437  2reuimp  47113  sprsymrelfolem2  47491  reupr  47520  grtriprop  47937  isubgr3stgrlem6  47967
  Copyright terms: Public domain W3C validator