Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cvrexchlem Structured version   Visualization version   GIF version

Theorem cvrexchlem 39413
Description: Lemma for cvrexch 39414. (cvexchlem 32297 analog.) (Contributed by NM, 18-Nov-2011.)
Hypotheses
Ref Expression
cvrexch.b 𝐵 = (Base‘𝐾)
cvrexch.j = (join‘𝐾)
cvrexch.m = (meet‘𝐾)
cvrexch.c 𝐶 = ( ⋖ ‘𝐾)
Assertion
Ref Expression
cvrexchlem ((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) → ((𝑋 𝑌)𝐶𝑌𝑋𝐶(𝑋 𝑌)))

Proof of Theorem cvrexchlem
Dummy variable 𝑝 is distinct from all other variables.
StepHypRef Expression
1 hllat 39356 . . . . . . 7 (𝐾 ∈ HL → 𝐾 ∈ Lat)
2 cvrexch.b . . . . . . . 8 𝐵 = (Base‘𝐾)
3 cvrexch.m . . . . . . . 8 = (meet‘𝐾)
42, 3latmcl 18399 . . . . . . 7 ((𝐾 ∈ Lat ∧ 𝑋𝐵𝑌𝐵) → (𝑋 𝑌) ∈ 𝐵)
51, 4syl3an1 1163 . . . . . 6 ((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) → (𝑋 𝑌) ∈ 𝐵)
6 eqid 2729 . . . . . . . 8 (lt‘𝐾) = (lt‘𝐾)
7 cvrexch.c . . . . . . . 8 𝐶 = ( ⋖ ‘𝐾)
82, 6, 7cvrlt 39263 . . . . . . 7 (((𝐾 ∈ HL ∧ (𝑋 𝑌) ∈ 𝐵𝑌𝐵) ∧ (𝑋 𝑌)𝐶𝑌) → (𝑋 𝑌)(lt‘𝐾)𝑌)
98ex 412 . . . . . 6 ((𝐾 ∈ HL ∧ (𝑋 𝑌) ∈ 𝐵𝑌𝐵) → ((𝑋 𝑌)𝐶𝑌 → (𝑋 𝑌)(lt‘𝐾)𝑌))
105, 9syld3an2 1413 . . . . 5 ((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) → ((𝑋 𝑌)𝐶𝑌 → (𝑋 𝑌)(lt‘𝐾)𝑌))
11 eqid 2729 . . . . . . 7 (le‘𝐾) = (le‘𝐾)
12 eqid 2729 . . . . . . 7 (Atoms‘𝐾) = (Atoms‘𝐾)
132, 11, 6, 12hlrelat1 39394 . . . . . 6 ((𝐾 ∈ HL ∧ (𝑋 𝑌) ∈ 𝐵𝑌𝐵) → ((𝑋 𝑌)(lt‘𝐾)𝑌 → ∃𝑝 ∈ (Atoms‘𝐾)(¬ 𝑝(le‘𝐾)(𝑋 𝑌) ∧ 𝑝(le‘𝐾)𝑌)))
145, 13syld3an2 1413 . . . . 5 ((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) → ((𝑋 𝑌)(lt‘𝐾)𝑌 → ∃𝑝 ∈ (Atoms‘𝐾)(¬ 𝑝(le‘𝐾)(𝑋 𝑌) ∧ 𝑝(le‘𝐾)𝑌)))
1510, 14syld 47 . . . 4 ((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) → ((𝑋 𝑌)𝐶𝑌 → ∃𝑝 ∈ (Atoms‘𝐾)(¬ 𝑝(le‘𝐾)(𝑋 𝑌) ∧ 𝑝(le‘𝐾)𝑌)))
1615imp 406 . . 3 (((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ (𝑋 𝑌)𝐶𝑌) → ∃𝑝 ∈ (Atoms‘𝐾)(¬ 𝑝(le‘𝐾)(𝑋 𝑌) ∧ 𝑝(le‘𝐾)𝑌))
17 simpl1 1192 . . . . . . . . . . . . . . . . 17 (((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ 𝑝 ∈ (Atoms‘𝐾)) → 𝐾 ∈ HL)
1817hllatd 39357 . . . . . . . . . . . . . . . 16 (((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ 𝑝 ∈ (Atoms‘𝐾)) → 𝐾 ∈ Lat)
192, 12atbase 39282 . . . . . . . . . . . . . . . . 17 (𝑝 ∈ (Atoms‘𝐾) → 𝑝𝐵)
2019adantl 481 . . . . . . . . . . . . . . . 16 (((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ 𝑝 ∈ (Atoms‘𝐾)) → 𝑝𝐵)
21 simpl2 1193 . . . . . . . . . . . . . . . 16 (((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ 𝑝 ∈ (Atoms‘𝐾)) → 𝑋𝐵)
22 simpl3 1194 . . . . . . . . . . . . . . . 16 (((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ 𝑝 ∈ (Atoms‘𝐾)) → 𝑌𝐵)
232, 11, 3latlem12 18425 . . . . . . . . . . . . . . . 16 ((𝐾 ∈ Lat ∧ (𝑝𝐵𝑋𝐵𝑌𝐵)) → ((𝑝(le‘𝐾)𝑋𝑝(le‘𝐾)𝑌) ↔ 𝑝(le‘𝐾)(𝑋 𝑌)))
2418, 20, 21, 22, 23syl13anc 1374 . . . . . . . . . . . . . . 15 (((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ 𝑝 ∈ (Atoms‘𝐾)) → ((𝑝(le‘𝐾)𝑋𝑝(le‘𝐾)𝑌) ↔ 𝑝(le‘𝐾)(𝑋 𝑌)))
2524biimpd 229 . . . . . . . . . . . . . 14 (((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ 𝑝 ∈ (Atoms‘𝐾)) → ((𝑝(le‘𝐾)𝑋𝑝(le‘𝐾)𝑌) → 𝑝(le‘𝐾)(𝑋 𝑌)))
2625expcomd 416 . . . . . . . . . . . . 13 (((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ 𝑝 ∈ (Atoms‘𝐾)) → (𝑝(le‘𝐾)𝑌 → (𝑝(le‘𝐾)𝑋𝑝(le‘𝐾)(𝑋 𝑌))))
27 con3 153 . . . . . . . . . . . . 13 ((𝑝(le‘𝐾)𝑋𝑝(le‘𝐾)(𝑋 𝑌)) → (¬ 𝑝(le‘𝐾)(𝑋 𝑌) → ¬ 𝑝(le‘𝐾)𝑋))
2826, 27syl6 35 . . . . . . . . . . . 12 (((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ 𝑝 ∈ (Atoms‘𝐾)) → (𝑝(le‘𝐾)𝑌 → (¬ 𝑝(le‘𝐾)(𝑋 𝑌) → ¬ 𝑝(le‘𝐾)𝑋)))
2928com23 86 . . . . . . . . . . 11 (((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ 𝑝 ∈ (Atoms‘𝐾)) → (¬ 𝑝(le‘𝐾)(𝑋 𝑌) → (𝑝(le‘𝐾)𝑌 → ¬ 𝑝(le‘𝐾)𝑋)))
3029a1d 25 . . . . . . . . . 10 (((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ 𝑝 ∈ (Atoms‘𝐾)) → ((𝑋 𝑌)𝐶𝑌 → (¬ 𝑝(le‘𝐾)(𝑋 𝑌) → (𝑝(le‘𝐾)𝑌 → ¬ 𝑝(le‘𝐾)𝑋))))
3130imp4d 424 . . . . . . . . 9 (((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ 𝑝 ∈ (Atoms‘𝐾)) → (((𝑋 𝑌)𝐶𝑌 ∧ (¬ 𝑝(le‘𝐾)(𝑋 𝑌) ∧ 𝑝(le‘𝐾)𝑌)) → ¬ 𝑝(le‘𝐾)𝑋))
32 simpr 484 . . . . . . . . . 10 (((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ 𝑝 ∈ (Atoms‘𝐾)) → 𝑝 ∈ (Atoms‘𝐾))
33 cvrexch.j . . . . . . . . . . 11 = (join‘𝐾)
342, 11, 33, 7, 12cvr1 39404 . . . . . . . . . 10 ((𝐾 ∈ HL ∧ 𝑋𝐵𝑝 ∈ (Atoms‘𝐾)) → (¬ 𝑝(le‘𝐾)𝑋𝑋𝐶(𝑋 𝑝)))
3517, 21, 32, 34syl3anc 1373 . . . . . . . . 9 (((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ 𝑝 ∈ (Atoms‘𝐾)) → (¬ 𝑝(le‘𝐾)𝑋𝑋𝐶(𝑋 𝑝)))
3631, 35sylibd 239 . . . . . . . 8 (((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ 𝑝 ∈ (Atoms‘𝐾)) → (((𝑋 𝑌)𝐶𝑌 ∧ (¬ 𝑝(le‘𝐾)(𝑋 𝑌) ∧ 𝑝(le‘𝐾)𝑌)) → 𝑋𝐶(𝑋 𝑝)))
3736imp 406 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ 𝑝 ∈ (Atoms‘𝐾)) ∧ ((𝑋 𝑌)𝐶𝑌 ∧ (¬ 𝑝(le‘𝐾)(𝑋 𝑌) ∧ 𝑝(le‘𝐾)𝑌))) → 𝑋𝐶(𝑋 𝑝))
38 simpl1 1192 . . . . . . . . . . . . 13 (((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ 𝑝𝐵) → 𝐾 ∈ HL)
3938hllatd 39357 . . . . . . . . . . . 12 (((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ 𝑝𝐵) → 𝐾 ∈ Lat)
40 simpl2 1193 . . . . . . . . . . . 12 (((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ 𝑝𝐵) → 𝑋𝐵)
41 simpl3 1194 . . . . . . . . . . . . 13 (((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ 𝑝𝐵) → 𝑌𝐵)
4239, 40, 41, 4syl3anc 1373 . . . . . . . . . . . 12 (((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ 𝑝𝐵) → (𝑋 𝑌) ∈ 𝐵)
43 simpr 484 . . . . . . . . . . . 12 (((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ 𝑝𝐵) → 𝑝𝐵)
442, 33latjass 18442 . . . . . . . . . . . 12 ((𝐾 ∈ Lat ∧ (𝑋𝐵 ∧ (𝑋 𝑌) ∈ 𝐵𝑝𝐵)) → ((𝑋 (𝑋 𝑌)) 𝑝) = (𝑋 ((𝑋 𝑌) 𝑝)))
4539, 40, 42, 43, 44syl13anc 1374 . . . . . . . . . . 11 (((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ 𝑝𝐵) → ((𝑋 (𝑋 𝑌)) 𝑝) = (𝑋 ((𝑋 𝑌) 𝑝)))
462, 33, 3latabs1 18434 . . . . . . . . . . . . . 14 ((𝐾 ∈ Lat ∧ 𝑋𝐵𝑌𝐵) → (𝑋 (𝑋 𝑌)) = 𝑋)
471, 46syl3an1 1163 . . . . . . . . . . . . 13 ((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) → (𝑋 (𝑋 𝑌)) = 𝑋)
4847adantr 480 . . . . . . . . . . . 12 (((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ 𝑝𝐵) → (𝑋 (𝑋 𝑌)) = 𝑋)
4948oveq1d 7402 . . . . . . . . . . 11 (((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ 𝑝𝐵) → ((𝑋 (𝑋 𝑌)) 𝑝) = (𝑋 𝑝))
5045, 49eqtr3d 2766 . . . . . . . . . 10 (((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ 𝑝𝐵) → (𝑋 ((𝑋 𝑌) 𝑝)) = (𝑋 𝑝))
5150adantr 480 . . . . . . . . 9 ((((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ 𝑝𝐵) ∧ ((𝑋 𝑌)𝐶𝑌 ∧ (¬ 𝑝(le‘𝐾)(𝑋 𝑌) ∧ 𝑝(le‘𝐾)𝑌))) → (𝑋 ((𝑋 𝑌) 𝑝)) = (𝑋 𝑝))
522, 11, 6, 33latnle 18432 . . . . . . . . . . . . . . 15 ((𝐾 ∈ Lat ∧ (𝑋 𝑌) ∈ 𝐵𝑝𝐵) → (¬ 𝑝(le‘𝐾)(𝑋 𝑌) ↔ (𝑋 𝑌)(lt‘𝐾)((𝑋 𝑌) 𝑝)))
5339, 42, 43, 52syl3anc 1373 . . . . . . . . . . . . . 14 (((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ 𝑝𝐵) → (¬ 𝑝(le‘𝐾)(𝑋 𝑌) ↔ (𝑋 𝑌)(lt‘𝐾)((𝑋 𝑌) 𝑝)))
542, 11, 3latmle2 18424 . . . . . . . . . . . . . . . . 17 ((𝐾 ∈ Lat ∧ 𝑋𝐵𝑌𝐵) → (𝑋 𝑌)(le‘𝐾)𝑌)
5539, 40, 41, 54syl3anc 1373 . . . . . . . . . . . . . . . 16 (((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ 𝑝𝐵) → (𝑋 𝑌)(le‘𝐾)𝑌)
5655biantrurd 532 . . . . . . . . . . . . . . 15 (((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ 𝑝𝐵) → (𝑝(le‘𝐾)𝑌 ↔ ((𝑋 𝑌)(le‘𝐾)𝑌𝑝(le‘𝐾)𝑌)))
572, 11, 33latjle12 18409 . . . . . . . . . . . . . . . 16 ((𝐾 ∈ Lat ∧ ((𝑋 𝑌) ∈ 𝐵𝑝𝐵𝑌𝐵)) → (((𝑋 𝑌)(le‘𝐾)𝑌𝑝(le‘𝐾)𝑌) ↔ ((𝑋 𝑌) 𝑝)(le‘𝐾)𝑌))
5839, 42, 43, 41, 57syl13anc 1374 . . . . . . . . . . . . . . 15 (((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ 𝑝𝐵) → (((𝑋 𝑌)(le‘𝐾)𝑌𝑝(le‘𝐾)𝑌) ↔ ((𝑋 𝑌) 𝑝)(le‘𝐾)𝑌))
5956, 58bitrd 279 . . . . . . . . . . . . . 14 (((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ 𝑝𝐵) → (𝑝(le‘𝐾)𝑌 ↔ ((𝑋 𝑌) 𝑝)(le‘𝐾)𝑌))
6053, 59anbi12d 632 . . . . . . . . . . . . 13 (((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ 𝑝𝐵) → ((¬ 𝑝(le‘𝐾)(𝑋 𝑌) ∧ 𝑝(le‘𝐾)𝑌) ↔ ((𝑋 𝑌)(lt‘𝐾)((𝑋 𝑌) 𝑝) ∧ ((𝑋 𝑌) 𝑝)(le‘𝐾)𝑌)))
61 hlpos 39359 . . . . . . . . . . . . . . . 16 (𝐾 ∈ HL → 𝐾 ∈ Poset)
6238, 61syl 17 . . . . . . . . . . . . . . 15 (((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ 𝑝𝐵) → 𝐾 ∈ Poset)
632, 33latjcl 18398 . . . . . . . . . . . . . . . . 17 ((𝐾 ∈ Lat ∧ (𝑋 𝑌) ∈ 𝐵𝑝𝐵) → ((𝑋 𝑌) 𝑝) ∈ 𝐵)
6439, 42, 43, 63syl3anc 1373 . . . . . . . . . . . . . . . 16 (((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ 𝑝𝐵) → ((𝑋 𝑌) 𝑝) ∈ 𝐵)
6542, 41, 643jca 1128 . . . . . . . . . . . . . . 15 (((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ 𝑝𝐵) → ((𝑋 𝑌) ∈ 𝐵𝑌𝐵 ∧ ((𝑋 𝑌) 𝑝) ∈ 𝐵))
662, 11, 6, 7cvrnbtwn2 39268 . . . . . . . . . . . . . . . . 17 ((𝐾 ∈ Poset ∧ ((𝑋 𝑌) ∈ 𝐵𝑌𝐵 ∧ ((𝑋 𝑌) 𝑝) ∈ 𝐵) ∧ (𝑋 𝑌)𝐶𝑌) → (((𝑋 𝑌)(lt‘𝐾)((𝑋 𝑌) 𝑝) ∧ ((𝑋 𝑌) 𝑝)(le‘𝐾)𝑌) ↔ ((𝑋 𝑌) 𝑝) = 𝑌))
6766biimpd 229 . . . . . . . . . . . . . . . 16 ((𝐾 ∈ Poset ∧ ((𝑋 𝑌) ∈ 𝐵𝑌𝐵 ∧ ((𝑋 𝑌) 𝑝) ∈ 𝐵) ∧ (𝑋 𝑌)𝐶𝑌) → (((𝑋 𝑌)(lt‘𝐾)((𝑋 𝑌) 𝑝) ∧ ((𝑋 𝑌) 𝑝)(le‘𝐾)𝑌) → ((𝑋 𝑌) 𝑝) = 𝑌))
68673exp 1119 . . . . . . . . . . . . . . 15 (𝐾 ∈ Poset → (((𝑋 𝑌) ∈ 𝐵𝑌𝐵 ∧ ((𝑋 𝑌) 𝑝) ∈ 𝐵) → ((𝑋 𝑌)𝐶𝑌 → (((𝑋 𝑌)(lt‘𝐾)((𝑋 𝑌) 𝑝) ∧ ((𝑋 𝑌) 𝑝)(le‘𝐾)𝑌) → ((𝑋 𝑌) 𝑝) = 𝑌))))
6962, 65, 68sylc 65 . . . . . . . . . . . . . 14 (((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ 𝑝𝐵) → ((𝑋 𝑌)𝐶𝑌 → (((𝑋 𝑌)(lt‘𝐾)((𝑋 𝑌) 𝑝) ∧ ((𝑋 𝑌) 𝑝)(le‘𝐾)𝑌) → ((𝑋 𝑌) 𝑝) = 𝑌)))
7069com23 86 . . . . . . . . . . . . 13 (((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ 𝑝𝐵) → (((𝑋 𝑌)(lt‘𝐾)((𝑋 𝑌) 𝑝) ∧ ((𝑋 𝑌) 𝑝)(le‘𝐾)𝑌) → ((𝑋 𝑌)𝐶𝑌 → ((𝑋 𝑌) 𝑝) = 𝑌)))
7160, 70sylbid 240 . . . . . . . . . . . 12 (((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ 𝑝𝐵) → ((¬ 𝑝(le‘𝐾)(𝑋 𝑌) ∧ 𝑝(le‘𝐾)𝑌) → ((𝑋 𝑌)𝐶𝑌 → ((𝑋 𝑌) 𝑝) = 𝑌)))
7271com23 86 . . . . . . . . . . 11 (((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ 𝑝𝐵) → ((𝑋 𝑌)𝐶𝑌 → ((¬ 𝑝(le‘𝐾)(𝑋 𝑌) ∧ 𝑝(le‘𝐾)𝑌) → ((𝑋 𝑌) 𝑝) = 𝑌)))
7372imp32 418 . . . . . . . . . 10 ((((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ 𝑝𝐵) ∧ ((𝑋 𝑌)𝐶𝑌 ∧ (¬ 𝑝(le‘𝐾)(𝑋 𝑌) ∧ 𝑝(le‘𝐾)𝑌))) → ((𝑋 𝑌) 𝑝) = 𝑌)
7473oveq2d 7403 . . . . . . . . 9 ((((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ 𝑝𝐵) ∧ ((𝑋 𝑌)𝐶𝑌 ∧ (¬ 𝑝(le‘𝐾)(𝑋 𝑌) ∧ 𝑝(le‘𝐾)𝑌))) → (𝑋 ((𝑋 𝑌) 𝑝)) = (𝑋 𝑌))
7551, 74eqtr3d 2766 . . . . . . . 8 ((((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ 𝑝𝐵) ∧ ((𝑋 𝑌)𝐶𝑌 ∧ (¬ 𝑝(le‘𝐾)(𝑋 𝑌) ∧ 𝑝(le‘𝐾)𝑌))) → (𝑋 𝑝) = (𝑋 𝑌))
7619, 75sylanl2 681 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ 𝑝 ∈ (Atoms‘𝐾)) ∧ ((𝑋 𝑌)𝐶𝑌 ∧ (¬ 𝑝(le‘𝐾)(𝑋 𝑌) ∧ 𝑝(le‘𝐾)𝑌))) → (𝑋 𝑝) = (𝑋 𝑌))
7737, 76breqtrd 5133 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ 𝑝 ∈ (Atoms‘𝐾)) ∧ ((𝑋 𝑌)𝐶𝑌 ∧ (¬ 𝑝(le‘𝐾)(𝑋 𝑌) ∧ 𝑝(le‘𝐾)𝑌))) → 𝑋𝐶(𝑋 𝑌))
7877expr 456 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ 𝑝 ∈ (Atoms‘𝐾)) ∧ (𝑋 𝑌)𝐶𝑌) → ((¬ 𝑝(le‘𝐾)(𝑋 𝑌) ∧ 𝑝(le‘𝐾)𝑌) → 𝑋𝐶(𝑋 𝑌)))
7978an32s 652 . . . 4 ((((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ (𝑋 𝑌)𝐶𝑌) ∧ 𝑝 ∈ (Atoms‘𝐾)) → ((¬ 𝑝(le‘𝐾)(𝑋 𝑌) ∧ 𝑝(le‘𝐾)𝑌) → 𝑋𝐶(𝑋 𝑌)))
8079rexlimdva 3134 . . 3 (((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ (𝑋 𝑌)𝐶𝑌) → (∃𝑝 ∈ (Atoms‘𝐾)(¬ 𝑝(le‘𝐾)(𝑋 𝑌) ∧ 𝑝(le‘𝐾)𝑌) → 𝑋𝐶(𝑋 𝑌)))
8116, 80mpd 15 . 2 (((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ (𝑋 𝑌)𝐶𝑌) → 𝑋𝐶(𝑋 𝑌))
8281ex 412 1 ((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) → ((𝑋 𝑌)𝐶𝑌𝑋𝐶(𝑋 𝑌)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  w3a 1086   = wceq 1540  wcel 2109  wrex 3053   class class class wbr 5107  cfv 6511  (class class class)co 7387  Basecbs 17179  lecple 17227  Posetcpo 18268  ltcplt 18269  joincjn 18272  meetcmee 18273  Latclat 18390  ccvr 39255  Atomscatm 39256  HLchlt 39343
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5234  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387  ax-un 7711
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rmo 3354  df-reu 3355  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-iun 4957  df-br 5108  df-opab 5170  df-mpt 5189  df-id 5533  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518  df-fv 6519  df-riota 7344  df-ov 7390  df-oprab 7391  df-proset 18255  df-poset 18274  df-plt 18289  df-lub 18305  df-glb 18306  df-join 18307  df-meet 18308  df-p0 18384  df-lat 18391  df-clat 18458  df-oposet 39169  df-ol 39171  df-oml 39172  df-covers 39259  df-ats 39260  df-atl 39291  df-cvlat 39315  df-hlat 39344
This theorem is referenced by:  cvrexch  39414
  Copyright terms: Public domain W3C validator