Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cvrexchlem Structured version   Visualization version   GIF version

Theorem cvrexchlem 39438
Description: Lemma for cvrexch 39439. (cvexchlem 32349 analog.) (Contributed by NM, 18-Nov-2011.)
Hypotheses
Ref Expression
cvrexch.b 𝐵 = (Base‘𝐾)
cvrexch.j = (join‘𝐾)
cvrexch.m = (meet‘𝐾)
cvrexch.c 𝐶 = ( ⋖ ‘𝐾)
Assertion
Ref Expression
cvrexchlem ((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) → ((𝑋 𝑌)𝐶𝑌𝑋𝐶(𝑋 𝑌)))

Proof of Theorem cvrexchlem
Dummy variable 𝑝 is distinct from all other variables.
StepHypRef Expression
1 hllat 39381 . . . . . . 7 (𝐾 ∈ HL → 𝐾 ∈ Lat)
2 cvrexch.b . . . . . . . 8 𝐵 = (Base‘𝐾)
3 cvrexch.m . . . . . . . 8 = (meet‘𝐾)
42, 3latmcl 18450 . . . . . . 7 ((𝐾 ∈ Lat ∧ 𝑋𝐵𝑌𝐵) → (𝑋 𝑌) ∈ 𝐵)
51, 4syl3an1 1163 . . . . . 6 ((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) → (𝑋 𝑌) ∈ 𝐵)
6 eqid 2735 . . . . . . . 8 (lt‘𝐾) = (lt‘𝐾)
7 cvrexch.c . . . . . . . 8 𝐶 = ( ⋖ ‘𝐾)
82, 6, 7cvrlt 39288 . . . . . . 7 (((𝐾 ∈ HL ∧ (𝑋 𝑌) ∈ 𝐵𝑌𝐵) ∧ (𝑋 𝑌)𝐶𝑌) → (𝑋 𝑌)(lt‘𝐾)𝑌)
98ex 412 . . . . . 6 ((𝐾 ∈ HL ∧ (𝑋 𝑌) ∈ 𝐵𝑌𝐵) → ((𝑋 𝑌)𝐶𝑌 → (𝑋 𝑌)(lt‘𝐾)𝑌))
105, 9syld3an2 1413 . . . . 5 ((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) → ((𝑋 𝑌)𝐶𝑌 → (𝑋 𝑌)(lt‘𝐾)𝑌))
11 eqid 2735 . . . . . . 7 (le‘𝐾) = (le‘𝐾)
12 eqid 2735 . . . . . . 7 (Atoms‘𝐾) = (Atoms‘𝐾)
132, 11, 6, 12hlrelat1 39419 . . . . . 6 ((𝐾 ∈ HL ∧ (𝑋 𝑌) ∈ 𝐵𝑌𝐵) → ((𝑋 𝑌)(lt‘𝐾)𝑌 → ∃𝑝 ∈ (Atoms‘𝐾)(¬ 𝑝(le‘𝐾)(𝑋 𝑌) ∧ 𝑝(le‘𝐾)𝑌)))
145, 13syld3an2 1413 . . . . 5 ((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) → ((𝑋 𝑌)(lt‘𝐾)𝑌 → ∃𝑝 ∈ (Atoms‘𝐾)(¬ 𝑝(le‘𝐾)(𝑋 𝑌) ∧ 𝑝(le‘𝐾)𝑌)))
1510, 14syld 47 . . . 4 ((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) → ((𝑋 𝑌)𝐶𝑌 → ∃𝑝 ∈ (Atoms‘𝐾)(¬ 𝑝(le‘𝐾)(𝑋 𝑌) ∧ 𝑝(le‘𝐾)𝑌)))
1615imp 406 . . 3 (((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ (𝑋 𝑌)𝐶𝑌) → ∃𝑝 ∈ (Atoms‘𝐾)(¬ 𝑝(le‘𝐾)(𝑋 𝑌) ∧ 𝑝(le‘𝐾)𝑌))
17 simpl1 1192 . . . . . . . . . . . . . . . . 17 (((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ 𝑝 ∈ (Atoms‘𝐾)) → 𝐾 ∈ HL)
1817hllatd 39382 . . . . . . . . . . . . . . . 16 (((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ 𝑝 ∈ (Atoms‘𝐾)) → 𝐾 ∈ Lat)
192, 12atbase 39307 . . . . . . . . . . . . . . . . 17 (𝑝 ∈ (Atoms‘𝐾) → 𝑝𝐵)
2019adantl 481 . . . . . . . . . . . . . . . 16 (((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ 𝑝 ∈ (Atoms‘𝐾)) → 𝑝𝐵)
21 simpl2 1193 . . . . . . . . . . . . . . . 16 (((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ 𝑝 ∈ (Atoms‘𝐾)) → 𝑋𝐵)
22 simpl3 1194 . . . . . . . . . . . . . . . 16 (((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ 𝑝 ∈ (Atoms‘𝐾)) → 𝑌𝐵)
232, 11, 3latlem12 18476 . . . . . . . . . . . . . . . 16 ((𝐾 ∈ Lat ∧ (𝑝𝐵𝑋𝐵𝑌𝐵)) → ((𝑝(le‘𝐾)𝑋𝑝(le‘𝐾)𝑌) ↔ 𝑝(le‘𝐾)(𝑋 𝑌)))
2418, 20, 21, 22, 23syl13anc 1374 . . . . . . . . . . . . . . 15 (((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ 𝑝 ∈ (Atoms‘𝐾)) → ((𝑝(le‘𝐾)𝑋𝑝(le‘𝐾)𝑌) ↔ 𝑝(le‘𝐾)(𝑋 𝑌)))
2524biimpd 229 . . . . . . . . . . . . . 14 (((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ 𝑝 ∈ (Atoms‘𝐾)) → ((𝑝(le‘𝐾)𝑋𝑝(le‘𝐾)𝑌) → 𝑝(le‘𝐾)(𝑋 𝑌)))
2625expcomd 416 . . . . . . . . . . . . 13 (((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ 𝑝 ∈ (Atoms‘𝐾)) → (𝑝(le‘𝐾)𝑌 → (𝑝(le‘𝐾)𝑋𝑝(le‘𝐾)(𝑋 𝑌))))
27 con3 153 . . . . . . . . . . . . 13 ((𝑝(le‘𝐾)𝑋𝑝(le‘𝐾)(𝑋 𝑌)) → (¬ 𝑝(le‘𝐾)(𝑋 𝑌) → ¬ 𝑝(le‘𝐾)𝑋))
2826, 27syl6 35 . . . . . . . . . . . 12 (((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ 𝑝 ∈ (Atoms‘𝐾)) → (𝑝(le‘𝐾)𝑌 → (¬ 𝑝(le‘𝐾)(𝑋 𝑌) → ¬ 𝑝(le‘𝐾)𝑋)))
2928com23 86 . . . . . . . . . . 11 (((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ 𝑝 ∈ (Atoms‘𝐾)) → (¬ 𝑝(le‘𝐾)(𝑋 𝑌) → (𝑝(le‘𝐾)𝑌 → ¬ 𝑝(le‘𝐾)𝑋)))
3029a1d 25 . . . . . . . . . 10 (((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ 𝑝 ∈ (Atoms‘𝐾)) → ((𝑋 𝑌)𝐶𝑌 → (¬ 𝑝(le‘𝐾)(𝑋 𝑌) → (𝑝(le‘𝐾)𝑌 → ¬ 𝑝(le‘𝐾)𝑋))))
3130imp4d 424 . . . . . . . . 9 (((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ 𝑝 ∈ (Atoms‘𝐾)) → (((𝑋 𝑌)𝐶𝑌 ∧ (¬ 𝑝(le‘𝐾)(𝑋 𝑌) ∧ 𝑝(le‘𝐾)𝑌)) → ¬ 𝑝(le‘𝐾)𝑋))
32 simpr 484 . . . . . . . . . 10 (((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ 𝑝 ∈ (Atoms‘𝐾)) → 𝑝 ∈ (Atoms‘𝐾))
33 cvrexch.j . . . . . . . . . . 11 = (join‘𝐾)
342, 11, 33, 7, 12cvr1 39429 . . . . . . . . . 10 ((𝐾 ∈ HL ∧ 𝑋𝐵𝑝 ∈ (Atoms‘𝐾)) → (¬ 𝑝(le‘𝐾)𝑋𝑋𝐶(𝑋 𝑝)))
3517, 21, 32, 34syl3anc 1373 . . . . . . . . 9 (((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ 𝑝 ∈ (Atoms‘𝐾)) → (¬ 𝑝(le‘𝐾)𝑋𝑋𝐶(𝑋 𝑝)))
3631, 35sylibd 239 . . . . . . . 8 (((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ 𝑝 ∈ (Atoms‘𝐾)) → (((𝑋 𝑌)𝐶𝑌 ∧ (¬ 𝑝(le‘𝐾)(𝑋 𝑌) ∧ 𝑝(le‘𝐾)𝑌)) → 𝑋𝐶(𝑋 𝑝)))
3736imp 406 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ 𝑝 ∈ (Atoms‘𝐾)) ∧ ((𝑋 𝑌)𝐶𝑌 ∧ (¬ 𝑝(le‘𝐾)(𝑋 𝑌) ∧ 𝑝(le‘𝐾)𝑌))) → 𝑋𝐶(𝑋 𝑝))
38 simpl1 1192 . . . . . . . . . . . . 13 (((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ 𝑝𝐵) → 𝐾 ∈ HL)
3938hllatd 39382 . . . . . . . . . . . 12 (((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ 𝑝𝐵) → 𝐾 ∈ Lat)
40 simpl2 1193 . . . . . . . . . . . 12 (((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ 𝑝𝐵) → 𝑋𝐵)
41 simpl3 1194 . . . . . . . . . . . . 13 (((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ 𝑝𝐵) → 𝑌𝐵)
4239, 40, 41, 4syl3anc 1373 . . . . . . . . . . . 12 (((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ 𝑝𝐵) → (𝑋 𝑌) ∈ 𝐵)
43 simpr 484 . . . . . . . . . . . 12 (((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ 𝑝𝐵) → 𝑝𝐵)
442, 33latjass 18493 . . . . . . . . . . . 12 ((𝐾 ∈ Lat ∧ (𝑋𝐵 ∧ (𝑋 𝑌) ∈ 𝐵𝑝𝐵)) → ((𝑋 (𝑋 𝑌)) 𝑝) = (𝑋 ((𝑋 𝑌) 𝑝)))
4539, 40, 42, 43, 44syl13anc 1374 . . . . . . . . . . 11 (((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ 𝑝𝐵) → ((𝑋 (𝑋 𝑌)) 𝑝) = (𝑋 ((𝑋 𝑌) 𝑝)))
462, 33, 3latabs1 18485 . . . . . . . . . . . . . 14 ((𝐾 ∈ Lat ∧ 𝑋𝐵𝑌𝐵) → (𝑋 (𝑋 𝑌)) = 𝑋)
471, 46syl3an1 1163 . . . . . . . . . . . . 13 ((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) → (𝑋 (𝑋 𝑌)) = 𝑋)
4847adantr 480 . . . . . . . . . . . 12 (((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ 𝑝𝐵) → (𝑋 (𝑋 𝑌)) = 𝑋)
4948oveq1d 7420 . . . . . . . . . . 11 (((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ 𝑝𝐵) → ((𝑋 (𝑋 𝑌)) 𝑝) = (𝑋 𝑝))
5045, 49eqtr3d 2772 . . . . . . . . . 10 (((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ 𝑝𝐵) → (𝑋 ((𝑋 𝑌) 𝑝)) = (𝑋 𝑝))
5150adantr 480 . . . . . . . . 9 ((((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ 𝑝𝐵) ∧ ((𝑋 𝑌)𝐶𝑌 ∧ (¬ 𝑝(le‘𝐾)(𝑋 𝑌) ∧ 𝑝(le‘𝐾)𝑌))) → (𝑋 ((𝑋 𝑌) 𝑝)) = (𝑋 𝑝))
522, 11, 6, 33latnle 18483 . . . . . . . . . . . . . . 15 ((𝐾 ∈ Lat ∧ (𝑋 𝑌) ∈ 𝐵𝑝𝐵) → (¬ 𝑝(le‘𝐾)(𝑋 𝑌) ↔ (𝑋 𝑌)(lt‘𝐾)((𝑋 𝑌) 𝑝)))
5339, 42, 43, 52syl3anc 1373 . . . . . . . . . . . . . 14 (((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ 𝑝𝐵) → (¬ 𝑝(le‘𝐾)(𝑋 𝑌) ↔ (𝑋 𝑌)(lt‘𝐾)((𝑋 𝑌) 𝑝)))
542, 11, 3latmle2 18475 . . . . . . . . . . . . . . . . 17 ((𝐾 ∈ Lat ∧ 𝑋𝐵𝑌𝐵) → (𝑋 𝑌)(le‘𝐾)𝑌)
5539, 40, 41, 54syl3anc 1373 . . . . . . . . . . . . . . . 16 (((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ 𝑝𝐵) → (𝑋 𝑌)(le‘𝐾)𝑌)
5655biantrurd 532 . . . . . . . . . . . . . . 15 (((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ 𝑝𝐵) → (𝑝(le‘𝐾)𝑌 ↔ ((𝑋 𝑌)(le‘𝐾)𝑌𝑝(le‘𝐾)𝑌)))
572, 11, 33latjle12 18460 . . . . . . . . . . . . . . . 16 ((𝐾 ∈ Lat ∧ ((𝑋 𝑌) ∈ 𝐵𝑝𝐵𝑌𝐵)) → (((𝑋 𝑌)(le‘𝐾)𝑌𝑝(le‘𝐾)𝑌) ↔ ((𝑋 𝑌) 𝑝)(le‘𝐾)𝑌))
5839, 42, 43, 41, 57syl13anc 1374 . . . . . . . . . . . . . . 15 (((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ 𝑝𝐵) → (((𝑋 𝑌)(le‘𝐾)𝑌𝑝(le‘𝐾)𝑌) ↔ ((𝑋 𝑌) 𝑝)(le‘𝐾)𝑌))
5956, 58bitrd 279 . . . . . . . . . . . . . 14 (((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ 𝑝𝐵) → (𝑝(le‘𝐾)𝑌 ↔ ((𝑋 𝑌) 𝑝)(le‘𝐾)𝑌))
6053, 59anbi12d 632 . . . . . . . . . . . . 13 (((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ 𝑝𝐵) → ((¬ 𝑝(le‘𝐾)(𝑋 𝑌) ∧ 𝑝(le‘𝐾)𝑌) ↔ ((𝑋 𝑌)(lt‘𝐾)((𝑋 𝑌) 𝑝) ∧ ((𝑋 𝑌) 𝑝)(le‘𝐾)𝑌)))
61 hlpos 39384 . . . . . . . . . . . . . . . 16 (𝐾 ∈ HL → 𝐾 ∈ Poset)
6238, 61syl 17 . . . . . . . . . . . . . . 15 (((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ 𝑝𝐵) → 𝐾 ∈ Poset)
632, 33latjcl 18449 . . . . . . . . . . . . . . . . 17 ((𝐾 ∈ Lat ∧ (𝑋 𝑌) ∈ 𝐵𝑝𝐵) → ((𝑋 𝑌) 𝑝) ∈ 𝐵)
6439, 42, 43, 63syl3anc 1373 . . . . . . . . . . . . . . . 16 (((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ 𝑝𝐵) → ((𝑋 𝑌) 𝑝) ∈ 𝐵)
6542, 41, 643jca 1128 . . . . . . . . . . . . . . 15 (((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ 𝑝𝐵) → ((𝑋 𝑌) ∈ 𝐵𝑌𝐵 ∧ ((𝑋 𝑌) 𝑝) ∈ 𝐵))
662, 11, 6, 7cvrnbtwn2 39293 . . . . . . . . . . . . . . . . 17 ((𝐾 ∈ Poset ∧ ((𝑋 𝑌) ∈ 𝐵𝑌𝐵 ∧ ((𝑋 𝑌) 𝑝) ∈ 𝐵) ∧ (𝑋 𝑌)𝐶𝑌) → (((𝑋 𝑌)(lt‘𝐾)((𝑋 𝑌) 𝑝) ∧ ((𝑋 𝑌) 𝑝)(le‘𝐾)𝑌) ↔ ((𝑋 𝑌) 𝑝) = 𝑌))
6766biimpd 229 . . . . . . . . . . . . . . . 16 ((𝐾 ∈ Poset ∧ ((𝑋 𝑌) ∈ 𝐵𝑌𝐵 ∧ ((𝑋 𝑌) 𝑝) ∈ 𝐵) ∧ (𝑋 𝑌)𝐶𝑌) → (((𝑋 𝑌)(lt‘𝐾)((𝑋 𝑌) 𝑝) ∧ ((𝑋 𝑌) 𝑝)(le‘𝐾)𝑌) → ((𝑋 𝑌) 𝑝) = 𝑌))
68673exp 1119 . . . . . . . . . . . . . . 15 (𝐾 ∈ Poset → (((𝑋 𝑌) ∈ 𝐵𝑌𝐵 ∧ ((𝑋 𝑌) 𝑝) ∈ 𝐵) → ((𝑋 𝑌)𝐶𝑌 → (((𝑋 𝑌)(lt‘𝐾)((𝑋 𝑌) 𝑝) ∧ ((𝑋 𝑌) 𝑝)(le‘𝐾)𝑌) → ((𝑋 𝑌) 𝑝) = 𝑌))))
6962, 65, 68sylc 65 . . . . . . . . . . . . . 14 (((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ 𝑝𝐵) → ((𝑋 𝑌)𝐶𝑌 → (((𝑋 𝑌)(lt‘𝐾)((𝑋 𝑌) 𝑝) ∧ ((𝑋 𝑌) 𝑝)(le‘𝐾)𝑌) → ((𝑋 𝑌) 𝑝) = 𝑌)))
7069com23 86 . . . . . . . . . . . . 13 (((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ 𝑝𝐵) → (((𝑋 𝑌)(lt‘𝐾)((𝑋 𝑌) 𝑝) ∧ ((𝑋 𝑌) 𝑝)(le‘𝐾)𝑌) → ((𝑋 𝑌)𝐶𝑌 → ((𝑋 𝑌) 𝑝) = 𝑌)))
7160, 70sylbid 240 . . . . . . . . . . . 12 (((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ 𝑝𝐵) → ((¬ 𝑝(le‘𝐾)(𝑋 𝑌) ∧ 𝑝(le‘𝐾)𝑌) → ((𝑋 𝑌)𝐶𝑌 → ((𝑋 𝑌) 𝑝) = 𝑌)))
7271com23 86 . . . . . . . . . . 11 (((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ 𝑝𝐵) → ((𝑋 𝑌)𝐶𝑌 → ((¬ 𝑝(le‘𝐾)(𝑋 𝑌) ∧ 𝑝(le‘𝐾)𝑌) → ((𝑋 𝑌) 𝑝) = 𝑌)))
7372imp32 418 . . . . . . . . . 10 ((((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ 𝑝𝐵) ∧ ((𝑋 𝑌)𝐶𝑌 ∧ (¬ 𝑝(le‘𝐾)(𝑋 𝑌) ∧ 𝑝(le‘𝐾)𝑌))) → ((𝑋 𝑌) 𝑝) = 𝑌)
7473oveq2d 7421 . . . . . . . . 9 ((((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ 𝑝𝐵) ∧ ((𝑋 𝑌)𝐶𝑌 ∧ (¬ 𝑝(le‘𝐾)(𝑋 𝑌) ∧ 𝑝(le‘𝐾)𝑌))) → (𝑋 ((𝑋 𝑌) 𝑝)) = (𝑋 𝑌))
7551, 74eqtr3d 2772 . . . . . . . 8 ((((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ 𝑝𝐵) ∧ ((𝑋 𝑌)𝐶𝑌 ∧ (¬ 𝑝(le‘𝐾)(𝑋 𝑌) ∧ 𝑝(le‘𝐾)𝑌))) → (𝑋 𝑝) = (𝑋 𝑌))
7619, 75sylanl2 681 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ 𝑝 ∈ (Atoms‘𝐾)) ∧ ((𝑋 𝑌)𝐶𝑌 ∧ (¬ 𝑝(le‘𝐾)(𝑋 𝑌) ∧ 𝑝(le‘𝐾)𝑌))) → (𝑋 𝑝) = (𝑋 𝑌))
7737, 76breqtrd 5145 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ 𝑝 ∈ (Atoms‘𝐾)) ∧ ((𝑋 𝑌)𝐶𝑌 ∧ (¬ 𝑝(le‘𝐾)(𝑋 𝑌) ∧ 𝑝(le‘𝐾)𝑌))) → 𝑋𝐶(𝑋 𝑌))
7877expr 456 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ 𝑝 ∈ (Atoms‘𝐾)) ∧ (𝑋 𝑌)𝐶𝑌) → ((¬ 𝑝(le‘𝐾)(𝑋 𝑌) ∧ 𝑝(le‘𝐾)𝑌) → 𝑋𝐶(𝑋 𝑌)))
7978an32s 652 . . . 4 ((((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ (𝑋 𝑌)𝐶𝑌) ∧ 𝑝 ∈ (Atoms‘𝐾)) → ((¬ 𝑝(le‘𝐾)(𝑋 𝑌) ∧ 𝑝(le‘𝐾)𝑌) → 𝑋𝐶(𝑋 𝑌)))
8079rexlimdva 3141 . . 3 (((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ (𝑋 𝑌)𝐶𝑌) → (∃𝑝 ∈ (Atoms‘𝐾)(¬ 𝑝(le‘𝐾)(𝑋 𝑌) ∧ 𝑝(le‘𝐾)𝑌) → 𝑋𝐶(𝑋 𝑌)))
8116, 80mpd 15 . 2 (((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ (𝑋 𝑌)𝐶𝑌) → 𝑋𝐶(𝑋 𝑌))
8281ex 412 1 ((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) → ((𝑋 𝑌)𝐶𝑌𝑋𝐶(𝑋 𝑌)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  w3a 1086   = wceq 1540  wcel 2108  wrex 3060   class class class wbr 5119  cfv 6531  (class class class)co 7405  Basecbs 17228  lecple 17278  Posetcpo 18319  ltcplt 18320  joincjn 18323  meetcmee 18324  Latclat 18441  ccvr 39280  Atomscatm 39281  HLchlt 39368
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2707  ax-rep 5249  ax-sep 5266  ax-nul 5276  ax-pow 5335  ax-pr 5402  ax-un 7729
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2727  df-clel 2809  df-nfc 2885  df-ne 2933  df-ral 3052  df-rex 3061  df-rmo 3359  df-reu 3360  df-rab 3416  df-v 3461  df-sbc 3766  df-csb 3875  df-dif 3929  df-un 3931  df-in 3933  df-ss 3943  df-nul 4309  df-if 4501  df-pw 4577  df-sn 4602  df-pr 4604  df-op 4608  df-uni 4884  df-iun 4969  df-br 5120  df-opab 5182  df-mpt 5202  df-id 5548  df-xp 5660  df-rel 5661  df-cnv 5662  df-co 5663  df-dm 5664  df-rn 5665  df-res 5666  df-ima 5667  df-iota 6484  df-fun 6533  df-fn 6534  df-f 6535  df-f1 6536  df-fo 6537  df-f1o 6538  df-fv 6539  df-riota 7362  df-ov 7408  df-oprab 7409  df-proset 18306  df-poset 18325  df-plt 18340  df-lub 18356  df-glb 18357  df-join 18358  df-meet 18359  df-p0 18435  df-lat 18442  df-clat 18509  df-oposet 39194  df-ol 39196  df-oml 39197  df-covers 39284  df-ats 39285  df-atl 39316  df-cvlat 39340  df-hlat 39369
This theorem is referenced by:  cvrexch  39439
  Copyright terms: Public domain W3C validator