Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cvrexchlem Structured version   Visualization version   GIF version

Theorem cvrexchlem 37882
Description: Lemma for cvrexch 37883. (cvexchlem 31310 analog.) (Contributed by NM, 18-Nov-2011.)
Hypotheses
Ref Expression
cvrexch.b 𝐵 = (Base‘𝐾)
cvrexch.j = (join‘𝐾)
cvrexch.m = (meet‘𝐾)
cvrexch.c 𝐶 = ( ⋖ ‘𝐾)
Assertion
Ref Expression
cvrexchlem ((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) → ((𝑋 𝑌)𝐶𝑌𝑋𝐶(𝑋 𝑌)))

Proof of Theorem cvrexchlem
Dummy variable 𝑝 is distinct from all other variables.
StepHypRef Expression
1 hllat 37825 . . . . . . 7 (𝐾 ∈ HL → 𝐾 ∈ Lat)
2 cvrexch.b . . . . . . . 8 𝐵 = (Base‘𝐾)
3 cvrexch.m . . . . . . . 8 = (meet‘𝐾)
42, 3latmcl 18329 . . . . . . 7 ((𝐾 ∈ Lat ∧ 𝑋𝐵𝑌𝐵) → (𝑋 𝑌) ∈ 𝐵)
51, 4syl3an1 1163 . . . . . 6 ((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) → (𝑋 𝑌) ∈ 𝐵)
6 eqid 2736 . . . . . . . 8 (lt‘𝐾) = (lt‘𝐾)
7 cvrexch.c . . . . . . . 8 𝐶 = ( ⋖ ‘𝐾)
82, 6, 7cvrlt 37732 . . . . . . 7 (((𝐾 ∈ HL ∧ (𝑋 𝑌) ∈ 𝐵𝑌𝐵) ∧ (𝑋 𝑌)𝐶𝑌) → (𝑋 𝑌)(lt‘𝐾)𝑌)
98ex 413 . . . . . 6 ((𝐾 ∈ HL ∧ (𝑋 𝑌) ∈ 𝐵𝑌𝐵) → ((𝑋 𝑌)𝐶𝑌 → (𝑋 𝑌)(lt‘𝐾)𝑌))
105, 9syld3an2 1411 . . . . 5 ((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) → ((𝑋 𝑌)𝐶𝑌 → (𝑋 𝑌)(lt‘𝐾)𝑌))
11 eqid 2736 . . . . . . 7 (le‘𝐾) = (le‘𝐾)
12 eqid 2736 . . . . . . 7 (Atoms‘𝐾) = (Atoms‘𝐾)
132, 11, 6, 12hlrelat1 37863 . . . . . 6 ((𝐾 ∈ HL ∧ (𝑋 𝑌) ∈ 𝐵𝑌𝐵) → ((𝑋 𝑌)(lt‘𝐾)𝑌 → ∃𝑝 ∈ (Atoms‘𝐾)(¬ 𝑝(le‘𝐾)(𝑋 𝑌) ∧ 𝑝(le‘𝐾)𝑌)))
145, 13syld3an2 1411 . . . . 5 ((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) → ((𝑋 𝑌)(lt‘𝐾)𝑌 → ∃𝑝 ∈ (Atoms‘𝐾)(¬ 𝑝(le‘𝐾)(𝑋 𝑌) ∧ 𝑝(le‘𝐾)𝑌)))
1510, 14syld 47 . . . 4 ((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) → ((𝑋 𝑌)𝐶𝑌 → ∃𝑝 ∈ (Atoms‘𝐾)(¬ 𝑝(le‘𝐾)(𝑋 𝑌) ∧ 𝑝(le‘𝐾)𝑌)))
1615imp 407 . . 3 (((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ (𝑋 𝑌)𝐶𝑌) → ∃𝑝 ∈ (Atoms‘𝐾)(¬ 𝑝(le‘𝐾)(𝑋 𝑌) ∧ 𝑝(le‘𝐾)𝑌))
17 simpl1 1191 . . . . . . . . . . . . . . . . 17 (((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ 𝑝 ∈ (Atoms‘𝐾)) → 𝐾 ∈ HL)
1817hllatd 37826 . . . . . . . . . . . . . . . 16 (((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ 𝑝 ∈ (Atoms‘𝐾)) → 𝐾 ∈ Lat)
192, 12atbase 37751 . . . . . . . . . . . . . . . . 17 (𝑝 ∈ (Atoms‘𝐾) → 𝑝𝐵)
2019adantl 482 . . . . . . . . . . . . . . . 16 (((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ 𝑝 ∈ (Atoms‘𝐾)) → 𝑝𝐵)
21 simpl2 1192 . . . . . . . . . . . . . . . 16 (((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ 𝑝 ∈ (Atoms‘𝐾)) → 𝑋𝐵)
22 simpl3 1193 . . . . . . . . . . . . . . . 16 (((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ 𝑝 ∈ (Atoms‘𝐾)) → 𝑌𝐵)
232, 11, 3latlem12 18355 . . . . . . . . . . . . . . . 16 ((𝐾 ∈ Lat ∧ (𝑝𝐵𝑋𝐵𝑌𝐵)) → ((𝑝(le‘𝐾)𝑋𝑝(le‘𝐾)𝑌) ↔ 𝑝(le‘𝐾)(𝑋 𝑌)))
2418, 20, 21, 22, 23syl13anc 1372 . . . . . . . . . . . . . . 15 (((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ 𝑝 ∈ (Atoms‘𝐾)) → ((𝑝(le‘𝐾)𝑋𝑝(le‘𝐾)𝑌) ↔ 𝑝(le‘𝐾)(𝑋 𝑌)))
2524biimpd 228 . . . . . . . . . . . . . 14 (((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ 𝑝 ∈ (Atoms‘𝐾)) → ((𝑝(le‘𝐾)𝑋𝑝(le‘𝐾)𝑌) → 𝑝(le‘𝐾)(𝑋 𝑌)))
2625expcomd 417 . . . . . . . . . . . . 13 (((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ 𝑝 ∈ (Atoms‘𝐾)) → (𝑝(le‘𝐾)𝑌 → (𝑝(le‘𝐾)𝑋𝑝(le‘𝐾)(𝑋 𝑌))))
27 con3 153 . . . . . . . . . . . . 13 ((𝑝(le‘𝐾)𝑋𝑝(le‘𝐾)(𝑋 𝑌)) → (¬ 𝑝(le‘𝐾)(𝑋 𝑌) → ¬ 𝑝(le‘𝐾)𝑋))
2826, 27syl6 35 . . . . . . . . . . . 12 (((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ 𝑝 ∈ (Atoms‘𝐾)) → (𝑝(le‘𝐾)𝑌 → (¬ 𝑝(le‘𝐾)(𝑋 𝑌) → ¬ 𝑝(le‘𝐾)𝑋)))
2928com23 86 . . . . . . . . . . 11 (((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ 𝑝 ∈ (Atoms‘𝐾)) → (¬ 𝑝(le‘𝐾)(𝑋 𝑌) → (𝑝(le‘𝐾)𝑌 → ¬ 𝑝(le‘𝐾)𝑋)))
3029a1d 25 . . . . . . . . . 10 (((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ 𝑝 ∈ (Atoms‘𝐾)) → ((𝑋 𝑌)𝐶𝑌 → (¬ 𝑝(le‘𝐾)(𝑋 𝑌) → (𝑝(le‘𝐾)𝑌 → ¬ 𝑝(le‘𝐾)𝑋))))
3130imp4d 425 . . . . . . . . 9 (((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ 𝑝 ∈ (Atoms‘𝐾)) → (((𝑋 𝑌)𝐶𝑌 ∧ (¬ 𝑝(le‘𝐾)(𝑋 𝑌) ∧ 𝑝(le‘𝐾)𝑌)) → ¬ 𝑝(le‘𝐾)𝑋))
32 simpr 485 . . . . . . . . . 10 (((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ 𝑝 ∈ (Atoms‘𝐾)) → 𝑝 ∈ (Atoms‘𝐾))
33 cvrexch.j . . . . . . . . . . 11 = (join‘𝐾)
342, 11, 33, 7, 12cvr1 37873 . . . . . . . . . 10 ((𝐾 ∈ HL ∧ 𝑋𝐵𝑝 ∈ (Atoms‘𝐾)) → (¬ 𝑝(le‘𝐾)𝑋𝑋𝐶(𝑋 𝑝)))
3517, 21, 32, 34syl3anc 1371 . . . . . . . . 9 (((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ 𝑝 ∈ (Atoms‘𝐾)) → (¬ 𝑝(le‘𝐾)𝑋𝑋𝐶(𝑋 𝑝)))
3631, 35sylibd 238 . . . . . . . 8 (((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ 𝑝 ∈ (Atoms‘𝐾)) → (((𝑋 𝑌)𝐶𝑌 ∧ (¬ 𝑝(le‘𝐾)(𝑋 𝑌) ∧ 𝑝(le‘𝐾)𝑌)) → 𝑋𝐶(𝑋 𝑝)))
3736imp 407 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ 𝑝 ∈ (Atoms‘𝐾)) ∧ ((𝑋 𝑌)𝐶𝑌 ∧ (¬ 𝑝(le‘𝐾)(𝑋 𝑌) ∧ 𝑝(le‘𝐾)𝑌))) → 𝑋𝐶(𝑋 𝑝))
38 simpl1 1191 . . . . . . . . . . . . 13 (((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ 𝑝𝐵) → 𝐾 ∈ HL)
3938hllatd 37826 . . . . . . . . . . . 12 (((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ 𝑝𝐵) → 𝐾 ∈ Lat)
40 simpl2 1192 . . . . . . . . . . . 12 (((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ 𝑝𝐵) → 𝑋𝐵)
41 simpl3 1193 . . . . . . . . . . . . 13 (((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ 𝑝𝐵) → 𝑌𝐵)
4239, 40, 41, 4syl3anc 1371 . . . . . . . . . . . 12 (((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ 𝑝𝐵) → (𝑋 𝑌) ∈ 𝐵)
43 simpr 485 . . . . . . . . . . . 12 (((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ 𝑝𝐵) → 𝑝𝐵)
442, 33latjass 18372 . . . . . . . . . . . 12 ((𝐾 ∈ Lat ∧ (𝑋𝐵 ∧ (𝑋 𝑌) ∈ 𝐵𝑝𝐵)) → ((𝑋 (𝑋 𝑌)) 𝑝) = (𝑋 ((𝑋 𝑌) 𝑝)))
4539, 40, 42, 43, 44syl13anc 1372 . . . . . . . . . . 11 (((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ 𝑝𝐵) → ((𝑋 (𝑋 𝑌)) 𝑝) = (𝑋 ((𝑋 𝑌) 𝑝)))
462, 33, 3latabs1 18364 . . . . . . . . . . . . . 14 ((𝐾 ∈ Lat ∧ 𝑋𝐵𝑌𝐵) → (𝑋 (𝑋 𝑌)) = 𝑋)
471, 46syl3an1 1163 . . . . . . . . . . . . 13 ((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) → (𝑋 (𝑋 𝑌)) = 𝑋)
4847adantr 481 . . . . . . . . . . . 12 (((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ 𝑝𝐵) → (𝑋 (𝑋 𝑌)) = 𝑋)
4948oveq1d 7372 . . . . . . . . . . 11 (((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ 𝑝𝐵) → ((𝑋 (𝑋 𝑌)) 𝑝) = (𝑋 𝑝))
5045, 49eqtr3d 2778 . . . . . . . . . 10 (((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ 𝑝𝐵) → (𝑋 ((𝑋 𝑌) 𝑝)) = (𝑋 𝑝))
5150adantr 481 . . . . . . . . 9 ((((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ 𝑝𝐵) ∧ ((𝑋 𝑌)𝐶𝑌 ∧ (¬ 𝑝(le‘𝐾)(𝑋 𝑌) ∧ 𝑝(le‘𝐾)𝑌))) → (𝑋 ((𝑋 𝑌) 𝑝)) = (𝑋 𝑝))
522, 11, 6, 33latnle 18362 . . . . . . . . . . . . . . 15 ((𝐾 ∈ Lat ∧ (𝑋 𝑌) ∈ 𝐵𝑝𝐵) → (¬ 𝑝(le‘𝐾)(𝑋 𝑌) ↔ (𝑋 𝑌)(lt‘𝐾)((𝑋 𝑌) 𝑝)))
5339, 42, 43, 52syl3anc 1371 . . . . . . . . . . . . . 14 (((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ 𝑝𝐵) → (¬ 𝑝(le‘𝐾)(𝑋 𝑌) ↔ (𝑋 𝑌)(lt‘𝐾)((𝑋 𝑌) 𝑝)))
542, 11, 3latmle2 18354 . . . . . . . . . . . . . . . . 17 ((𝐾 ∈ Lat ∧ 𝑋𝐵𝑌𝐵) → (𝑋 𝑌)(le‘𝐾)𝑌)
5539, 40, 41, 54syl3anc 1371 . . . . . . . . . . . . . . . 16 (((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ 𝑝𝐵) → (𝑋 𝑌)(le‘𝐾)𝑌)
5655biantrurd 533 . . . . . . . . . . . . . . 15 (((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ 𝑝𝐵) → (𝑝(le‘𝐾)𝑌 ↔ ((𝑋 𝑌)(le‘𝐾)𝑌𝑝(le‘𝐾)𝑌)))
572, 11, 33latjle12 18339 . . . . . . . . . . . . . . . 16 ((𝐾 ∈ Lat ∧ ((𝑋 𝑌) ∈ 𝐵𝑝𝐵𝑌𝐵)) → (((𝑋 𝑌)(le‘𝐾)𝑌𝑝(le‘𝐾)𝑌) ↔ ((𝑋 𝑌) 𝑝)(le‘𝐾)𝑌))
5839, 42, 43, 41, 57syl13anc 1372 . . . . . . . . . . . . . . 15 (((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ 𝑝𝐵) → (((𝑋 𝑌)(le‘𝐾)𝑌𝑝(le‘𝐾)𝑌) ↔ ((𝑋 𝑌) 𝑝)(le‘𝐾)𝑌))
5956, 58bitrd 278 . . . . . . . . . . . . . 14 (((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ 𝑝𝐵) → (𝑝(le‘𝐾)𝑌 ↔ ((𝑋 𝑌) 𝑝)(le‘𝐾)𝑌))
6053, 59anbi12d 631 . . . . . . . . . . . . 13 (((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ 𝑝𝐵) → ((¬ 𝑝(le‘𝐾)(𝑋 𝑌) ∧ 𝑝(le‘𝐾)𝑌) ↔ ((𝑋 𝑌)(lt‘𝐾)((𝑋 𝑌) 𝑝) ∧ ((𝑋 𝑌) 𝑝)(le‘𝐾)𝑌)))
61 hlpos 37828 . . . . . . . . . . . . . . . 16 (𝐾 ∈ HL → 𝐾 ∈ Poset)
6238, 61syl 17 . . . . . . . . . . . . . . 15 (((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ 𝑝𝐵) → 𝐾 ∈ Poset)
632, 33latjcl 18328 . . . . . . . . . . . . . . . . 17 ((𝐾 ∈ Lat ∧ (𝑋 𝑌) ∈ 𝐵𝑝𝐵) → ((𝑋 𝑌) 𝑝) ∈ 𝐵)
6439, 42, 43, 63syl3anc 1371 . . . . . . . . . . . . . . . 16 (((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ 𝑝𝐵) → ((𝑋 𝑌) 𝑝) ∈ 𝐵)
6542, 41, 643jca 1128 . . . . . . . . . . . . . . 15 (((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ 𝑝𝐵) → ((𝑋 𝑌) ∈ 𝐵𝑌𝐵 ∧ ((𝑋 𝑌) 𝑝) ∈ 𝐵))
662, 11, 6, 7cvrnbtwn2 37737 . . . . . . . . . . . . . . . . 17 ((𝐾 ∈ Poset ∧ ((𝑋 𝑌) ∈ 𝐵𝑌𝐵 ∧ ((𝑋 𝑌) 𝑝) ∈ 𝐵) ∧ (𝑋 𝑌)𝐶𝑌) → (((𝑋 𝑌)(lt‘𝐾)((𝑋 𝑌) 𝑝) ∧ ((𝑋 𝑌) 𝑝)(le‘𝐾)𝑌) ↔ ((𝑋 𝑌) 𝑝) = 𝑌))
6766biimpd 228 . . . . . . . . . . . . . . . 16 ((𝐾 ∈ Poset ∧ ((𝑋 𝑌) ∈ 𝐵𝑌𝐵 ∧ ((𝑋 𝑌) 𝑝) ∈ 𝐵) ∧ (𝑋 𝑌)𝐶𝑌) → (((𝑋 𝑌)(lt‘𝐾)((𝑋 𝑌) 𝑝) ∧ ((𝑋 𝑌) 𝑝)(le‘𝐾)𝑌) → ((𝑋 𝑌) 𝑝) = 𝑌))
68673exp 1119 . . . . . . . . . . . . . . 15 (𝐾 ∈ Poset → (((𝑋 𝑌) ∈ 𝐵𝑌𝐵 ∧ ((𝑋 𝑌) 𝑝) ∈ 𝐵) → ((𝑋 𝑌)𝐶𝑌 → (((𝑋 𝑌)(lt‘𝐾)((𝑋 𝑌) 𝑝) ∧ ((𝑋 𝑌) 𝑝)(le‘𝐾)𝑌) → ((𝑋 𝑌) 𝑝) = 𝑌))))
6962, 65, 68sylc 65 . . . . . . . . . . . . . 14 (((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ 𝑝𝐵) → ((𝑋 𝑌)𝐶𝑌 → (((𝑋 𝑌)(lt‘𝐾)((𝑋 𝑌) 𝑝) ∧ ((𝑋 𝑌) 𝑝)(le‘𝐾)𝑌) → ((𝑋 𝑌) 𝑝) = 𝑌)))
7069com23 86 . . . . . . . . . . . . 13 (((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ 𝑝𝐵) → (((𝑋 𝑌)(lt‘𝐾)((𝑋 𝑌) 𝑝) ∧ ((𝑋 𝑌) 𝑝)(le‘𝐾)𝑌) → ((𝑋 𝑌)𝐶𝑌 → ((𝑋 𝑌) 𝑝) = 𝑌)))
7160, 70sylbid 239 . . . . . . . . . . . 12 (((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ 𝑝𝐵) → ((¬ 𝑝(le‘𝐾)(𝑋 𝑌) ∧ 𝑝(le‘𝐾)𝑌) → ((𝑋 𝑌)𝐶𝑌 → ((𝑋 𝑌) 𝑝) = 𝑌)))
7271com23 86 . . . . . . . . . . 11 (((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ 𝑝𝐵) → ((𝑋 𝑌)𝐶𝑌 → ((¬ 𝑝(le‘𝐾)(𝑋 𝑌) ∧ 𝑝(le‘𝐾)𝑌) → ((𝑋 𝑌) 𝑝) = 𝑌)))
7372imp32 419 . . . . . . . . . 10 ((((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ 𝑝𝐵) ∧ ((𝑋 𝑌)𝐶𝑌 ∧ (¬ 𝑝(le‘𝐾)(𝑋 𝑌) ∧ 𝑝(le‘𝐾)𝑌))) → ((𝑋 𝑌) 𝑝) = 𝑌)
7473oveq2d 7373 . . . . . . . . 9 ((((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ 𝑝𝐵) ∧ ((𝑋 𝑌)𝐶𝑌 ∧ (¬ 𝑝(le‘𝐾)(𝑋 𝑌) ∧ 𝑝(le‘𝐾)𝑌))) → (𝑋 ((𝑋 𝑌) 𝑝)) = (𝑋 𝑌))
7551, 74eqtr3d 2778 . . . . . . . 8 ((((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ 𝑝𝐵) ∧ ((𝑋 𝑌)𝐶𝑌 ∧ (¬ 𝑝(le‘𝐾)(𝑋 𝑌) ∧ 𝑝(le‘𝐾)𝑌))) → (𝑋 𝑝) = (𝑋 𝑌))
7619, 75sylanl2 679 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ 𝑝 ∈ (Atoms‘𝐾)) ∧ ((𝑋 𝑌)𝐶𝑌 ∧ (¬ 𝑝(le‘𝐾)(𝑋 𝑌) ∧ 𝑝(le‘𝐾)𝑌))) → (𝑋 𝑝) = (𝑋 𝑌))
7737, 76breqtrd 5131 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ 𝑝 ∈ (Atoms‘𝐾)) ∧ ((𝑋 𝑌)𝐶𝑌 ∧ (¬ 𝑝(le‘𝐾)(𝑋 𝑌) ∧ 𝑝(le‘𝐾)𝑌))) → 𝑋𝐶(𝑋 𝑌))
7877expr 457 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ 𝑝 ∈ (Atoms‘𝐾)) ∧ (𝑋 𝑌)𝐶𝑌) → ((¬ 𝑝(le‘𝐾)(𝑋 𝑌) ∧ 𝑝(le‘𝐾)𝑌) → 𝑋𝐶(𝑋 𝑌)))
7978an32s 650 . . . 4 ((((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ (𝑋 𝑌)𝐶𝑌) ∧ 𝑝 ∈ (Atoms‘𝐾)) → ((¬ 𝑝(le‘𝐾)(𝑋 𝑌) ∧ 𝑝(le‘𝐾)𝑌) → 𝑋𝐶(𝑋 𝑌)))
8079rexlimdva 3152 . . 3 (((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ (𝑋 𝑌)𝐶𝑌) → (∃𝑝 ∈ (Atoms‘𝐾)(¬ 𝑝(le‘𝐾)(𝑋 𝑌) ∧ 𝑝(le‘𝐾)𝑌) → 𝑋𝐶(𝑋 𝑌)))
8116, 80mpd 15 . 2 (((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ (𝑋 𝑌)𝐶𝑌) → 𝑋𝐶(𝑋 𝑌))
8281ex 413 1 ((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) → ((𝑋 𝑌)𝐶𝑌𝑋𝐶(𝑋 𝑌)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 396  w3a 1087   = wceq 1541  wcel 2106  wrex 3073   class class class wbr 5105  cfv 6496  (class class class)co 7357  Basecbs 17083  lecple 17140  Posetcpo 18196  ltcplt 18197  joincjn 18200  meetcmee 18201  Latclat 18320  ccvr 37724  Atomscatm 37725  HLchlt 37812
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2707  ax-rep 5242  ax-sep 5256  ax-nul 5263  ax-pow 5320  ax-pr 5384  ax-un 7672
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2538  df-eu 2567  df-clab 2714  df-cleq 2728  df-clel 2814  df-nfc 2889  df-ne 2944  df-ral 3065  df-rex 3074  df-reu 3354  df-rab 3408  df-v 3447  df-sbc 3740  df-csb 3856  df-dif 3913  df-un 3915  df-in 3917  df-ss 3927  df-nul 4283  df-if 4487  df-pw 4562  df-sn 4587  df-pr 4589  df-op 4593  df-uni 4866  df-iun 4956  df-br 5106  df-opab 5168  df-mpt 5189  df-id 5531  df-xp 5639  df-rel 5640  df-cnv 5641  df-co 5642  df-dm 5643  df-rn 5644  df-res 5645  df-ima 5646  df-iota 6448  df-fun 6498  df-fn 6499  df-f 6500  df-f1 6501  df-fo 6502  df-f1o 6503  df-fv 6504  df-riota 7313  df-ov 7360  df-oprab 7361  df-proset 18184  df-poset 18202  df-plt 18219  df-lub 18235  df-glb 18236  df-join 18237  df-meet 18238  df-p0 18314  df-lat 18321  df-clat 18388  df-oposet 37638  df-ol 37640  df-oml 37641  df-covers 37728  df-ats 37729  df-atl 37760  df-cvlat 37784  df-hlat 37813
This theorem is referenced by:  cvrexch  37883
  Copyright terms: Public domain W3C validator