Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cvrexchlem Structured version   Visualization version   GIF version

Theorem cvrexchlem 39402
Description: Lemma for cvrexch 39403. (cvexchlem 32397 analog.) (Contributed by NM, 18-Nov-2011.)
Hypotheses
Ref Expression
cvrexch.b 𝐵 = (Base‘𝐾)
cvrexch.j = (join‘𝐾)
cvrexch.m = (meet‘𝐾)
cvrexch.c 𝐶 = ( ⋖ ‘𝐾)
Assertion
Ref Expression
cvrexchlem ((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) → ((𝑋 𝑌)𝐶𝑌𝑋𝐶(𝑋 𝑌)))

Proof of Theorem cvrexchlem
Dummy variable 𝑝 is distinct from all other variables.
StepHypRef Expression
1 hllat 39345 . . . . . . 7 (𝐾 ∈ HL → 𝐾 ∈ Lat)
2 cvrexch.b . . . . . . . 8 𝐵 = (Base‘𝐾)
3 cvrexch.m . . . . . . . 8 = (meet‘𝐾)
42, 3latmcl 18498 . . . . . . 7 ((𝐾 ∈ Lat ∧ 𝑋𝐵𝑌𝐵) → (𝑋 𝑌) ∈ 𝐵)
51, 4syl3an1 1162 . . . . . 6 ((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) → (𝑋 𝑌) ∈ 𝐵)
6 eqid 2735 . . . . . . . 8 (lt‘𝐾) = (lt‘𝐾)
7 cvrexch.c . . . . . . . 8 𝐶 = ( ⋖ ‘𝐾)
82, 6, 7cvrlt 39252 . . . . . . 7 (((𝐾 ∈ HL ∧ (𝑋 𝑌) ∈ 𝐵𝑌𝐵) ∧ (𝑋 𝑌)𝐶𝑌) → (𝑋 𝑌)(lt‘𝐾)𝑌)
98ex 412 . . . . . 6 ((𝐾 ∈ HL ∧ (𝑋 𝑌) ∈ 𝐵𝑌𝐵) → ((𝑋 𝑌)𝐶𝑌 → (𝑋 𝑌)(lt‘𝐾)𝑌))
105, 9syld3an2 1410 . . . . 5 ((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) → ((𝑋 𝑌)𝐶𝑌 → (𝑋 𝑌)(lt‘𝐾)𝑌))
11 eqid 2735 . . . . . . 7 (le‘𝐾) = (le‘𝐾)
12 eqid 2735 . . . . . . 7 (Atoms‘𝐾) = (Atoms‘𝐾)
132, 11, 6, 12hlrelat1 39383 . . . . . 6 ((𝐾 ∈ HL ∧ (𝑋 𝑌) ∈ 𝐵𝑌𝐵) → ((𝑋 𝑌)(lt‘𝐾)𝑌 → ∃𝑝 ∈ (Atoms‘𝐾)(¬ 𝑝(le‘𝐾)(𝑋 𝑌) ∧ 𝑝(le‘𝐾)𝑌)))
145, 13syld3an2 1410 . . . . 5 ((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) → ((𝑋 𝑌)(lt‘𝐾)𝑌 → ∃𝑝 ∈ (Atoms‘𝐾)(¬ 𝑝(le‘𝐾)(𝑋 𝑌) ∧ 𝑝(le‘𝐾)𝑌)))
1510, 14syld 47 . . . 4 ((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) → ((𝑋 𝑌)𝐶𝑌 → ∃𝑝 ∈ (Atoms‘𝐾)(¬ 𝑝(le‘𝐾)(𝑋 𝑌) ∧ 𝑝(le‘𝐾)𝑌)))
1615imp 406 . . 3 (((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ (𝑋 𝑌)𝐶𝑌) → ∃𝑝 ∈ (Atoms‘𝐾)(¬ 𝑝(le‘𝐾)(𝑋 𝑌) ∧ 𝑝(le‘𝐾)𝑌))
17 simpl1 1190 . . . . . . . . . . . . . . . . 17 (((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ 𝑝 ∈ (Atoms‘𝐾)) → 𝐾 ∈ HL)
1817hllatd 39346 . . . . . . . . . . . . . . . 16 (((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ 𝑝 ∈ (Atoms‘𝐾)) → 𝐾 ∈ Lat)
192, 12atbase 39271 . . . . . . . . . . . . . . . . 17 (𝑝 ∈ (Atoms‘𝐾) → 𝑝𝐵)
2019adantl 481 . . . . . . . . . . . . . . . 16 (((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ 𝑝 ∈ (Atoms‘𝐾)) → 𝑝𝐵)
21 simpl2 1191 . . . . . . . . . . . . . . . 16 (((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ 𝑝 ∈ (Atoms‘𝐾)) → 𝑋𝐵)
22 simpl3 1192 . . . . . . . . . . . . . . . 16 (((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ 𝑝 ∈ (Atoms‘𝐾)) → 𝑌𝐵)
232, 11, 3latlem12 18524 . . . . . . . . . . . . . . . 16 ((𝐾 ∈ Lat ∧ (𝑝𝐵𝑋𝐵𝑌𝐵)) → ((𝑝(le‘𝐾)𝑋𝑝(le‘𝐾)𝑌) ↔ 𝑝(le‘𝐾)(𝑋 𝑌)))
2418, 20, 21, 22, 23syl13anc 1371 . . . . . . . . . . . . . . 15 (((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ 𝑝 ∈ (Atoms‘𝐾)) → ((𝑝(le‘𝐾)𝑋𝑝(le‘𝐾)𝑌) ↔ 𝑝(le‘𝐾)(𝑋 𝑌)))
2524biimpd 229 . . . . . . . . . . . . . 14 (((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ 𝑝 ∈ (Atoms‘𝐾)) → ((𝑝(le‘𝐾)𝑋𝑝(le‘𝐾)𝑌) → 𝑝(le‘𝐾)(𝑋 𝑌)))
2625expcomd 416 . . . . . . . . . . . . 13 (((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ 𝑝 ∈ (Atoms‘𝐾)) → (𝑝(le‘𝐾)𝑌 → (𝑝(le‘𝐾)𝑋𝑝(le‘𝐾)(𝑋 𝑌))))
27 con3 153 . . . . . . . . . . . . 13 ((𝑝(le‘𝐾)𝑋𝑝(le‘𝐾)(𝑋 𝑌)) → (¬ 𝑝(le‘𝐾)(𝑋 𝑌) → ¬ 𝑝(le‘𝐾)𝑋))
2826, 27syl6 35 . . . . . . . . . . . 12 (((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ 𝑝 ∈ (Atoms‘𝐾)) → (𝑝(le‘𝐾)𝑌 → (¬ 𝑝(le‘𝐾)(𝑋 𝑌) → ¬ 𝑝(le‘𝐾)𝑋)))
2928com23 86 . . . . . . . . . . 11 (((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ 𝑝 ∈ (Atoms‘𝐾)) → (¬ 𝑝(le‘𝐾)(𝑋 𝑌) → (𝑝(le‘𝐾)𝑌 → ¬ 𝑝(le‘𝐾)𝑋)))
3029a1d 25 . . . . . . . . . 10 (((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ 𝑝 ∈ (Atoms‘𝐾)) → ((𝑋 𝑌)𝐶𝑌 → (¬ 𝑝(le‘𝐾)(𝑋 𝑌) → (𝑝(le‘𝐾)𝑌 → ¬ 𝑝(le‘𝐾)𝑋))))
3130imp4d 424 . . . . . . . . 9 (((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ 𝑝 ∈ (Atoms‘𝐾)) → (((𝑋 𝑌)𝐶𝑌 ∧ (¬ 𝑝(le‘𝐾)(𝑋 𝑌) ∧ 𝑝(le‘𝐾)𝑌)) → ¬ 𝑝(le‘𝐾)𝑋))
32 simpr 484 . . . . . . . . . 10 (((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ 𝑝 ∈ (Atoms‘𝐾)) → 𝑝 ∈ (Atoms‘𝐾))
33 cvrexch.j . . . . . . . . . . 11 = (join‘𝐾)
342, 11, 33, 7, 12cvr1 39393 . . . . . . . . . 10 ((𝐾 ∈ HL ∧ 𝑋𝐵𝑝 ∈ (Atoms‘𝐾)) → (¬ 𝑝(le‘𝐾)𝑋𝑋𝐶(𝑋 𝑝)))
3517, 21, 32, 34syl3anc 1370 . . . . . . . . 9 (((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ 𝑝 ∈ (Atoms‘𝐾)) → (¬ 𝑝(le‘𝐾)𝑋𝑋𝐶(𝑋 𝑝)))
3631, 35sylibd 239 . . . . . . . 8 (((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ 𝑝 ∈ (Atoms‘𝐾)) → (((𝑋 𝑌)𝐶𝑌 ∧ (¬ 𝑝(le‘𝐾)(𝑋 𝑌) ∧ 𝑝(le‘𝐾)𝑌)) → 𝑋𝐶(𝑋 𝑝)))
3736imp 406 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ 𝑝 ∈ (Atoms‘𝐾)) ∧ ((𝑋 𝑌)𝐶𝑌 ∧ (¬ 𝑝(le‘𝐾)(𝑋 𝑌) ∧ 𝑝(le‘𝐾)𝑌))) → 𝑋𝐶(𝑋 𝑝))
38 simpl1 1190 . . . . . . . . . . . . 13 (((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ 𝑝𝐵) → 𝐾 ∈ HL)
3938hllatd 39346 . . . . . . . . . . . 12 (((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ 𝑝𝐵) → 𝐾 ∈ Lat)
40 simpl2 1191 . . . . . . . . . . . 12 (((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ 𝑝𝐵) → 𝑋𝐵)
41 simpl3 1192 . . . . . . . . . . . . 13 (((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ 𝑝𝐵) → 𝑌𝐵)
4239, 40, 41, 4syl3anc 1370 . . . . . . . . . . . 12 (((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ 𝑝𝐵) → (𝑋 𝑌) ∈ 𝐵)
43 simpr 484 . . . . . . . . . . . 12 (((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ 𝑝𝐵) → 𝑝𝐵)
442, 33latjass 18541 . . . . . . . . . . . 12 ((𝐾 ∈ Lat ∧ (𝑋𝐵 ∧ (𝑋 𝑌) ∈ 𝐵𝑝𝐵)) → ((𝑋 (𝑋 𝑌)) 𝑝) = (𝑋 ((𝑋 𝑌) 𝑝)))
4539, 40, 42, 43, 44syl13anc 1371 . . . . . . . . . . 11 (((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ 𝑝𝐵) → ((𝑋 (𝑋 𝑌)) 𝑝) = (𝑋 ((𝑋 𝑌) 𝑝)))
462, 33, 3latabs1 18533 . . . . . . . . . . . . . 14 ((𝐾 ∈ Lat ∧ 𝑋𝐵𝑌𝐵) → (𝑋 (𝑋 𝑌)) = 𝑋)
471, 46syl3an1 1162 . . . . . . . . . . . . 13 ((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) → (𝑋 (𝑋 𝑌)) = 𝑋)
4847adantr 480 . . . . . . . . . . . 12 (((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ 𝑝𝐵) → (𝑋 (𝑋 𝑌)) = 𝑋)
4948oveq1d 7446 . . . . . . . . . . 11 (((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ 𝑝𝐵) → ((𝑋 (𝑋 𝑌)) 𝑝) = (𝑋 𝑝))
5045, 49eqtr3d 2777 . . . . . . . . . 10 (((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ 𝑝𝐵) → (𝑋 ((𝑋 𝑌) 𝑝)) = (𝑋 𝑝))
5150adantr 480 . . . . . . . . 9 ((((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ 𝑝𝐵) ∧ ((𝑋 𝑌)𝐶𝑌 ∧ (¬ 𝑝(le‘𝐾)(𝑋 𝑌) ∧ 𝑝(le‘𝐾)𝑌))) → (𝑋 ((𝑋 𝑌) 𝑝)) = (𝑋 𝑝))
522, 11, 6, 33latnle 18531 . . . . . . . . . . . . . . 15 ((𝐾 ∈ Lat ∧ (𝑋 𝑌) ∈ 𝐵𝑝𝐵) → (¬ 𝑝(le‘𝐾)(𝑋 𝑌) ↔ (𝑋 𝑌)(lt‘𝐾)((𝑋 𝑌) 𝑝)))
5339, 42, 43, 52syl3anc 1370 . . . . . . . . . . . . . 14 (((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ 𝑝𝐵) → (¬ 𝑝(le‘𝐾)(𝑋 𝑌) ↔ (𝑋 𝑌)(lt‘𝐾)((𝑋 𝑌) 𝑝)))
542, 11, 3latmle2 18523 . . . . . . . . . . . . . . . . 17 ((𝐾 ∈ Lat ∧ 𝑋𝐵𝑌𝐵) → (𝑋 𝑌)(le‘𝐾)𝑌)
5539, 40, 41, 54syl3anc 1370 . . . . . . . . . . . . . . . 16 (((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ 𝑝𝐵) → (𝑋 𝑌)(le‘𝐾)𝑌)
5655biantrurd 532 . . . . . . . . . . . . . . 15 (((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ 𝑝𝐵) → (𝑝(le‘𝐾)𝑌 ↔ ((𝑋 𝑌)(le‘𝐾)𝑌𝑝(le‘𝐾)𝑌)))
572, 11, 33latjle12 18508 . . . . . . . . . . . . . . . 16 ((𝐾 ∈ Lat ∧ ((𝑋 𝑌) ∈ 𝐵𝑝𝐵𝑌𝐵)) → (((𝑋 𝑌)(le‘𝐾)𝑌𝑝(le‘𝐾)𝑌) ↔ ((𝑋 𝑌) 𝑝)(le‘𝐾)𝑌))
5839, 42, 43, 41, 57syl13anc 1371 . . . . . . . . . . . . . . 15 (((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ 𝑝𝐵) → (((𝑋 𝑌)(le‘𝐾)𝑌𝑝(le‘𝐾)𝑌) ↔ ((𝑋 𝑌) 𝑝)(le‘𝐾)𝑌))
5956, 58bitrd 279 . . . . . . . . . . . . . 14 (((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ 𝑝𝐵) → (𝑝(le‘𝐾)𝑌 ↔ ((𝑋 𝑌) 𝑝)(le‘𝐾)𝑌))
6053, 59anbi12d 632 . . . . . . . . . . . . 13 (((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ 𝑝𝐵) → ((¬ 𝑝(le‘𝐾)(𝑋 𝑌) ∧ 𝑝(le‘𝐾)𝑌) ↔ ((𝑋 𝑌)(lt‘𝐾)((𝑋 𝑌) 𝑝) ∧ ((𝑋 𝑌) 𝑝)(le‘𝐾)𝑌)))
61 hlpos 39348 . . . . . . . . . . . . . . . 16 (𝐾 ∈ HL → 𝐾 ∈ Poset)
6238, 61syl 17 . . . . . . . . . . . . . . 15 (((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ 𝑝𝐵) → 𝐾 ∈ Poset)
632, 33latjcl 18497 . . . . . . . . . . . . . . . . 17 ((𝐾 ∈ Lat ∧ (𝑋 𝑌) ∈ 𝐵𝑝𝐵) → ((𝑋 𝑌) 𝑝) ∈ 𝐵)
6439, 42, 43, 63syl3anc 1370 . . . . . . . . . . . . . . . 16 (((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ 𝑝𝐵) → ((𝑋 𝑌) 𝑝) ∈ 𝐵)
6542, 41, 643jca 1127 . . . . . . . . . . . . . . 15 (((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ 𝑝𝐵) → ((𝑋 𝑌) ∈ 𝐵𝑌𝐵 ∧ ((𝑋 𝑌) 𝑝) ∈ 𝐵))
662, 11, 6, 7cvrnbtwn2 39257 . . . . . . . . . . . . . . . . 17 ((𝐾 ∈ Poset ∧ ((𝑋 𝑌) ∈ 𝐵𝑌𝐵 ∧ ((𝑋 𝑌) 𝑝) ∈ 𝐵) ∧ (𝑋 𝑌)𝐶𝑌) → (((𝑋 𝑌)(lt‘𝐾)((𝑋 𝑌) 𝑝) ∧ ((𝑋 𝑌) 𝑝)(le‘𝐾)𝑌) ↔ ((𝑋 𝑌) 𝑝) = 𝑌))
6766biimpd 229 . . . . . . . . . . . . . . . 16 ((𝐾 ∈ Poset ∧ ((𝑋 𝑌) ∈ 𝐵𝑌𝐵 ∧ ((𝑋 𝑌) 𝑝) ∈ 𝐵) ∧ (𝑋 𝑌)𝐶𝑌) → (((𝑋 𝑌)(lt‘𝐾)((𝑋 𝑌) 𝑝) ∧ ((𝑋 𝑌) 𝑝)(le‘𝐾)𝑌) → ((𝑋 𝑌) 𝑝) = 𝑌))
68673exp 1118 . . . . . . . . . . . . . . 15 (𝐾 ∈ Poset → (((𝑋 𝑌) ∈ 𝐵𝑌𝐵 ∧ ((𝑋 𝑌) 𝑝) ∈ 𝐵) → ((𝑋 𝑌)𝐶𝑌 → (((𝑋 𝑌)(lt‘𝐾)((𝑋 𝑌) 𝑝) ∧ ((𝑋 𝑌) 𝑝)(le‘𝐾)𝑌) → ((𝑋 𝑌) 𝑝) = 𝑌))))
6962, 65, 68sylc 65 . . . . . . . . . . . . . 14 (((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ 𝑝𝐵) → ((𝑋 𝑌)𝐶𝑌 → (((𝑋 𝑌)(lt‘𝐾)((𝑋 𝑌) 𝑝) ∧ ((𝑋 𝑌) 𝑝)(le‘𝐾)𝑌) → ((𝑋 𝑌) 𝑝) = 𝑌)))
7069com23 86 . . . . . . . . . . . . 13 (((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ 𝑝𝐵) → (((𝑋 𝑌)(lt‘𝐾)((𝑋 𝑌) 𝑝) ∧ ((𝑋 𝑌) 𝑝)(le‘𝐾)𝑌) → ((𝑋 𝑌)𝐶𝑌 → ((𝑋 𝑌) 𝑝) = 𝑌)))
7160, 70sylbid 240 . . . . . . . . . . . 12 (((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ 𝑝𝐵) → ((¬ 𝑝(le‘𝐾)(𝑋 𝑌) ∧ 𝑝(le‘𝐾)𝑌) → ((𝑋 𝑌)𝐶𝑌 → ((𝑋 𝑌) 𝑝) = 𝑌)))
7271com23 86 . . . . . . . . . . 11 (((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ 𝑝𝐵) → ((𝑋 𝑌)𝐶𝑌 → ((¬ 𝑝(le‘𝐾)(𝑋 𝑌) ∧ 𝑝(le‘𝐾)𝑌) → ((𝑋 𝑌) 𝑝) = 𝑌)))
7372imp32 418 . . . . . . . . . 10 ((((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ 𝑝𝐵) ∧ ((𝑋 𝑌)𝐶𝑌 ∧ (¬ 𝑝(le‘𝐾)(𝑋 𝑌) ∧ 𝑝(le‘𝐾)𝑌))) → ((𝑋 𝑌) 𝑝) = 𝑌)
7473oveq2d 7447 . . . . . . . . 9 ((((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ 𝑝𝐵) ∧ ((𝑋 𝑌)𝐶𝑌 ∧ (¬ 𝑝(le‘𝐾)(𝑋 𝑌) ∧ 𝑝(le‘𝐾)𝑌))) → (𝑋 ((𝑋 𝑌) 𝑝)) = (𝑋 𝑌))
7551, 74eqtr3d 2777 . . . . . . . 8 ((((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ 𝑝𝐵) ∧ ((𝑋 𝑌)𝐶𝑌 ∧ (¬ 𝑝(le‘𝐾)(𝑋 𝑌) ∧ 𝑝(le‘𝐾)𝑌))) → (𝑋 𝑝) = (𝑋 𝑌))
7619, 75sylanl2 681 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ 𝑝 ∈ (Atoms‘𝐾)) ∧ ((𝑋 𝑌)𝐶𝑌 ∧ (¬ 𝑝(le‘𝐾)(𝑋 𝑌) ∧ 𝑝(le‘𝐾)𝑌))) → (𝑋 𝑝) = (𝑋 𝑌))
7737, 76breqtrd 5174 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ 𝑝 ∈ (Atoms‘𝐾)) ∧ ((𝑋 𝑌)𝐶𝑌 ∧ (¬ 𝑝(le‘𝐾)(𝑋 𝑌) ∧ 𝑝(le‘𝐾)𝑌))) → 𝑋𝐶(𝑋 𝑌))
7877expr 456 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ 𝑝 ∈ (Atoms‘𝐾)) ∧ (𝑋 𝑌)𝐶𝑌) → ((¬ 𝑝(le‘𝐾)(𝑋 𝑌) ∧ 𝑝(le‘𝐾)𝑌) → 𝑋𝐶(𝑋 𝑌)))
7978an32s 652 . . . 4 ((((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ (𝑋 𝑌)𝐶𝑌) ∧ 𝑝 ∈ (Atoms‘𝐾)) → ((¬ 𝑝(le‘𝐾)(𝑋 𝑌) ∧ 𝑝(le‘𝐾)𝑌) → 𝑋𝐶(𝑋 𝑌)))
8079rexlimdva 3153 . . 3 (((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ (𝑋 𝑌)𝐶𝑌) → (∃𝑝 ∈ (Atoms‘𝐾)(¬ 𝑝(le‘𝐾)(𝑋 𝑌) ∧ 𝑝(le‘𝐾)𝑌) → 𝑋𝐶(𝑋 𝑌)))
8116, 80mpd 15 . 2 (((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ (𝑋 𝑌)𝐶𝑌) → 𝑋𝐶(𝑋 𝑌))
8281ex 412 1 ((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) → ((𝑋 𝑌)𝐶𝑌𝑋𝐶(𝑋 𝑌)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  w3a 1086   = wceq 1537  wcel 2106  wrex 3068   class class class wbr 5148  cfv 6563  (class class class)co 7431  Basecbs 17245  lecple 17305  Posetcpo 18365  ltcplt 18366  joincjn 18369  meetcmee 18370  Latclat 18489  ccvr 39244  Atomscatm 39245  HLchlt 39332
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-10 2139  ax-11 2155  ax-12 2175  ax-ext 2706  ax-rep 5285  ax-sep 5302  ax-nul 5312  ax-pow 5371  ax-pr 5438  ax-un 7754
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-nf 1781  df-sb 2063  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2727  df-clel 2814  df-nfc 2890  df-ne 2939  df-ral 3060  df-rex 3069  df-rmo 3378  df-reu 3379  df-rab 3434  df-v 3480  df-sbc 3792  df-csb 3909  df-dif 3966  df-un 3968  df-in 3970  df-ss 3980  df-nul 4340  df-if 4532  df-pw 4607  df-sn 4632  df-pr 4634  df-op 4638  df-uni 4913  df-iun 4998  df-br 5149  df-opab 5211  df-mpt 5232  df-id 5583  df-xp 5695  df-rel 5696  df-cnv 5697  df-co 5698  df-dm 5699  df-rn 5700  df-res 5701  df-ima 5702  df-iota 6516  df-fun 6565  df-fn 6566  df-f 6567  df-f1 6568  df-fo 6569  df-f1o 6570  df-fv 6571  df-riota 7388  df-ov 7434  df-oprab 7435  df-proset 18352  df-poset 18371  df-plt 18388  df-lub 18404  df-glb 18405  df-join 18406  df-meet 18407  df-p0 18483  df-lat 18490  df-clat 18557  df-oposet 39158  df-ol 39160  df-oml 39161  df-covers 39248  df-ats 39249  df-atl 39280  df-cvlat 39304  df-hlat 39333
This theorem is referenced by:  cvrexch  39403
  Copyright terms: Public domain W3C validator